1932

Abstract

Apex predators play pivotal roles in marine ecosystems, mediated principally through diet and nutrition. Yet, compared with terrestrial animals, the nutritional ecology of marine predators is poorly understood. One reason is that the field has adhered to an approach that evaluates diet principally in terms of energy gain. Studies in terrestrial systems, by contrast, increasingly adopt a multidimensional approach, the nutritional geometry framework, that distinguishes specific nutrients and calories. We provide evidence that a nutritional approach is likewise relevant to marine apex predators, then demonstrate how nutritional geometry can characterize the nutrient and energy content of marine prey. Next, we show how this framework can be used to reconceptualize ecological interactions via the ecological niche concept, and close with a consideration of its application to problems in marine predator research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010318-095411
2020-01-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010318-095411.html?itemId=/content/journals/10.1146/annurev-marine-010318-095411&mimeType=html&fmt=ahah

Literature Cited

  1. Alder J, Campbell B, Karpouzi V, Kaschner K, Pauly D 2008. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33:153–66
    [Google Scholar]
  2. Arai MN. 2005. Predation on pelagic coelenterates: a review. J. Mar. Biol. Assoc. UK 85:523–36
    [Google Scholar]
  3. Atwater WO. 1902. Principles of nutrition and nutritive value of food Farmers’ Bull. 142 US Dep. Agric. Washington, DC:
  4. Benoît HP, Swain DP, Bowen WD, Breed GA, Hammill MO, Harvey V 2011. Evaluating the potential for grey seal predation to explain elevated natural mortality in three fish species in the southern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 442:149–67
    [Google Scholar]
  5. Bignert A, Göthberg A, Jensen S, Litzén K, Odsjö T et al. 1993. The need for adequate biological sampling in ecotoxicological investigations: a retrospective study of twenty years pollution monitoring. Sci. Total Environ. 128:121–39
    [Google Scholar]
  6. Bjorndal KA. 1997. Foraging ecology and nutrition of sea turtles. The Biology of Sea Turtles L Lutz, JA Musick 199–231 Boca Raton, FL: CRC
    [Google Scholar]
  7. Borgmann U, Whittle DM. 1992. Bioenergetics and PCB, DDE, and mercury dynamics in Lake Ontario lake trout (Salveliraaas namaycusk): a model based on surveillance data. Can. J. Fish. Aquat. Sci. 49:1086–96
    [Google Scholar]
  8. Boudreau SA, Worm B. 2012. Ecological role of large benthic decapods in marine ecosystems: a review. Mar. Ecol. Prog. Ser. 469:195–213
    [Google Scholar]
  9. Bowen WD. 2018. Pinniped ecology. See Würsig et al. 2018. 705–12
  10. Boyd I, Wanless S, Camphuysen CJ 2006. Top Predators in Marine Ecosystems: Their Role in Monitoring and Management Cambridge, UK: Cambridge Univ. Press
  11. Bunce A. 2001. Prey consumption of Australasian gannets (Morus serrator) breeding in Port Phillip Bay, southeast Australia, and potential overlap with commercial fisheries. ICES J. Mar. Sci. 58:904–15
    [Google Scholar]
  12. Carrier JC, Musick JA, Heithaus MR, eds. 2012. Biology of Sharks and Their Relatives Boca Raton, FL: CRC
  13. Charbeneau G. 2004. Physiological and behavioral changes to elasmobranchs in controlled environments. See Smith et al. 2004 261–70
  14. Chen CY, Serrell N, Evers DC, Fleishman BJ, Lambert KF et al. 2008. Meeting report: methylmercury in marine ecosystems—from sources to seafood consumers. Environ. Health Perspect. 116:1706–12
    [Google Scholar]
  15. Choromanski JM. 2004. Collecting elasmobranchs: legislation, permitting, ethics, and commercial collectors. See Smith et al. 2004 25–41
  16. Clarke MR. 1996. Cephalopods as prey. III. Cetaceans. Philos. Trans. R. Soc. B 351:1053–65
