1932

Abstract

Most of the carbon fixed in primary production is rapidly cycled and remin-eralized, leaving behind various forms of organic carbon that contribute to a vast reservoir of nonliving organic matter in seawater. Most of this carbon resides in dissolved molecules of varying bioavailability and reactivity, and aspects of the cycling of this carbon remain an enigma. The size-reactivity continuum model provides a conceptual framework for understanding the mechanisms governing the formation and mineralization of this carbon. In the seawater bioassay experiments that served as the original basis for this model, investigators observed that larger size classes of organic matter were more bioavailable and more rapidly remineralized by microbes than were smaller size classes. Studies of the chemical composition and radiocarbon content of marine organic matter have further indicated that the complexity and age of organic matter increase with decreasing molecular size. Biodegradation processes appear to shape the size distribution of organic matter and the nature of the small dissolved molecules that persist in the ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010213-135126
2015-01-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/marine/7/1/annurev-marine-010213-135126.html?itemId=/content/journals/10.1146/annurev-marine-010213-135126&mimeType=html&fmt=ahah

Literature Cited

  1. Aluwihare LI, Repeta DJ. 1999. A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae. Mar. Ecol. Prog. Ser. 186:105–17 [Google Scholar]
  2. Amon RMW, Benner R. 1994. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369:549–52 [Google Scholar]
  3. Amon RMW, Benner R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41:41–51 [Google Scholar]
  4. Amon RMW, Benner R. 2003. Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep-Sea Res. I 50:151–96 [Google Scholar]
  5. Amon RMW, Fitznar H-P, Benner R. 2001. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46:287–97 [Google Scholar]
  6. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–25 [Google Scholar]
  7. Baines SB, Pace ML. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr. 36:1078–90 [Google Scholar]
  8. Baltar F, Arístegui J, Sintes E, van Aken HM, Gasol JM, Herndl GJ. 2009. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol. 11:1998–2014 [Google Scholar]
  9. Barber RT. 1968. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–75 [Google Scholar]
  10. Bauer JE, Williams PM, Druffel ERM. 1992. 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357:667–70 [Google Scholar]
  11. Benner R. 1991. Ultrafiltration for the concentration of bacteria, viruses, and dissolved organic matter. The Analysis and Characterization of Marine Particles DC Hurd, DW Spencer 181–86 Washington, DC: Am. Geophys. Union [Google Scholar]
  12. Benner R. 2002. Chemical composition and reactivity. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 59–90 San Diego, CA: Academic [Google Scholar]
  13. Benner R, Biddanda B. 1998. Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnol. Oceanogr. 43:1373–78 [Google Scholar]
  14. Benner R, Biddanda B, Black B, McCarthy M. 1997. Abundance, distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Mar. Chem. 57:243–63 [Google Scholar]
  15. Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG. 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–64 [Google Scholar]
  16. Biddanda B, Benner R. 1997. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42:506–18 [Google Scholar]
  17. Biersmith A, Benner R. 1998. Carbohydrates in phytoplankton and freshly-produced dissolved organic matter. Mar. Chem. 63:131–44 [Google Scholar]
  18. Bishop JKB. 1999. Transmissometer measurement of POC. Deep-Sea Res. I 46:353–69 [Google Scholar]
  19. Bronk DA. 2002. Dynamics of DON. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 153–249 San Diego, CA: Academic [Google Scholar]
