1932

Abstract

More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems—salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose—an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095333
2020-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010318-095333.html?itemId=/content/journals/10.1146/annurev-marine-010318-095333&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott W, Alber O, Bayer E, Berrin JG, Boraston A et al. 2018. Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology 28:3–8
    [Google Scholar]
  2. Adame MF, Cherian S, Reef R, Stewart-Koster B 2017. Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecol. Manag. 403:52–60
    [Google Scholar]
  3. Adame MF, Lovelock CE. 2011. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663:23–50
    [Google Scholar]
  4. Allen JA, Ewel KC, Keeland BD, Tara T, Smith TJ 2000. Downed wood in Micronesian mangrove forests. Wetlands 20:169–76
    [Google Scholar]
  5. Alongi DM. 2014. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 6:195–219
    [Google Scholar]
  6. Altamia MA, Shipway JR, Concepcion GP, Haygood MG, Distel DL 2019. Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm. Kuphus polythalamius. Int. J. Syst. Evol. Microbiol. 69:638–44
    [Google Scholar]
  7. Aquino RS, Grativol C, Mourao PAS 2011. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLOS ONE 6:e18862
    [Google Scholar]
  8. Aquino RS, Landeira-Fernandez AM, Valente AP, Andrade LR, Mourao PAS 2005. Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. Glycobiology 15:11–20
    [Google Scholar]
  9. Arambalza U, Ibarrola I, Navarro E, Urrutia MB 2014. Ingestion and absorption of particles derived from different macrophyta in the cockle Cerastoderma edule: effects of food ration. J. Comp. Physiol. B 184:179–92
    [Google Scholar]
  10. Arfi Y, Marchand C, Wartel M, Record E 2012. Fungal diversity in anoxic-sulfidic sediments in a mangrove soil. Fungal Ecol 5:282–85
    [Google Scholar]
  11. Arnosti C, Reintjes G, Amann R 2018. A mechanistic microbial underpinning for the size-reactivity continuum of dissolved organic carbon degradation. Mar. Chem. 206:93–99
    [Google Scholar]
  12. Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM 2015. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–33
    [Google Scholar]
  13. Atmodjo MA, Hao ZY, Mohnen D 2013. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64:747–79
    [Google Scholar]
  14. Atwood TB, Connolly RM, Almahasheer H, Carnell PE, Duarte CM et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 7:523–28
    [Google Scholar]
  15. Bakkar T, Helfer V, Himmelsbach R, Zimmer M 2017. Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia 803:307–15
    [Google Scholar]
  16. Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  17. Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG 2013. The changing carbon cycle of the coastal ocean. Nature 504:61–70
    [Google Scholar]
  18. Benner R, Fogel ML, Sprague EK 1991. Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnol. Oceanogr. 36:1358–74
    [Google Scholar]
  19. Benner R, Newell SY, Maccubbin AE, Hodson RE 1984. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl. Environ. Microbiol. 48:36–40
    [Google Scholar]
  20. Berg B, McClagherty C. 2008. Decomposition as a process. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration B Berg, C McClaugherty 11–33 Berlin: Springer
    [Google Scholar]
  21. Besser K, Malyon GP, Eborall WS, da Cunha GP, Filgueiras JG et al. 2018. Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nat. Commun. 9:5125
    [Google Scholar]
  22. Bianchi TS, Cui XQ, Blair NE, Burdige DJ, Eglinton TI, Galy V 2018. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115:138–55
    [Google Scholar]
  23. Bienhold C, Ristova PP, Wenzhöfer F, Dittmar T, Boetius A 2013. How deep-sea wood falls sustain chemosynthetic life. PLOS ONE 8:e53590
    [Google Scholar]
  24. Björdal CG. 2012. Evaluation of microbial degradation of shipwrecks in the Baltic Sea. Int. Biodeterior. Biodegrad. 70:126–40
    [Google Scholar]
  25. Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA et al. 2014. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–80
    [Google Scholar]
  26. Bongiorni L, Pusceddu A, Danovaro R 2005. Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat. Microb. Ecol. 41:299–305
    [Google Scholar]
  27. Borges LMS, Cragg SM, Bergot J, Williams JR, Shayler B, Sawyer GS 2008. Laboratory screening of tropical hardwoods for natural resistance to the marine borer Limnoria quadripunctata: the role of leachable and non-leachable factors. Holzforschung 62:99–111