    [Google Scholar]
  17. Coogan CPS, Raubenheimer D, Stenhouse GB, Nielsen SE 2014. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis. PLOS ONE 9:e97968
    [Google Scholar]
  18. Craig S, Helfrich LA, Kuhn D, Schwarz MH 2017. Understanding fish nutrition, feeds, and feeding Publ. 420-256, Coll. Agric. Life Sci., Va. Tech Blacksburg:
  19. Crissey S, Slifka K, McGill P, Ullrey DE, Bernard JB 2001. Nutrition advisory group handbook Fact Sheet 012, AZA Nutr Advis. Group:
  20. Croll DA, Tershy BR, Hewitt RP, Demer DA, Fiedler PC et al. 1998. An integrated approach to the foraging ecology of marine birds and mammals. Deep-Sea Res. II 45:1353–71
    [Google Scholar]
  21. Croxall JP, Prince PA. 1996. Cephalopods as prey. I. Seabirds. Philos. Trans. R. Soc. B 351:1023–43
    [Google Scholar]
  22. Del Raye G, Jorgensen SJ, Krumhansl K, Ezcurra JM, Block BA 2013. Travelling light: white sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-basin scale migration. Proc. R. Soc. B 280:20130836
    [Google Scholar]
  23. Denuncio P, Paso Viola MN, Machovsky-Capuska GE, Raubenheimer D, Blasina G et al. 2017. Population variance in prey, diet and their macronutrient composition in an endangered marine mammal, the Franciscana dolphin. J. Sea Res. 129:70–79
    [Google Scholar]
  24. Dierenfeld ES. 1997. Captive wild animal nutrition: a historical perspective. Proc. Nutr. Soc. 56:989–99
    [Google Scholar]
  25. Dierenfeld ES. 2005. Advancing zoo animal nutrition through global synergy. Int. Zoo Yearb. 39:29–35
    [Google Scholar]
  26. Donnelly J, Torres JJ, Hopkins TL, Lancraft TM 1994. Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–83
    [Google Scholar]
  27. Doubleday ZA, Prowse TA, Arkhipkin A, Pierce GJ, Semmens J et al. 2016. Global proliferation of cephalopods. Curr. Biol. 26:R406–7
    [Google Scholar]
  28. Doyle TK, Houghton JDR, McDevitt R, Davenport J, Hays GC 2007. The energy density of jellyfish: estimates from bomb-calorimetry and proximate composition. J. Exp. Mar. Biol. Ecol. 343:239–52
    [Google Scholar]
  29. Eder EB, Lewis MN. 2005. Proximate composition and energetic value of demersal and pelagic prey species from the SW Atlantic Ocean. Mar. Ecol. Prog. Ser. 291:43–52
    [Google Scholar]
  30. Fidgett AL, Gardner L. 2014. Advancing avian nutrition through best feeding practice. Int. Zoo Yearb. 48:116–27
    [Google Scholar]
  31. Food Agric. Organ. UN 2016. The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for All Rome: Food Agric. Org. UN
  32. Ford JK, Ellis GM, Matkin CO, Wetklo MH, Barrett-Lennard LG, Withler RE 2011. Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquat. Biol. 11:213–24
    [Google Scholar]
  33. Fretwell SD. 1987. Food chain dynamics: the central theory of ecology. ? Oikos 50:291–301
    [Google Scholar]
  34. Fritz LW, Hinckley S. 2005. A critical review of the regime shift: “junk food” nutritional stress hypothesis for the decline of the western stock of Steller sea lion. Mar. Mamm. Sci. 21:476–518
    [Google Scholar]
  35. Fu SJ, Xie XJ. 2004. Nutritional homeostasis in carnivorous southern catfish (Silurus meridionalis): Is there a mechanism for increased energy expenditure during carbohydrate overfeeding?. Comp. Biochem. Physiol. A 139:359–63
    [Google Scholar]
  36. Gall SC, Thompson RC. 2015. The impact of debris on marine life. Mar. Pollut. Bull. 92:170–79
    [Google Scholar]
  37. Gende SM, Quinn TP, Willson MF, Heintz R, Scott TM 2004. Magnitude and fate of salmon-derived nutrients and energy in a coastal stream ecosystem. J. Freshw. Ecol. 19:149–60
    [Google Scholar]
  38. Geraci JR. 1975. Pinniped nutrition. Rapp. P.-V. Réun. Cons. Int. Explor. Mer 169:312–23
    [Google Scholar]