  20. Buesseler KO, Bauer JE, Chen RF, Eglinton TI, Gustafsson O. et al. 1996. An intercomparison of cross-flow filtration techniques used for sampling marine colloids: overview and organic carbon results. Mar. Chem. 55:1–31 [Google Scholar]
  21. Buesseler KO, Bowles M, Joyce K. 2001. A new wave of ocean science Broch., US Joint Glob. Ocean Flux Study Plan. Data Manag. Off., Woods Hole, MA. http://www1.whoi.edu/images/jgofs_brochure.pdf
  22. Buitenhuis ET, Vogt M, Moriarity R, Bednarsek N, Doney SC. et al. 2013. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5:227–39 [Google Scholar]
  23. Burd AB, Jackson GA. 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1:65–90 [Google Scholar]
  24. Burdige DJ, Gardner KG. 1998. Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. Mar. Chem. 62:45–64 [Google Scholar]
  25. Carlson CA, Bates NR, Ducklow HW, Hansell DA. 1999. Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquat. Microb. Ecol. 19:229–44 [Google Scholar]
  26. Carlson DJ, Brann ML, Mague TH, Mayer LM. 1985. Molecular weight distribution of dissolved organic material in seawater determined by ultrafiltration: a re-examination. Mar. Chem. 16:155–71 [Google Scholar]
  27. Cherrier J, Bauer JE. 2004. Bacterial utilization of transient plankton-derived dissolved organic carbon and nitrogen inputs in surface ocean waters. Aquat. Microb. Ecol. 35:229–41 [Google Scholar]
  28. Cherrier J, Bauer JE, Druffel ERM. 1996. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Mar. Ecol. Prog. Ser. 139:267–79 [Google Scholar]
  29. Chin W-C, Orellana MV, Verdugo P. 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–72 [Google Scholar]
  30. Conan P, Søndergaard M, Kragh T, Thingstad F, Pujo-Pay M. et al. 2007. Partitioning of organic production in marine plankton communities: the effects of inorganic nutrient ratios and community composition on new dissolved organic matter. Limnol. Oceanogr. 52:753–65 [Google Scholar]
  31. Dalzell BJ, Minor EC, Mopper KM. 2009. Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation. Org. Geochem. 40:243–57 [Google Scholar]
  32. Davis J, Benner R. 2005. Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin. Deep-Sea Res. II 52:3396–410 [Google Scholar]
  33. Davis J, Benner R. 2007. Quantitative estimates of labile and semi-labile dissolved organic carbon in the western Arctic Ocean: a molecular approach. Limnol. Oceanogr. 52:2434–44 [Google Scholar]
  34. Davis J, Kaiser K, Benner R. 2009. Amino acid and amino sugar yields and compositions as indicators of dissolved organic matter diagenesis. Org. Geochem. 40:343–52 [Google Scholar]
  35. Dittmar T, Koch BP. 2006. Thermogenic organic matter dissolved in the abyssal ocean. Mar. Chem. 102:208–17 [Google Scholar]
  36. Druffel ERM, Bauer JE, Griffin S, Hwang J. 2003. Penetration of anthropogenic carbon into organic particles of the deep ocean. Geophys. Res. Lett. 30:1744 [Google Scholar]
  37. Druffel ERM, Williams PM, Bauer JE, Ertel JR. 1992. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97:15639–59 [Google Scholar]
  38. Engel A, Thoms S, Riabesell U, Rochelle-Newall E, Zondervan I. 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–32 [Google Scholar]
  39. Fajon C, Cauwet G, Lebaron P, Terzic S, Ahel M. et al. 1999. The accumulation and release of polysaccharides in plankton cells and the subsequent bacterial response during a controlled experiment. FEMS Microbiol. Ecol. 29:351–63 [Google Scholar]
  40. Fichot CG, Benner R. 2012. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol. Oceanogr. 57:1453–66 [Google Scholar]
  41. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  42. Gardner WD, Mishonov AV, Richardson MJ. 2006. Global POC concentrations from in-situ and satellite data. Deep-Sea Res. II 53:718–40 [Google Scholar]