    [Google Scholar]
  28. Bouillon S, Connolly RM. 2009. Carbon exchange among tropical coastal ecosystems. Ecological Connectivity Among Tropical Coastal Ecosystems I Nagelkerken 45–69 Dordrecht, Neth.: Springer
    [Google Scholar]
  29. Bouillon S, Connolly RM, Lee SY 2008. Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies. J. Sea Res. 59:44–58
    [Google Scholar]
  30. Brouwer H, Coutinho PM, Henrissat B, de Vries RP 2014. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genet. Biol. 72:192–200
    [Google Scholar]
  31. Bucher VVC, Hyde KD, Pointing SB, Reddy CA 2004. Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14
    [Google Scholar]
  32. Bui THH, Lee SY. 2015. Endogenous cellulase production in the leaf litter foraging mangrove crab Parasesarma erythodactyla. Comp. Biochem. Physiol. B 179:27–36
    [Google Scholar]
  33. Bunting P, Rosenqvist A, Lucas RM, Rebelo LM, Hilarides L et al. 2018. The Global Mangrove Watch—a new 2010 global baseline of mangrove extent. Remote Sens 10:1669
    [Google Scholar]
  34. Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T et al. 2016. Evolution of xylan substitution patterns in gymnosperms and angiosperms: implications for xylan interaction with cellulose. Plant Physiol 171:2418–31
    [Google Scholar]
  35. Calado MD, Carvalho L, Pang KL, Barata M 2015. Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb. Ecol. 70:612–33
    [Google Scholar]
  36. Cameron C, Hutley LB, Friess DA 2019. Estimating the full greenhouse gas emissions offset potential and profile between rehabilitating and established mangroves. Sci. Total Environ. 665:419–31
    [Google Scholar]
  37. Carlton JT, Chapman JW, Geller JB, Miller JA, Carlton DA et al. 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402–5
    [Google Scholar]
  38. Cavalier-Smith T. 2018. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357
    [Google Scholar]
  39. Cebrián J, Duarte CM, Marbá N, Enriquez S 1997. Magnitude and fate of the production of four co-occurring western Mediterranean seagrass species. Mar. Ecol. Prog. Ser. 159:29–44
    [Google Scholar]
  40. Cintron G, Schaeffer Novelli Y 1984. Methods for studying mangrove structure. The Mangrove Ecosystem: Research Methods SC Snedaker, JG Snedaker 91–113 Paris: UN Educ. Sci. Cult. Organ.
    [Google Scholar]
  41. Clementz MT, Koch PL, Beck CA 2007. Diet induced differences in carbon isotope fractionation between sirenians and terrestrial ungulates. Mar. Biol. 151:1773–84
    [Google Scholar]
  42. Cormier N, Twilley RR, Ewel KC, Krauss KW 2015. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 750:69–87
    [Google Scholar]
  43. Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL et al. 2015. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 29:108–19
    [Google Scholar]
  44. Cragg SM, Hendy IW. 2010. Mangrove forests of the Wakatobi National Park. Conservation and Research in the Coral Triangle: the Wakatobi National Park J Clifton, RFK Unsworth, DJ Smith 539–63 New York: Nova Sci.
    [Google Scholar]
  45. Creach V, Schricke MT, Bertru G, Mariotti A 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar. Coast. Shelf Sci. 44:599–611
    [Google Scholar]
  46. Crestini C, Melone F, Sette M, Saladino R 2011. Milled wood lignin: a linear oligomer. Biomacromolecules 12:3928–35
    [Google Scholar]
  47. Daniel G. 2014. Fungal and bacterial degradation: white rots, brown rots, soft rots and bacteria. Deterioration and Protection of Sustainable Biomaterials T Schultz, B Goodell, DD Nicholas 23–57 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  48. Darjany LE, Whitcraft CR, Dillon JG 2014. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front. Microbiol. 5:263
    [Google Scholar]
  49. de los Santos CB, Brun FG, Onoda Y, Cambridge ML, Bouma TJ et al. 2012. Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: implications for susceptibility to herbivory. Mar. Ecol. Prog. Ser. 458:89–102
    [Google Scholar]
  50. de Souza WR, Pacheco TF, Duarte KE, Sampaio BL, Molinari PAD et al. 2019. Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. Biotechnol. Biofuels 12:111
    [Google Scholar]
  51. DeAngelis KM, Allgaier M, Chavarria Y, Fortney JL, Hugenholtz P et al. 2011. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLOS ONE 6:e19306
    [Google Scholar]
  52. Distel DL, Altamia MA, Lin Z, Shipway JR, Han A et al. 2017. Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. PNAS 114:E3652–58
    [Google Scholar]