  39. Goodman-Lowe GD, Carpenter JR, Atkinson S 1999. Assimilation efficiency of prey in the Hawaiian monk seal (Monachus scbauinslandi). Can. J. Zool. 77:653–60
    [Google Scholar]
  40. Grémillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S et al. 2008. A junk-food hypothesis for gannets feeding on fishery waste. Proc. R. Soc. B. 275:1149–56
    [Google Scholar]
  41. Grigor JJ, Schmid MS, Fortier L 2017. Growth and reproduction of the chaetognaths Eukrohnia hamata and Parasagitta elegans in the Canadian Arctic Ocean: capital breeding versus income breeding. J. Plankton Res. 39:910–29
    [Google Scholar]
  42. Hauser DDW, Allen CS, Rich HBJ, Quinn TP 2008. Resident harbor seals (Phoca vitulina) in Iliamna Lake, Alaska: summer diet and partial consumption of adult sockeye salmon (Oncorhynchus nerka). Aquat. Mamm. 34:303–9
    [Google Scholar]
  43. Hays GC, Doyle TK, Houghton JD 2018. A paradigm shift in the trophic importance of jellyfish?. Trends Ecol. Evol. 33:874–84
    [Google Scholar]
  44. Heaslip SG, Iverson SJ, Bowen WD, James MC 2012. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras. PLOS ONE 7:e33259
    [Google Scholar]
  45. Heithaus MR. 2004. Predator-prey interactions. Biology of Sharks and Their Relatives JC Carrier, JA Musick, MR Heithaus 487–521 Boca Raton, FL: CRC
    [Google Scholar]
  46. Heithaus MR, Frid A, Wirsing AJ, Worm B 2008. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23:202–10
    [Google Scholar]
  47. Hewson-Hughes AK, Hewson-Hughes VL, Colyer A, Miller AT, McGrane SJ et al. 2013. Geometric analysis of macronutrient selection in breeds of the domestic dog. Canis lupus familiaris. Behav. Ecol. 24:293–304
    [Google Scholar]
  48. Hewson-Hughes AK, Hewson-Hughes VL, Miller AT, Hall SR, Simpson SJ et al. 2011. Geometric analysis of macronutrient selection in the adult domestic cat. Felis catus. J. Exp. Biol. 214:1039–51
    [Google Scholar]
  49. Hilton GM, Ruxton GD, Furness RW, Houston DC 2000. Optimal digestion strategies in seabirds: a modelling approach. Evol. Ecol. Res. 2:207–30
    [Google Scholar]
  50. Houlahan JE, McKinney ST, Anderson TM, McGill BJ 2017. The priority of prediction in ecological understanding. Oikos 126:1–7
    [Google Scholar]
  51. Hughes JM, Stewart J, Lyle JM, McAllister J, Stocks JR, Suthers IM 2013. Latitudinal, ontogenetic, and historical shifts in the diet of a carnivorous teleost, Arripis trutta, in a coastal pelagic ecosystem altered by climate change. Can. J. Fish. Aquat. Sci. 70:1209–30
    [Google Scholar]
  52. Ivlev VS. 1939. Transformation of energy by aquatic animals. Coefficient of energy consumption by Tubifex tubifex (Oligochaeta). Int. Rev. Ges. Hydrobiol. Hydrog. 38:449–58
    [Google Scholar]
  53. Ivlev VS. 1961. Experimental Ecology of the Feeding of Fishes New Haven, CT: Yale Univ. Press
  54. Jackson S, Place AR. 1990. Gastrointestinal transit and lipid assimilation efficiency in three species of sub-Antarctic seabird. J. Exp. Zool. 255:141–54
    [Google Scholar]
  55. Janse M, Firchau B, Mohan P 2004. Elasmobranch nutrition, food handling, and feeding techniques. See Smith et al. 2004 183–200
  56. Jensen K, Mayntz D, Toft S, Clissold FJ, Hunt J et al. 2012. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B. 279:2212–18
    [Google Scholar]
  57. Jensen K, Simpson SJ, Nielsen VH, Hunt J, Raubenheimer D, Mayntz D 2014. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112:1226–33
    [Google Scholar]
  58. Johnson CA, Raubenheimer D, Rothman JM, Clarke D, Swedell L 2013. 30 days in the life: daily nutrient balancing in a wild chacma baboon. PLOS ONE 8:e70438
    [Google Scholar]
  59. Kaschner K, Karpouzi V, Watson R, Pauly D 2006. Forage fish consumption by marine mammals and seabirds. On the Multiple Uses of Forage Fish: From Ecosystems to Markets J Alder, D Pauly 33–46 Vancouver, Can.: Fish. Cent., Univ. B.C.