  43. Gardner WS, Benner R, Amon R, Cotner JB, Cavaletto JF, Johnson JR. 1996. Effects of high molecular weight dissolved organic matter on nitrogen dynamics in the Mississippi River plume. Mar. Ecol. Prog. Ser. 133:287–97 [Google Scholar]
  44. Geider R, La Roche J. 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37:1–17 [Google Scholar]
  45. Goldberg SJ, Carlson CA, Hansell DA, Nelson NB, Siegel DA. 2009. Temporal dynamics of dissolved combined neutral sugars and the quality of dissolved organic matter in the northwestern Sargasso Sea. Deep-Sea Res. I 56:672–85 [Google Scholar]
  46. Goutx M, Wakeham SG, Lee C, Duflos M, Guigue C. et al. 2007. Composition and degradation of marine particles with different settling velocities in the northwestern Mediterranean Sea. Limnol. Oceanogr. 52:1645–64 [Google Scholar]
  47. Guo L, Santschi PH. 1996. A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater. Mar. Chem. 55:113–27 [Google Scholar]
  48. Guo L, Santschi PH, Cifuentes LA, Trumbore SE, Southon J. 1996. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight by carbon isotopic (13C and 14C) signatures. Limnol. Oceanogr. 41:1242–52 [Google Scholar]
  49. Guo L, Santschi PH, Warnken KW. 1995. Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol. Oceanogr. 40:1392–403 [Google Scholar]
  50. Hama T, Handa N. 1987. Pattern of organic matter production by natural phytoplankton population in a eutrophic lake. Arch. Hydrobiol. 109:227–43 [Google Scholar]
  51. Hama T, Yanagi K, Hama J. 2004. Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnol. Oceanogr. 49:471–81 [Google Scholar]
  52. Hannides CCS, Popp BN, Choy CA, Drazen JC. 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58:1931–46 [Google Scholar]
  53. Hansell DA. 2013. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5:421–45 [Google Scholar]
  54. Hansell DA, Carlson CA. 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395:263–66 [Google Scholar]
  55. Harvey HR, Tuttle JH, Bell JT. 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59:3367–77 [Google Scholar]
  56. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. 2008. Absorption spectral slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53:955–69 [Google Scholar]
  57. Herndl GJ, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nat. Geosci. 6:718–24 [Google Scholar]
  58. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M. et al. 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70:2990–3010 [Google Scholar]
  59. Hertkorn N, Harin M, Koch BP, Michalke B, Schmitt-Kopplin P. 2013. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10:1583–624 [Google Scholar]
  60. Hopkinson CS, Fry B, Nolin AL. 1997. Stoichiometry of dissolved organic matter dynamics on the continental shelf of the northeastern U. S Cont. Shelf Res. 17:473–89 [Google Scholar]
  61. Hopkinson CS, Vallino JJ. 2005. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142–45 [Google Scholar]
  62. Hoppe H-G, Arnosti C, Herndl GJ. 2002. Ecological significance of bacterial enzymes in the marine environment. Enzymes in the Environment RG Burns, RP Dick 73–107 New York: Dekker [Google Scholar]
  63. Jannasch HW. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12:264–71 [Google Scholar]
  64. Jannasch HW. 1995. The microbial turnover of carbon in the deep-sea environment. Direct Ocean Disposal of Carbon Dioxide N Handa, T Ohsumi 1–11 Tokyo: Terra [Google Scholar]
  65. Jørgensen NOG, Tranvik LJ, Berg GM. 1999. Occurrence and bacterial cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea. Mar. Ecol. Prog. Ser. 191:1–18 [Google Scholar]
  66. Kähler P, Bauerfeind E. 2001. Organic particles in a shallow sediment trap: substantial loss to the dissolved phase. Limnol. Oceanogr. 46:719–23 [Google Scholar]
  67. Kaiser K, Benner R. 2008. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol. Oceanogr. 53:99–112 [Google Scholar]
  68. Kaiser K, Benner R. 2009. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Mar. Chem. 113:63–77 [Google Scholar]