  53. Distel DL, Amin M, Burgoyne A, Linton E, Mamangkey G et al. 2011. Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Mol. Phylogenet. Evol. 61:245–54
    [Google Scholar]
  54. Distel DL, Baco R, Chuang E, Morrill W, Cavanuagh C et al. 2000. Do mussels take wooden steps to deep-sea vents. ? Nature 403:725–26
    [Google Scholar]
  55. Distel DL, Roberts SJ. 1997. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol. . Bull 192:253–61
    [Google Scholar]
  56. Dittmar T, Hertkorn N, Kattner G, Lara RJ 2006. Mangroves, a major source of dissolved organic carbon to the oceans. Glob. Biogeochem. Cycles 20: GB1012
    [Google Scholar]
  57. Dittmar T, Lara RJ. 2001. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil). Geochim. Cosmochim. Acta 65:1417–28
    [Google Scholar]
  58. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4:293–97
    [Google Scholar]
  59. Duarte CM. 2017. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14:301–10
    [Google Scholar]
  60. Duarte CM, Kraus-Jensen D. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4:7
    [Google Scholar]
  61. Dubilier N, Bergin C, Lott C 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6:725–40
    [Google Scholar]
  62. Eigeland KA, Lanyon JM, Trott DJ, Ouwerkerk D, Blanshard W et al. 2012. Bacterial community structure in the hindgut of wild and captive dugongs (Dugong dugon). Aquat. Mamm. 38:402–11
    [Google Scholar]
  63. Enriquez S, Duarte CM, Sand-Jensen K 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–71
    [Google Scholar]
  64. Fagervold SK, Romano C, Kalenitchenko D, Borowski C, Nunes-Jorge A et al. 2014. Microbial communities in sunken wood are structured by wood-boring bivalves and location in a submarine canyon. PLOS ONE 9:e96248
    [Google Scholar]
  65. Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ 2017. Global-scale structure of the eelgrass microbiome. Appl. Environ. Microbiol. 83:e03391–16
    [Google Scholar]
  66. Feller IC. 2002. The role of herbivory by wood-boring insects in mangrove ecosystems in Belize. Oikos 97:167–76
    [Google Scholar]
  67. Feller IC, Ball MC, Ellis JI, Lovelock CE, Reef R 2017. Interactive effects of climate and nutrient enrichment on patterns of herbivory by different feeding guilds in mangrove forests. Glob. Ecol. Biogeogr. 26:1326–38
    [Google Scholar]
  68. Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–19
    [Google Scholar]
  69. Fourqurean JW, Duarte CM, Kennedy H, Marbá N, Holmer M et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5:505–9
    [Google Scholar]
  70. Fourqurean JW, Schrlau JE. 2003. Changes in nutrient content and stable isotope ratios of C and N during decomposition of seagrasses and mangrove leaves along a nutrient availability gradient in Florida Bay, USA. Chem. Ecol. 19:373–90
    [Google Scholar]
  71. Fuchs G, Boll M, Heider J 2011. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9:803–16
    [Google Scholar]
  72. Gillis LG, Bouma TJ, Jones CG, van Katwijk MM, Nagelkerken I et al. 2014a. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503:289–303
    [Google Scholar]
  73. Gillis LG, Ziegler AD, van Oevelen D, Cathalot C, Herman PMJ et al. 2014b. Tiny is mighty: seagrass beds have a large role in the export of organic material in the tropical coastal zone. PLOS ONE 9:e111847
    [Google Scholar]
  74. Goodell B, Zhu Y, Kim S, Kafle K, Eastwood D et al. 2017. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi. Biotechnol. Biofuels 10:179
    [Google Scholar]
  75. Goubet F, Barton CJ, Mortimer JC, Yu XL, Zhang ZN et al. 2009. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J 60:527–38
    [Google Scholar]
  76. Hamilton SE, Casey D. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25:729–38
    [Google Scholar]
  77. Hamilton SE, Friess DA. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8:240–44
    [Google Scholar]
  78. Hannuksela T, Hervé du Penhoat C 2004. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr. Res. 339:301–12
    [Google Scholar]
  79. Harris PV, Welner D, McFarland KC, Re E, Poulsen JCN et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–16
    [Google Scholar]
  80. Hendy IW, Cragg SM. 2017. Rhizophora stylosa prop roots even when damaged prevent wood-boring teredinids from toppling the trees. Hydrobiologia 803:333–44
    [Google Scholar]
  81. Hernes PJ, Benner R. 2006. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 100:66–79
    [Google Scholar]
  82. Hilton RG, Galy A, Hovius N, Chen MC, Horng MJ et al. 2008. Tropical cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1:759–62
    [Google Scholar]