    [Google Scholar]
  60. Kaushik SJ. 1990. Use of alternative protein sources for the intensive rearing of carnivorous fish. Mediterranean Aquaculture R Flos, L Tort, P Torres 125–38 Chichester, UK: Horwood
    [Google Scholar]
  61. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B 2010. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B 365:3469–83
    [Google Scholar]
  62. Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC 2006. A mechanistic link between chick diet and decline in seabirds. Proc. R. Soc. B. 273:445–50
    [Google Scholar]
  63. Klages NT. 1996. Cephalopods as prey. II. Seals. Philos. Trans. R. Soc. B 351:1045–52
    [Google Scholar]
  64. Koen Alonso M, Crespo EA, Pedraza SN, García NA, Coscarella MA 2000. Food habits of the South American sea lion, Otaria flavescens, off Patagonia, Argentina. Fish. Bull. 98:250–63
    [Google Scholar]
  65. Kohl KD, Coogan SC, Raubenheimer D 2015. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient‐specific foraging in vertebrate predators. BioEssays 37:701–9
    [Google Scholar]
  66. Larsson P, Andersson A, Broman D, Nordbäck J, Lundberg E 2000. Persistent organic pollutants (POPs) in pelagic systems. Ambio 29:202–10
    [Google Scholar]
  67. Lenky C, Eisert R, Oftedal OT, Metcalf V 2012. Proximate composition and energy density of nototheniid and myctophid fish in McMurdo Sound and the Ross Sea, Antarctica. Polar Biol 35:717–24
    [Google Scholar]
  68. Letelier-Gordo CO, Larsen BK, Dalsgaard J, Pedersen PB 2017. The composition of readily available carbon sources produced by fermentation of fish faeces is affected by dietary protein:energy ratios. Aquacult. Eng. 77:27–32
    [Google Scholar]
  69. Lindeman RL. 1942. The trophic‐dynamic aspect of ecology. Ecology 23:399–417
    [Google Scholar]
  70. Machovsky-Capuska GE, Amiot C, Denuncio P, Grainger R, Raubenheimer D 2019. A nutritional perspective on plastic ingestion in wildlife. Sci. Total Environ. 656:789–96
    [Google Scholar]
  71. Machovsky-Capuska GE, Coogan SC, Simpson SJ, Raubenheimer D 2016a. Motive for killing: What drives prey choice in wild predators. ? Ethology 122:703–11
    [Google Scholar]
  72. Machovsky-Capuska GE, Miller MG, Silva FR, Amiot C, Stockin KA et al. 2018. The nutritional nexus: linking niche, habitat variability and prey composition in a generalist marine predator. J. Anim. Ecol. 87:1286–98
    [Google Scholar]
  73. Machovsky-Capuska GE, Priddel D, Leong PHW, Jones P, Carlile N et al. 2016b. Coupling biologging with nutritional geometry to reveal novel insights into the foraging behaviour of a plunge-diving marine predator. N.Z. J. Mar. Freshw. Res. 50:418–32
    [Google Scholar]
  74. Machovsky-Capuska GE, Senior AM, Benn EC, Tait AH, Schuckard R et al. 2016c. Sex-specific macronutrient foraging strategies in a highly successful marine predator: the Australasian gannet. Mar. Biol. 163:75
    [Google Scholar]
  75. Machovsky-Capuska GE, Senior AM, Simpson SJ, Raubenheimer D 2016d. The multidimensional nutritional niche. Trends Ecol. Evol. 31:355–65
    [Google Scholar]
  76. Machovsky-Capuska GE, Senior AM, Zantis SP, Barna K, Cowieson AJ et al. 2015. Dietary protein selection in a free ranging urban population of common myna birds. Behav. Ecol. 27:219–27
    [Google Scholar]