  69. Kaiser K, Benner R. 2012. Organic matter transformations in the upper mesopelagic zone of the North Pacific: chemical composition and linkages to microbial community structure. J. Geophys. Res. 117:C01023 [Google Scholar]
  70. Karner M, Herndl GJ. 1992. Extracellular enzymatic activity and secondary production in free-living and marine-snow associated bacteria. Mar. Biol. 113:341–47 [Google Scholar]
  71. Kattner G, Simon M, Koch BP. 2011. Molecular characterization of dissolved organic matter and constraints for prokaryotic utilization. Microbial Carbon Pump in the Ocean N Jiao, F Azam, S Sanders 60–61 Washington, DC:: Science/AAAS [Google Scholar]
  72. Kawasaki N, Sohrin R, Ogawa H, Nagata T, Benner R. 2011. Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquat. Microb. Ecol. 62:165–76 [Google Scholar]
  73. Keil RG, Kirchman DL. 1993. Dissolved combined amino acids: chemical form and utilization by marine bacteria. Limnol. Oceanogr. 38:1256–70 [Google Scholar]
  74. Keil RG, Kirchman DL. 1999. Utilization of dissolved protein and amino acids in the northern Sargasso Sea. Aquat. Microb. Ecol. 18:293–300 [Google Scholar]
  75. Khersonsky O, Tawfik DS. 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505 [Google Scholar]
  76. Kieber DJ, McDaniel J, Mopper K. 1989. Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature 341:637–39 [Google Scholar]
  77. Koch BP, Witt MR, Engbrodt R, Dittmar T, Kattner G. 2005. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta 69:3299–308 [Google Scholar]
  78. Koike I, Hara S, Terauchi K, Kogure K. 1990. Role of sub-micron particles in the ocean. Nature 345:242–44 [Google Scholar]
  79. Kolowith LC, Ingall ED, Benner R. 2001. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 46:309–20 [Google Scholar]
  80. Kujawinski EB. 2011. The impact of microbial metabolism on marine dissolved organic matter. Annu. Rev. Mar. Sci. 3:567–99 [Google Scholar]
  81. Landry C, Tremblay L. 2012. Compositional differences between size classes of dissolved organic matter from freshwater and seawater revealed by an HPLC-FTIR system. Environ. Sci. Technol. 46:1700–7 [Google Scholar]
  82. Loh AN, Bauer JE. 2000. Distribution, partitioning and fluxes of dissolved and particulate organic C, N and P in the eastern North Pacific and Southern Oceans. Deep-Sea Res. I 47:2287–316 [Google Scholar]
  83. Loh AN, Bauer JE, Druffel ERM. 2004. Variable aging and storage of dissolved organic components in the open ocean. Nature 430:877–80 [Google Scholar]
  84. Lønborg C, Álvarez-Salgado XA. 2012. Recycling versus export of bioavailable dissolved organic matter in the coastal ocean and efficiency of the continental shelf pump. Glob. Biogeochem. Cycles 26:GB3018 [Google Scholar]
  85. Mannino A, Harvey R. 1999. Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: sources and diagenetic patterns. Geochim. Cosmochim. Acta 63:2219–35 [Google Scholar]
  86. Mannino A, Harvey R. 2000. Biochemical composition of particles and dissolved organic matter along an estuarine gradient: sources and implications of DOM reactivity. Limnol. Oceanogr. 45:775–88 [Google Scholar]
  87. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK. et al. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6:279–83 [Google Scholar]
  88. McCarthy MD, Beaupré SR, Walker BD, Voparil I, Guilderson TP, Druffel ERM. 2011. Chemosynthetic origin of 14C-depleted dissolved organic matter in a ridge-flank hydrothermal system. Nat. Geosci. 4:32–36 [Google Scholar]
  89. McCarthy MD, Hedges JI, Benner R. 1996. Major biochemical composition of dissolved high molecular weight organic matter in seawater. Mar. Chem. 55:281–97 [Google Scholar]
  90. McCarthy MD, Hedges JI, Benner R. 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science 281:231–34 [Google Scholar]
  91. McCave IN. 1975. Vertical flux of particles in the ocean. Deep-Sea Res. Oceanogr. Abstr. 22:491–502 [Google Scholar]