  83. Hodson RE, Christian RR, Maccubbin AE 1984. Lignocellulose and lignin in the salt-marsh grass Spartina alterniflora: initial concentrations and short-term, post-depositional changes in detrital matter. Mar. Biol. 81:1–7
    [Google Scholar]
  84. Holmer M, Olsen AB. 2002. Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar. Ecol. Prog. Ser. 230:87–101
    [Google Scholar]
  85. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP 1998. Role of fungi in marine ecosystems. Biodivers. Conserv. 7:1147–61
    [Google Scholar]
  86. Hyndes GA, Nagelkerken I, McLeod RJ, Connolly RM, Lavery PS, Vanderklift MA 2014. Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol. Rev. 89:232–54
    [Google Scholar]
  87. Jarvis MC. 2018. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. R. Soc. A 376:20170045
    [Google Scholar]
  88. Jiao NZ, Herndl GJ, Hansell DA, Benner R, Kattner G et al. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8:593–99
    [Google Scholar]
  89. Jiao NZ, Herndl GJ, Hansell DA, Benner R, Kattner G et al. 2011. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nat. Rev. Microbiol. 9:555
    [Google Scholar]
  90. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA et al. 2015. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72
    [Google Scholar]
  91. Kaal J, Serrano O, del Rio JC, Rencoret J 2018. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Org. Geochem. 124:247–56
    [Google Scholar]
  92. Kaal J, Serrano O, Nierop KGJ, Schellekens J, Cortizas AM, Mateo MA 2016. Molecular composition of plant parts and sediment organic matter in a Mediterranean seagrass (Posidonia oceanica) mat. Aquat. Bot. 133:50–61
    [Google Scholar]
  93. Kalenitchenko D, Fagervold SK, Pruski AM, Vetion G, Yucel M et al. 2015. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater. ISME J 9:2657–70
    [Google Scholar]
  94. Kalenitchenko D, Le Bris N, Dadaglio L, Peru E, Besserer A, Galand PE 2018. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME J 12:367–79
    [Google Scholar]
  95. Kandasamy S, Nath BN. 2016. Perspectives on the terrestrial organic matter transport and burial along the land-deep sea continuum: caveats in our understanding of biogeochemical processes and future needs. Front. Mar. Sci. 3:259
    [Google Scholar]
  96. Kandil FE, Grace MH, Seigler DS, Cheeseman JM 2004. Polyphenolics in Rhizophora mangle L. leaves and their changes during leaf development and senescence. Trees Struct. Funct. 18:518–28
    [Google Scholar]
  97. Kang X, Kirui A, Widanage MCD, Mentink-Vigier F, Cosgrove DJ, Wang T 2019. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 10:347
    [Google Scholar]
  98. Kern M, McGeehan JE, Streeter SD, Martin RNA, Besser K et al. 2013. Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. PNAS 110:10189–94
    [Google Scholar]
  99. Kimura H, Sato M, Sugiyama C, Naganuma T 2001. Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat. Microb. Ecol. 25:293–300
    [Google Scholar]
  100. King AJ, Cragg SM, Li Y, Dymond J, Guille MJ et al. 2010. Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. PNAS 107:5345–50
    [Google Scholar]
  101. Kirschbaum MUF, Zeng G, Ximenes F, Giltrap DL, Zeldis JR 2019. Towards a more complete quantification of the global carbon cycle. Biogeosciences 16:831–46
    [Google Scholar]
  102. Klap VA, Hemminga MA, Boon JJ 2000. Retention of lignin in seagrasses: angiosperms that returned to the sea. Mar. Ecol. Prog. Ser. 194:1–11
    [Google Scholar]
  103. Klap VA, Louchouarn P, Boon JJ, Hemminga MA, van Soelen J 1999. Decomposition dynamics of six salt marsh halophytes as determined by cupric oxide oxidation and direct temperature-resolved mass spectrometry. Limnol. Oceanogr. 44:1458–76
    [Google Scholar]
  104. Koch BP, Souza PWM, Behling H, Cohen MCL, Kattner G et al. 2011. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle). Org. Geochem. 42:62–73
    [Google Scholar]
  105. Komiyama A, Ong JE, Poungparn S 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquat. Bot. 89:128–37
    [Google Scholar]
  106. Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M et al. 2016. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352:1098–101
    [Google Scholar]
  107. Kristensen E, Lee SY, Mangion P, Quintana CO, Valdemarsen T 2017. Trophic discrimination of stable isotopes and potential food source partitioning by leaf-eating crabs in mangrove environments. Limnol. Oceanogr. 62:2097–112
    [Google Scholar]
  108. Kuo J. 1978. Morphology, anatomy and histochemistry of Australian seagrasses of genus Posidonia König (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquat. Bot. 5:171–90