  77. Majdi N, Hette-Tronquart N, Auclair E, Bec A, Chouvelon T et al. 2018. There's no harm in having too much: a comprehensive toolbox of methods in trophic ecology. Food Webs 17:e00100
    [Google Scholar]
  78. Martinez del Rio C, Cork S 1997. Exploring nutritional biodiversity: a society is born. Trends Ecol. Evol. 12:9–10
    [Google Scholar]
  79. Maxwell SM, Hazen EL, Bograd SJ, Halpern BS, Breed GA et al. 2013. Cumulative human impacts on marine predators. Nat. Commun. 4:2688
    [Google Scholar]
  80. Mayntz D, Nielsen VH, Sørensen A, Toft S, Raubenheimer D et al. 2009. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77:349–55
    [Google Scholar]
  81. Mazzaro LM, Koutsos EA, Williams JJ 2016. Current practices in aquatic animal supplementation. J. Zoo Aquar. Res. 4:202–8
    [Google Scholar]
  82. Milisenda G, Rosa S, Fuentes VL, Boero F, Guglielmo L et al. 2014. Jellyfish as prey: frequency of predation and selective foraging of Boops boops (Vertebrata, Actinopterygii) on the mauve stinger Pelagia noctiluca (Cnidaria, Scyphozoa). PLOS ONE 9:e94600
    [Google Scholar]
  83. Miller MG, Silva FR, Machovsky-Capuska GE, Congdon BC 2017. Sexual segregation in tropical seabirds: drivers of sex-specific foraging in the brown booby Sula leucogaster. J. . Ornithol 159:425–37
    [Google Scholar]
  84. Moriarty F. 1991. Ecotoxicology: The Study of Pollutants in Ecosystems San Diego, CA: Academic
  85. Mullon C, Mittaine JF, Thébaud O, Péron G, Merino G, Barange M 2009. Modelling the global fishmeal and fish oil markets. Nat. Resour. Model. 22:564–609
    [Google Scholar]
  86. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MC et al. 2000. Effect of aquaculture on world fish supplies. Nature 405:1017–24
    [Google Scholar]
  87. Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M et al. 2009. Feeding aquaculture in an era of finite resources. PNAS 106:15103–10
    [Google Scholar]
  88. Newman MC 2014. Fundamentals of Ecotoxicology: The Science of Pollution Boca Raton, FL: CRC
  89. Nie YG, Wei F, Zhou W, Hu Y, Senior AM et al. 2019. Giant pandas are macronutritional carnivores. Curr. Biol. 29:1677–82
    [Google Scholar]
  90. Nie YG, Zhang ZJ, Raubenheimer D, Elser JJ, Wei W, Wei FW 2014. Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Funct. Ecol. 29:26–34
    [Google Scholar]
  91. Österblom H, Olsson O, Blenckner T, Furness RW 2008. Junk-food in marine ecosystems. Oikos 117:967–77
    [Google Scholar]
  92. Paine RT. 1971. The measurement and application of the calorie to ecological problems. Annu. Rev. Ecol. Syst. 2:145–64
    [Google Scholar]
  93. Pauly D, Trites AW, Capuli E, Christensen V 1998. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55:467–81
    [Google Scholar]
  94. Pauly D, Watson R. 2005. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Philos. Trans. R. Soc. B 360:415–23
    [Google Scholar]
  95. Phillips RA, Hamer KC. 1999. Lipid reserves, fasting capability and the evolution of nestling obesity in procellariiform seabirds. Proc. R. Soc. B. 266:1329–34
    [Google Scholar]
  96. Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ 2011. Nutritional immunology: a multi-dimensional approach. PLOS Pathog 7:e1002223
    [Google Scholar]
  97. Provencher JF, Bond AL, Avery-Gomm S, Borrelle SB, Rebolledo ELB et al. 2017. Quantifying ingested debris in marine megafauna: a review and recommendations for standardization. Anal. Methods 9:1454–69