  92. Meador TB, Aluwihare LI, Mahaffey C. 2007. Isotope heterogeneity and cycling of organic nitrogen in the oligotrophic ocean. Limnol. Oceanogr. 52:934–47 [Google Scholar]
  93. Meon B, Kirchman DL. 2001. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem. 75:185–99 [Google Scholar]
  94. Miller WL, Zepp RG. 1995. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys. Res. Lett. 22:417–20 [Google Scholar]
  95. Moran MA, Zepp RG. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42:1307–16 [Google Scholar]
  96. Nagata T. 2000. Production mechanisms of dissolved organic matter. Microbial Ecology of the Oceans DL Kirchman 121–52 New York: Wiley-Liss [Google Scholar]
  97. Obernosterer I, Reitner B, Herndl GJ. 1999. Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnol. Oceanogr. 44:1645–54 [Google Scholar]
  98. O'Brien PJ, Herschlag D. 1999. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6:R91–105 [Google Scholar]
  99. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R. 2001. Production of refractory dissolved organic matter by bacteria. Science 292:917–20 [Google Scholar]
  100. Ogawa H, Ogura N. 1992. Comparison of two methods for measuring dissolved organic carbon in sea water. Nature 356:696–98 [Google Scholar]
  101. Ogawa H, Tanoue E. 2003. Dissolved organic matter in oceanic waters. J. Oceanogr. 59:129–47 [Google Scholar]
  102. Opsahl S, Benner R. 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol. Oceanogr. 43:1297–304 [Google Scholar]
  103. Pakulski JD, Benner R. 1994. Abundance and distribution of dissolved carbohydrates in the ocean. Limnol. Oceanogr. 39:930–40 [Google Scholar]
  104. Panagiotopoulos C, Sempéré R, Obernosterer I, Striby L, Goutx M. et al. 2002. Bacterial degradation of large particles in the southern Indian Ocean using in vitro incubation experiments. Org. Geochem. 33:985–1000 [Google Scholar]
  105. Piontek J, Händel N, De Bodt C, Harlay J, Chou L, Engel A. 2011. The utilization of polysaccharides by heterotrophic bacterioplankton in the Bay of Biscay (North Atlantic Ocean). J. Plankton Res. 33:1719–35 [Google Scholar]
  106. Repeta DJ, Aluwihare LI. 2006. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: implications for organic carbon cycling. Limnol. Oceanogr. 51:1045–53 [Google Scholar]
  107. Reynolds NM, Lazazzera BA, Ibba M. 2010. Cellular mechanisms that control mistranslation. Nat. Rev. Microbiol. 8:849–56 [Google Scholar]
  108. Sannigrahi P, Ingall ED, Benner R. 2006. Nature and dynamics of phosphorus-containing components of marine dissolved and particulate organic matter. Geochim. Cosmochim. Acta 70:5868–82 [Google Scholar]
  109. Santschi PH, Guo L, Baskaran M, Trumbore S, Southon J. et al. 1995. Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochim. Cosmochim. Acta 59:625–31 [Google Scholar]
  110. Scripps Inst. Oceanogr 2014. The Keeling Curve University of California, San Diego, La Jolla, CA. http://keelingcurve.ucsd.edu
  111. Sempéré R, Yoro S, Van Wambeke F, Charriere B. 2000. Microbial decomposition of large organic particles in the northwester Mediterranean Sea: an experimental approach. Mar. Ecol. Prog. Ser. 198:61–72 [Google Scholar]
  112. Sharp JH. 1973. Size classes of organic carbon in seawater. Limnol. Oceanogr. 18:441–47 [Google Scholar]
  113. Shen Y, Fichot CG, Benner R. 2012. Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the western Arctic Ocean. Biogeosciences 9:4993–5005 [Google Scholar]
  114. Simon M, Rosenstock B. 2007. Different coupling of dissolved amino acid, protein, and carbohydrate turnover to heterotrophic picoplankton in the Southern Ocean in austral summer and fall. Limnol. Oceanogr. 52:85–95 [Google Scholar]
  115. Skoog A, Benner R. 1997. Aldoses in various size fractions of marine organic matter: implications for carbon cycling. Limnol. Oceanogr. 42:1803–13 [Google Scholar]