    [Google Scholar]
  109. Kuo J, Cambridge ML. 1978. Morphology, anatomy and histochemistry of Australian seagrasses of genus Posidonia König (Posidoniaceae). II. Rhizome and root of Posidonia australis Hook. f. Aquat. Bot. 5:191–206
    [Google Scholar]
  110. Lechene CP, Luyten Y, McMahon G, Distel DL 2007. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563–66
    [Google Scholar]
  111. Lee SY. 1995. Mangrove outwelling: a review. Hydrobiologia 295:203–12
    [Google Scholar]
  112. Liu SL, Jiang ZJ, Deng YQ, Wu YC, Zhao CY et al. 2017. Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes. Sci. China Earth Sci. 60:2108–17
    [Google Scholar]
  113. Locatelli T, Binet T, Kairo JG, King L, Madden S et al. 2014. Turning the tide: how blue carbon and payments for ecosystem services (PES) might help save mangrove forests. Ambio 43:981–95
    [Google Scholar]
  114. Lovelock CE, Atwood T, Baldock J, Duarte CM, Hickey S et al. 2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15:257–65
    [Google Scholar]
  115. Ludwig W, Probst JL, Kempe S 1996. Predicting the oceanic input of organic carbon by continental erosion. Glob. Biogeochem. Cycles 10:23–41
    [Google Scholar]
  116. Lyczakowski JJ, Wicher KB, Terrett OM, Faria-Blanc N, Yu XL et al. 2017. Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy. Biotechnol. Biofuels 10:224
    [Google Scholar]
  117. Lyons JI, Alber M, Hollibaugh JT 2010. Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from central California estuaries. Oecologia 162:435–42
    [Google Scholar]
  118. Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM et al. 2019. The future of Blue Carbon science. Nat. Commun. 10:3998
    [Google Scholar]
  119. Macreadie PI, Ollivier QR, Kelleway JJ, Serrano O, Carnell PE et al. 2017. Carbon sequestration by Australian tidal marshes. Sci. Rep. 7:44071
    [Google Scholar]
  120. Man in 't Veld WA, Rosendahl K, van Rijswick PCJ, Meffert JP, Boer E et al. 2019. Multiple Halophytophthora spp. and Phytophthora spp. including P. gemini, P. inundata and P. chesapeakensis sp. nov. isolated from the seagrass Zostera marina in the Northern Hemisphere. Eur. J. Plant Pathol. 153:341–57
    [Google Scholar]
  121. Marin-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR et al. 2014. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–97
    [Google Scholar]
  122. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K et al. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22:695–700
    [Google Scholar]
  123. Matsuda I, Clauss M, Tuuga A, Sugau J, Hanya G et al. 2017. Factors affecting leaf selection by foregut-fermenting proboscis monkeys: new insight from in vitro digestibility and toughness of leaves. Sci. Rep. 7:42774
    [Google Scholar]
  124. Mattila JM, Zimmer M, Vesakoski O, Jormalainen V 2014. Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). J. Exp. Mar. Biol. Ecol. 455:22–28
    [Google Scholar]
  125. McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552–60
    [Google Scholar]
  126. Mcowen CJ, Weatherdon LV, Van Bochove J-W, Sullivan E, Blyth S et al. 2017. A global map of saltmarshes. Biodivers. Data J. 5:e11764
    [Google Scholar]
  127. Medeiros PM, Seidel M, Niggemann J, Spencer RGM, Hernes PJ et al. 2016. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. Glob. Biogeochem. Cycles 30:689–99
    [Google Scholar]
  128. Meng XZ, Ragauskas AJ. 2014. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr. Opin. Biotechnol. 27:150–58
    [Google Scholar]
  129. Montemayor DI, Addino M, Fanjul E, Escapa M, Alvarez MF et al. 2011. Effect of dominant Spartina species on salt marsh detritus production in SW Atlantic estuaries. J. Sea Res. 66:104–10
    [Google Scholar]
  130. Montemayor DI, Addino M, Valinas M, Fanjul E, Alvarez MF, Iribarne OO 2015. Biomass dynamics of the two dominant SW Atlantic Spartina species and its implications on the saltmarsh organic matter accumulation/exportation. Aquat. Bot. 120:201–4
    [Google Scholar]
  131. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD 2016. Designer lignins: harnessing the plasticity of lignification. Curr. Opin. Biotechnol. 37:190–200
    [Google Scholar]
  132. Mueller P, Granse D, Nolte S, Do HT, Weingartner M et al. 2017. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils. Ecol. Appl. 27:1435–50
    [Google Scholar]
  133. Murphy DH. 1990. The natural history of insect herbivory on mangrove trees in and near Singapore. Raffles Bull. Zool. 38:119–203
    [Google Scholar]