    [Google Scholar]
  98. Pyke GH. 1984. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15:523–75
    [Google Scholar]
  99. Pyle P, Schramm MJ, Keiper C, Anderson SD 1999. Predation on a white shark (Carcharodon carcharias) by a killer whale (Orcinus orca) and a possible case of competitive displacement. Mar. Mamm. Sci. 15:563–68
    [Google Scholar]
  100. Ramos R, González-Solís J. 2012. Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front. Ecol. Environ. 10:258–66
    [Google Scholar]
  101. Rasmussen AR, Murphy JC, Ompi M, Gibbons JW, Uetz P 2011. Marine reptiles. PLOS ONE 6:e27373
    [Google Scholar]
  102. Raubenheimer D. 2011. Toward a quantitative nutritional ecology: the right‐angled mixture triangle. Ecol. Monogr. 81:407–27
    [Google Scholar]
  103. Raubenheimer D, Machovsky-Capuska GE, Chapman CA, Rothman JM 2015. Geometry of nutrition in field studies: an illustration using wild primates. Oecologia 177:223–34
    [Google Scholar]
  104. Raubenheimer D, Simpson SJ. 1993. The geometry of compensatory feeding in the locust. Anim. Behav. 45:953–64
    [Google Scholar]
  105. Raubenheimer D, Simpson SJ. 2018. Hunger and satiety: linking mechanisms, behavior and evolution. Encyclopedia of Animal Behavior JC Choe 117–26 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  106. Raubenheimer D, Simpson SJ, Mayntz D 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23:4–16
    [Google Scholar]
  107. Raubenheimer D, Simpson SJ, Sánchez-Vázquez J, Huntingford F, Kadri S, Jobling M 2012a. Nutrition and diet choice. Aquaculture and Behaviour F Huntingford, M Jobling, S Kadri 150–82 Oxford, UK: Blackwell Sci.
    [Google Scholar]
  108. Raubenheimer D, Simpson SJ, Tait AH 2012b. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. B 367:1628–46
    [Google Scholar]
  109. Redfield AC. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume RJ Daniel 176–92 Liverpool, UK: Univ. Press Liverpool
    [Google Scholar]
  110. Roffe TJ, Mate BR. 1984. Abundance and feeding habits of pinnipeds in the Rogue River, Oregon. J. Wildl. Manag. 48:1262–74
    [Google Scholar]
  111. Røjbek MC, Tomkiewicz J, Jacobsen C, Støttrup JG 2013. Forage fish quality: seasonal lipid dynamics of herring (Clupea harengus L.) and sprat (Sprattus sprattus L.) in the Baltic Sea. ICES J. Mar. Sci. 71:56–71
    [Google Scholar]
  112. Rothman JM, Dierenfeld ES, Hintz HF, Pell AN 2008. Nutritional quality of gorilla diets: consequences of age, sex, and season. Oecologia 155:111–22
    [Google Scholar]
  113. Rowe CE, Figueira W, Raubenheimer D, Solon-Biet SM, Machovsky-Capuska GE 2018. Effects of temperature on macronutrient selection, metabolic and swimming performance of the Indo-Pacific damselfish (Abudefduf vaigiensis). Mar. Biol. 165:178
    [Google Scholar]
  114. Ruohonen K, Simpson SJ, Raubenheimer D 2007. A new approach to diet optimisation: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture 267:147–56
    [Google Scholar]
  115. Sánchez-Vázquez FJ, Yamamoto T, Akiyama T, Madrid JA, Tabata M 1999. Macronutrient self-selection through demand-feeders in rainbow trout. Physiol. Behav. 66:45–51
    [Google Scholar]