  116. Smith DC, Simon M, Alldredge AL, Azam F. 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–42 [Google Scholar]
  117. Søndergaard M, Middelboe M. 1995. A cross-system analysis of labile dissolved organic carbon (LDOC). Mar. Ecol. Prog. Ser. 118:283–94 [Google Scholar]
  118. Steen AD, Hamdan LJ, Arnosti C. 2008. Dynamics of dissolved carbohydrates in the Chesapeake Bay: insights from enzyme activities, concentrations, and microbial metabolism. Limnol. Oceanogr. 53:936–47 [Google Scholar]
  119. Steen AD, Ziervogel K, Arnosti C. 2010. Comparison of multivariate microbial datasets with the Shannon index: an example using enzyme activities from diverse marine environments. Org. Geochem. 41:1019–21 [Google Scholar]
  120. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP. et al. 2000. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 47:137–58 [Google Scholar]
  121. Strom S, Benner R, Ziegler S, Dagg M. 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42:1364–74 [Google Scholar]
  122. Suttle CA. 2007. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5:801–12 [Google Scholar]
  123. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T. et al. 2011. Potential for chemolithoautotrophy among unbiquitous bacteria lineages in the dark ocean. Science 333:1296–300 [Google Scholar]
  124. Tamburini C, Garcin J, Bianchi A. 2003. Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat. Microb. Ecol. 32:209–18 [Google Scholar]
  125. Tranvik LJ, Kokalj S. 1998. Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquat. Microb. Ecol. 14:301–7 [Google Scholar]
  126. Verdugo P. 2012. Marine microgels. Annu. Rev. Mar. Sci. 4:375–400 [Google Scholar]
  127. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH. 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92:67–85 [Google Scholar]
  128. Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson M. 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61:5363–69 [Google Scholar]
  129. Walker BD, Beaupré SR, Guilderson TP, Druffel ERM, McCarthy MD. 2011. Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. Geochim. Cosmochim. Acta 75:5187–202 [Google Scholar]
  130. Walker BD, Guilderson TP, Okimura KM, Peacock MB, McCarthy MD. 2014. Radiocarbon signatures and size-age-composition relationships of major organic matter pools within a California upwelling system. Geochim. Cosmochim. Acta 126:1–17 [Google Scholar]
  131. Walker BD, McCarthy MD. 2012. Elemental and isotopic characterization of dissolved and particulate organic matter in a unique California upwelling system: importance of size and composition in the export of labile material. Limnol. Oceanogr. 57:1757–74 [Google Scholar]
  132. Wells ML. 1998. A neglected dimension. Nature 391:530–31 [Google Scholar]
  133. Wells ML, Goldberg ED. 1991. Occurrence of small colloids in sea water. Nature 353:342–44 [Google Scholar]
  134. Williams PM, Druffel ERM. 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–48 [Google Scholar]
  135. Yoshimura T, Ogawa H, Imai K, Aramaki T, Nojiri Y. et al. 2009. Dynamics and elemental stoichiometry of carbon, nitrogen, and phosphorus in particulate and dissolved organic pools during a phytoplankton bloom induced by in situ iron enrichment in the western subarctic Pacific (SEEDS-II). Deep-Sea Res. II 56:2863–74 [Google Scholar]
  136. Zhang J, Zhang Q, Xu N. 2012. Diagenetic alterations of amino acids and organic matter in the upper Pearl River Estuary surface sediments. Biogeosciences 9:555–64 [Google Scholar]
  137. Ziervogel K, Steen AD, Arnosti C. 2010. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7:1007–17 [Google Scholar]
  138. Ziolkowski LA, Druffel ERM. 2010. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37:L16601 [Google Scholar]
/content/journals/10.1146/annurev-marine-010213-135126
Loading
/content/journals/10.1146/annurev-marine-010213-135126
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error