  134. Nealson KH. 1997. Sediment bacteria: Who's there, what are they doing, and what's new. ? Annu. Rev. Earth Planet. Sci. 25:403–34
    [Google Scholar]
  135. Newell SY, Porter D, Lingle WL 1996. Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass). Microsc. Res. Tech. 33:32–46
    [Google Scholar]
  136. Nienhuis PH, Groenendijk AM. 1986. Consumption of eelgrass (Zostera marina) by birds and invertebrates: an annual budget. Mar. Ecol. Prog. Ser. 29:29–35
    [Google Scholar]
  137. Nordhaus I, Salewski T, Jennerjahn TC 2011. Food preferences of mangrove crabs related to leaf nitrogen compounds in the Segara Anakan Lagoon, Java, Indonesia. J. Sea Res. 65:414–26
    [Google Scholar]
  138. O'Connor RM, Fung JM, Sharp KH, Benner JS, McClung C et al. 2014. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. PNAS 111:E5096–104
    [Google Scholar]
  139. Odum EP. 1968. A research challenge: evaluating the productivity of coastal and estuarine water. Proceedings of the Second Sea Grant Conference63–64 Kingston: Univ: R.I.
    [Google Scholar]
  140. Ong JE, Gong WK, Wong CH 2004. Allometry and partitioning of the mangrove. Rhizophora apiculata. Forest Ecol. Manag. 188:395–408
    [Google Scholar]
  141. Opsahl S, Benner R. 1995. Early diagenesis of vascular plant tissue: lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 59:4889–904
    [Google Scholar]
  142. Opsahl S, Benner R. 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol. Oceanogr. 43:1297–304
    [Google Scholar]
  143. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE 7:e43542
    [Google Scholar]
  144. Pennings SC, Zimmer M, Dias N, Sprung M, Dave N et al. 2007. Latitudinal variation in plant-herbivore interactions in European salt marshes. Oikos 116:543–49
    [Google Scholar]
  145. Popham JD, Dickson MR. 1973. Bacterial associations in the teredo Bankia australis (Lamellibranchia, Mollusca). Mar. Biol. 19:338–40
    [Google Scholar]
  146. Raghukumar S, Sathepathak V, Sharma S, Raghukumar C 1995. Thraustochytrid and fungal component of marine detritus. 3. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat. Microb. Ecol 9:117–25
    [Google Scholar]
  147. Raw JL, Perissinotto R, Bird MS, Miranda NAF, Peer N 2017. Variable niche size of the giant mangrove whelk Terebralia palustris (Linnaeus, 1767) in a subtropical estuary. Hydrobiologia 803:265–82
    [Google Scholar]
  148. Resplandy L, Keeling RF, Rodenbeck C, Stephens BB, Khatiwala S et al. 2018. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11:504–9
    [Google Scholar]
  149. Richards TA, Jones MDM, Leonard G, Bass D 2012. Marine fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci. 4:495–522
    [Google Scholar]
  150. Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sorensen SJ et al. 2016. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol. Ecol. 92:fiw087
    [Google Scholar]
  151. Ristova PP, Bienhold C, Wenzhöfer F, Rossel PE, Boetius A 2017. Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PLOS ONE 12:e0169906
    [Google Scholar]
  152. Robertson AI, Alongi DM. 1995. Role of riverine mangrove forests in organic carbon export to the tropical coastal ocean: a preliminary mass balance for the Fly Delta (Papua New Guinea). Geo-Mar. Lett. 15:134–39
    [Google Scholar]
  153. Robertson AI, Alongi DM. 2016. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves. Oecologia 180:841–51
    [Google Scholar]
  154. Robertson AI, Daniel PA. 1989a. Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests. Limnol. Oceanogr. 34:640–46
    [Google Scholar]
  155. Robertson AI, Daniel PA. 1989b. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–98
    [Google Scholar]
  156. Sabbadin F, Pesante G, Elias L, Besser K, Li Y et al. 2018. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. Biotechnol. Biofuels 11:59
    [Google Scholar]
  157. Sathe V, Raghukumar S. 1991. Fungi and their biomass in detritus of the seagrass Thalassia hemprichii (Ehrenberg) Ascherson. Bot. Mar. 34:271–77
    [Google Scholar]
  158. Scharler UM, Ulanowicz RE, Fogel ML, Wooller MJ, Jacobson-Meyers ME et al. 2015. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia 179:863–76
    [Google Scholar]
  159. Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89
    [Google Scholar]
  160. Seymour JR, Laverock B, Nielsen DA, Trevathan-Tackett SM, Macreadie PI 2018. The microbiology of seagrasses. Seagrasses of Australia: Structure, Ecology and Conservation AWD Larkum, P Ralph, GA Kendrick 343–92 Cham, Switz.: Springer
    [Google Scholar]