  116. Schaafsma FL, Cherel Y, Flores H, Van Franeker JA, Lea MA et al. 2018. The energetic value of zooplankton and nekton species of the Southern Ocean. Mar. Biol. 165:129
    [Google Scholar]
  117. Scharf FS, Juanes F, Rountree RA 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser. 208:229–48
    [Google Scholar]
  118. Schoener TW. 1971. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2:369–404
    [Google Scholar]
  119. Schreiber EA, Burger J, eds. 2001. Biology of Marine Birds Boca Raton, FL: CRC
  120. Sih A. 1980. Optimal foraging: partial consumption of prey. Am. Nat. 116:281–90
    [Google Scholar]
  121. Simpson SJ, Raubenheimer D. 1993. A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. B 342:381–402
    [Google Scholar]
  122. Simpson SJ, Raubenheimer D. 2001. A framework for the study of macronutrient intake in fish. Aquacult. Res. 32:421–32
    [Google Scholar]
  123. Simpson SJ, Raubenheimer D. 2012. The Nature of Nutrition: An Integrative Framework from Animal Adaptation to Human Obesity Princeton, NJ: Princeton Univ. Press
  124. Simpson SJ, Raubenheimer D, Charleston MA, Clissold FJ, Couzin ID et al. 2010. Modelling nutritional interactions: from individuals to communities. Trends Ecol. Evol. 25:53–60
    [Google Scholar]
  125. Smale MJ. 1996. Cephalopods as prey. IV. Fishes. Philos. Trans. R. Soc. B 351:1067–81
    [Google Scholar]
  126. Smith M, Warmolts D, Thoney D, Hueter R, eds. 2004. Elasmobranch Husbandry Manual: Captive Care of Sharks, Rays, and Their Relatives Columbus: Ohio Biol. Surv.
  127. Spitz J, Mourocq E, Schoen V, Ridoux V 2010. Proximate composition and energy content of forage species from the Bay of Biscay: high- or low-quality food. ? ICES J. Mar. Sci. 67:909–15
    [Google Scholar]
  128. Springer AM, Speckman SC. 1997. A forage fish is what? Summary of the symposium. Forage Fishes in Marine Ecosystems773–805 Fairbanks: Univ. Alsk. Sea Grant Coll. Program
    [Google Scholar]
  129. Stansby ME. 1969. Nutritional properties of fish oils. World Rev. Nutr. Diet. 11:46–105
    [Google Scholar]
  130. Stephens DW, Krebs JR. 1986. Foraging Theory Princeton, NJ: Princeton Univ. Press
  131. Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. Press
  132. Stevens CE, Hume ID. 2004. Comparative Physiology of the Vertebrate Digestive System Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  133. Stirling I, McEwan EH. 1975. The caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behaviour. Can. J. Zool. 53:1021–27
    [Google Scholar]
  134. Tacon AG, Metian M. 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–58
    [Google Scholar]
  135. Tait AH, Raubenheimer D, Stockin KA, Merriman M, Machovsky-Capuska GE 2014. Nutritional geometry and macronutrient variation in the diets of gannets: the challenges in marine field studies. Mar. Biol. 161:2791–801
    [Google Scholar]
  136. Thiebot JB, Arnould JP, Gómez‐Laich A, Ito K, Kato A et al. 2017. Jellyfish and other gelata as food for four penguin species—insights from predator‐borne videos. Front. Ecol. Environ. 15:437–41
    [Google Scholar]
  137. Thiebot JB, Ito K, Raclot T, Poupart T, Kato A et al. 2016. On the significance of Antarctic jellyfish as food for Adélie penguins, as revealed by video loggers. Mar. Biol. 163:108
    [Google Scholar]