  161. Shipway JR, O'Connor R, Stein D, Cragg SM, Korshunova T et al. 2016. Zachsia zenkewitschi (Teredinidae), a rare and unusual seagrass boring bivalve revisited and redescribed. PLOS ONE 11:e0155269
    [Google Scholar]
  162. Si A, Bellwood O, Alexander CG 2002. Evidence for filter-feeding by the wood-boring isopod, Sphaeroma terebrans (Crustacea: Peracarida). J. Zool. 256:463–71
    [Google Scholar]
  163. Sieg RD, Kubanek J. 2013. Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems. J. Chem. Ecol. 39:687–711
    [Google Scholar]
  164. Siegal-Willott JL, Harr K, Hayek LAC, Scott KC, Gerlach T et al. 2010. Proximate nutrient analysis of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa. longifolia). J. Zoo Wildl. Med. 41:594–602
    [Google Scholar]
  165. Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy VH, Castaneda-Moya E et al. 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12:40–45
    [Google Scholar]
  166. Simmons TJ, Mortimer JC, Bernardinelli OD, Poppler AC, Brown SP et al. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7:13902
    [Google Scholar]
  167. Sinsabaugh RL, Carreiro MM, Alvarez S 2002. Enzyme and microbial dynamics of litter decomposition. Enzymes in the Environment: Activity, Ecology, and Applications RG Burns, RP Dick 249–65 New York: Dekker
    [Google Scholar]
  168. Sippo JZ, Maher DT, Tait DR, Holloway C, Santos IR 2016. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Glob. Biogeochem. Cycles 30:753–66
    [Google Scholar]
  169. Stagg CL, Baustian MM, Perry CL, Carruthers TJB, Hall CT 2018. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106:655–70
    [Google Scholar]
  170. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B et al. 2009. Molecular systematics of the marine Dothideomycetes. Stud. Mycol. 64:155–73
    [Google Scholar]
  171. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. . PLOS ONE 8:e72520
    [Google Scholar]
  172. Taylor JD, Cunliffe M. 2016. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–28
    [Google Scholar]
  173. Terrett OM, Dupree P. 2019. Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr. Opin. Biotechnol. 56:97–104
    [Google Scholar]
  174. Thayer GW, Bjorndal KA, Ogden JC, Williams SL, Zieman JC 1984. Role of larger herbivores in seagrass communities. Estuaries 7:351–76
    [Google Scholar]
  175. Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P 2014. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl. Microbiol. Biotechnol. 98:9527–44
    [Google Scholar]
  176. Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H et al. 2018. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. PNAS 115:E11996–2004
    [Google Scholar]
  177. Traving SJ, Thygesen UH, Riemann L, Stedmon CA 2015. A model of extracellular enzymes in free-living microbes: Which strategy pays off?. Appl. Environ. Microbiol. 81:7385–93
    [Google Scholar]
  178. Tremblay L, Benner R. 2006. Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus. Geochim. Cosmochim. Acta 70:133–46
    [Google Scholar]
  179. Treplin M, Pennings SC, Zimmer M 2013. Decomposition of leaf litter in a U.S. saltmarsh is driven by dominant species, not species complementarity. Wetlands 33:83–89
    [Google Scholar]
  180. Trevathan-Tackett SM, Jeffries TC, Macreadie PI, Manojlovic B, Ralph P 2019. Long-term decomposition captures key steps in microbial breakdown of seagrass litter. Sci. Total Environ. In press
    [Google Scholar]
  181. Trevathan-Tackett SM, Kelleway J, Macreadie PI, Beardall J, Ralph P, Bellgrove A 2015. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96:3043–57
    [Google Scholar]
  182. Trevathan-Tackett SM, Macreadie PI, Sanderman J, Baldock J, Howes JM, Ralph PJ 2017a. A global assessment of the chemical recalcitrance of seagrass tissues: implications for long-term carbon sequestration. Front. Plant Sci. 8:925
    [Google Scholar]
  183. Trevathan-Tackett SM, Seymour JR, Nielsen DA, Macreadie PI, Jeffries TC et al. 2017b. Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiol. Ecol. 93: fix033
    [Google Scholar]
  184. Trevathan-Tackett SM, Sullivan BK, Robinson K, Lilje O, Macreadie PI, Gleason FH 2018. Pathogenic Labyrinthula associated with Australian seagrasses: considerations for seagrass wasting disease in the southern hemisphere. Microbiol. Res. 206:74–81
    [Google Scholar]
  185. Tripathee R, Schafer KVR. 2015. Above- and belowground biomass allocation in four dominant salt marsh species of the eastern United States. Wetlands 35:21–30
    [Google Scholar]
  186. Turner RD. 1966. A Survey and Illustrated Catalogue of the Teredinidae (Mollusca: Bivalvia) Cambridge, MA: Harv. Univ. Mus. Comp. Zool.
  187. Twilley RR, Rovai A, Riul P 2018. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16:503–8
    [Google Scholar]
  188. Valentine JF, Heck KL. 1999. Seagrass herbivory: evidence for the continued grazing of marine grasses. Mar. Ecol. Prog. Ser. 176:291–302
    [Google Scholar]
  189. Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D et al. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Mar. Sci. 35:261–69
    [Google Scholar]
  190. Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W 2013. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol. . Biofuels 6:46
    [Google Scholar]
  191. Vane CH, Kim AW, Moss-Hayes V, Snape CE, Diaz MC et al. 2013. Degradation of mangrove tissues by arboreal termites (Nasutitermes acajutlae) and their role in the mangrove C cycle (Puerto Rico): chemical characterization and organic matter provenance using bulk δ13C, C/N, alkaline CuO oxidation-GC/MS, and solid-state 13C NMR. Geochem. Geophys. Geosyst. 14:3176–91
    [Google Scholar]
  192. Vernberg FJ. 1993. Salt-marsh processes: a review. Environ. Toxicol. Chem. 12:2167–95
    [Google Scholar]
  193. Vogt J, Piou C, Berger U 2014. Comparing the influence of large- and small-scale disturbances on forest heterogeneity: a simulation study for mangroves. Ecol. Complex. 20:107–15
    [Google Scholar]
  194. Voight JR. 2015. Xylotrophic bivalves: aspects of their biology and the impacts of humans. J. Molluscan Stud. 81:175–86
    [Google Scholar]
  195. Walton PH, Davies GJ. 2016. On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr. Opin. Chem. Biol. 31:195–207
    [Google Scholar]
  196. Wilson JO, Buchsbaum R, Valiela I, Swain T 1986a. Decomposition in salt-marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Prog. Ser 29:177–87
    [Google Scholar]
  197. Wilson JO, Valiela I, Swain T 1986b. Carbohydrate dynamics during decay of litter of Spartina alterniflora. Mar. Biol 92:277–84
    [Google Scholar]
  198. Woo HL, Hazen TC. 2018. Enrichment of bacteria from eastern Mediterranean Sea involved in lignin degradation via the phenylacetyl-CoA pathway. Front. Microbiol. 9:922
    [Google Scholar]
  199. Yarbrough JM, Mittal A, Mansfield E, Taylor LE, Hobdey SE et al. 2015. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover. Biotechnol. Biofuels 8:214
    [Google Scholar]
  200. Yu L, Lyczakowski JJ, Pereira CS, Kotake T, Yu X et al. 2018. The patterned structure of galactoglucomannan suggests it may bind to cellulose in seed mucilage. Plant Physiol 178:1011–26
    [Google Scholar]
  201. Yu TT, Wu WC, Liang WY, Lever MA, Hinrichs KU, Wang FP 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. PNAS 115:6022–27
    [Google Scholar]
  202. Zhang J, Mandal AK. 2012. Linkages between submarine groundwater systems and the environment. Curr. Opin. Environ. Sustain. 4:219–26
    [Google Scholar]
  203. Zigah PK, McNichol AP, Xu L, Johnson C, Santinelli C et al. 2017. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophys. Res. Lett. 44:2407–15
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095333
Loading
/content/journals/10.1146/annurev-marine-010318-095333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error