  138. Tomlinson S, Arnall SG, Munn A, Bradshaw SD, Maloney SK et al. 2014. Applications and implications of ecological energetics. Trends Ecol. Evol. 29:280–90
    [Google Scholar]
  139. Trites AW, Spitz J. 2018. Prey consumption. See Würsig et al. 2018 783–85
  140. Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH et al. 2014. Does aquaculture add resilience to the global food system?. PNAS 111:13257–63
    [Google Scholar]
  141. Trumble SJ, Barboza PS, Castellini MA 2003. Digestive constraints on an aquatic carnivore: effects of feeding frequency and prey composition on harbor seals. J. Comp. Physiol. B 173:501–9
    [Google Scholar]
  142. Underwood AJ, Peterson CH. 1988. Towards an ecological framework for investigating pollution. Mar. Ecol. Prog. Ser. 46:227–34
    [Google Scholar]
  143. van Denderen PD, Lindegren M, MacKenzie BR, Watson RA, Andersen KH 2018. Global patterns in marine predatory fish. Nat. Ecol. Evol. 2:65–72
    [Google Scholar]
  144. Verity PG, Smetacek V, Smayda TJ 2002. Status, trends and the future of the marine pelagic ecosystem. Environ. Conserv. 29:207–37
    [Google Scholar]
  145. Vinogradov AP. 1953. The Elementary Chemical Composition of Marine Organisms New Haven, CT: Sears Found. Mar. Res., Yale Univ.
  146. Visser IN. 2005. First observations of feeding on thresher (Alopias vulpinus) and hammerhead (Sphyrna zygaena) sharks by killer whales (Orcinus orca) specialising on elasmobranch prey. Aquat. Mamm. 31:83–88
    [Google Scholar]
  147. Vivas M, Sánchez‐Vázquez FJ, García García B, Madrid JA 2003. Macronutrient self‐selection in European sea bass in response to dietary protein or fat restriction. Aquac. Res. 34:271–80
    [Google Scholar]
  148. Wanless S, Harris MP, Redman P, Speakman JR 2005. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294:1–8
    [Google Scholar]
  149. Wessel GM. 2010. On the shoulders of giants: Christian Andreas Victor Hensen. Mol. Reprod. Dev. 77:6
    [Google Scholar]
  150. Wilder SM, Norris M, Lee RW, Raubenheimer D, Simpson SJ 2013. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16:895–902
    [Google Scholar]
  151. Wood AD, Wetherbee BM, Juanes F, Kohler NE, Wilga C 2009. Recalculated diet and daily ration of the shortfin mako (Isurus oxyrinchus), with a focus on quantifying predation on bluefish (Pomatomus saltatrix) in the northwest Atlantic Ocean. Fish. Bull. 107:76–88
    [Google Scholar]
  152. Worthy GA. 2001. Nutrition and energetics. CRC Handbook of Marine Mammal Medicine LA Dierauf, FMD Gulland 791–817 Boca Raton, FL: CRC. , 2nd ed..
    [Google Scholar]
  153. Würsig B, Thewissen JGM, Kovacs KM, eds. 2018. Encyclopedia of Marine Mammals San Diego, CA: Academic
  154. Yates KL, Bouchet PJ, Caley MJ, Mengersen K, Randin CF et al. 2018. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33:790–802
    [Google Scholar]
  155. Young JW, Hunt BP, Cook TR, Llopiz JK, Hazen EL et al. 2015. The trophodynamics of marine top predators: current knowledge, recent advances and challenges. Deep-Sea Res. II 113:170–87
    [Google Scholar]
  156. Young JW, Olson RJ, Rodhouse PG 2013. The role of squids in pelagic ecosystems: an overview. Deep-Sea Res. II 95:3–6
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010318-095411
Loading
/content/journals/10.1146/annurev-marine-010318-095411
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error