1932

Abstract

Biogeochemical-Argo (BGC-Argo) is a network of profiling floats carrying sensors that enable observation of as many as six essential biogeochemical and bio-optical variables: oxygen, nitrate, pH, chlorophyll , suspended particles, and downwelling irradiance. This sensor network represents today's most promising strategy for collecting temporally and vertically resolved observations of biogeochemical properties throughout the ocean. All data are freely available within 24 hours of transmission. These data fill large gaps in ocean-observing systems and support three ambitions: gaining a better understanding of biogeochemical processes (e.g., the biological carbon pump and air–sea CO exchanges) and evaluating ongoing changes resulting from increasing anthropogenic pressure (e.g., acidification and deoxygenation); managing the ocean (e.g., improving the global carbon budget and developing sustainable fisheries); and carrying out exploration for potential discoveries. The BGC-Argo network has already delivered extensive high-quality global data sets that have resulted in unique scientific outcomes from regional to global scales. With the proposed expansion of BGC-Argo in the near future, this network has the potential to become a pivotal observation system that links satellite and ship-based observations in a transformative manner.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010419-010956
2020-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/12/1/annurev-marine-010419-010956.html?itemId=/content/journals/10.1146/annurev-marine-010419-010956&mimeType=html&fmt=ahah

Literature Cited

  1. Ardyna M, Lacour L, Sergi S, D'Ovidio F, Sallee JB et al. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10:2451
    [Google Scholar]
  2. Ascani F, Richards KJ, Firing E, Grant S, Johnson KS et al. 2013. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Res. II 93:119–34
    [Google Scholar]
  3. Biogeochem.-Argo Plan. Group 2016. The scientific rationale, design and implementation plan for a Biogeochemical-Argo float array Rep., IFREMER, Issy-les-Moulineaux, Fr. https://doi.org/10.13155/46601
    [Crossref]
  4. Bishop JKB. 2009. Autonomous observations of the ocean biological carbon pump. Oceanography 22:2182–93
    [Google Scholar]
  5. Bishop JKB, Davis RE, Sherman JT 2002. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–21
    [Google Scholar]
  6. Bishop JKB, Fong MB, Wood TJ 2016. Robotic observations of high wintertime carbon export in California coastal waters. Biogeosciences 13:3109–29
    [Google Scholar]
  7. Bishop JKB, Wood TJ. 2009. Year-round observations of carbon biomass and flux variability in the Southern Ocean. Glob. Biogeochem. Cycles 23:GB2019
    [Google Scholar]
  8. Bishop JKB, Wood TJ, Davis RE, Sherman JT 2004. Robotic observations of enhanced carbon biomass and export at 55°S during SOFeX. Science 304:417–20
    [Google Scholar]
  9. Bittig HC, Fiedler B, Scholz R, Krahmann G, Körtzinger A 2014. Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr. Methods 12:617–36
    [Google Scholar]
  10. Bittig HC, Körtzinger A. 2015. Tackling oxygen optode drift: near-surface and in-air oxygen optode measurements on a float provide an accurate in situ reference. J. Atmos. Ocean. Technol. 32:1536–43
    [Google Scholar]
  11. Bittig HC, Körtzinger A. 2017. Technical note: update on response times, in-air measurements, and in situ drift for oxygen optodes on profiling platforms. Ocean Sci 13:1–11
    [Google Scholar]
  12. Bittig HC, Körtzinger A, Neill C, van Ooijen E, Plant JN et al. 2018a. Oxygen optode sensors: principle, characterization, calibration, and application in the ocean. Front. Mar. Sci. 4:429
    [Google Scholar]
  13. Bittig HC, Maurer TL, Plant JN, Schmechtig C, Wong APS et al. 2019. A BGC-Argo guide: planning, deployment, data handling and usage. Front. Mar. Sci. 6:502
    [Google Scholar]
  14. Bittig HC, Steinhoff T, Claustre H, Fiedler B, Williams NL et al. 2018b. An alternative to static climatologies: robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks. Front. Mar. Sci. 5:328
    [Google Scholar]
  15. Boss E, Swift D, Taylor L, Brickley P, Zaneveld R et al. 2008. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol. Oceanogr. 53:2112–22
    [Google Scholar]
  16. Boyce DG, Lewis MR, Worm B 2010. Global phytoplankton decline over the past century. Nature 466:591–96
    [Google Scholar]
  17. Boyd PW, Claustre H, Levy M, Siegel DA, Weber T 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  18. Briggs EM, Martz TR, Talley LD, Mazloff MR, Johnson KS 2018. Physical and biological drivers of biogeochemical tracers within the seasonal sea ice zone of the Southern Ocean from profiling floats. J. Geophys. Res. Oceans 123:746–58
    [Google Scholar]
  19. Briggs N, Perry MJ, Cetinic I, Lee C, D'Asaro E et al. 2011. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep-Sea Res. I 58:1031–39
    [Google Scholar]
  20. Bushinsky SM, Emerson SR. 2015. Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean. Glob. Biogeochem. Cycles 29:2050–60
    [Google Scholar]
  21. Bushinsky SM, Emerson SR, Riser SC, Swift DD 2016. Accurate oxygen measurements on modified Argo floats using in situ air calibrations. Limnol. Oceanogr. Methods 14:491–505
    [Google Scholar]
  22. Bushinsky SM, Gray AR, Johnson KS, Sarmiento JL 2017. Oxygen in the Southern Ocean from Argo floats: determination of processes driving air-sea fluxes. J. Geophys. Res. Oceans 122:8661–82
    [Google Scholar]
  23. Campbell LM, Gray NJ, Fairbanks L, Silver JJ, Gruby RL et al. 2016. Global oceans governance: new and emerging issues. Annu. Rev. Environ. Resour. 41:517–43
    [Google Scholar]
  24. Carter BR, Feely RA, Williams NL, Dickson AG, Fong MB, Takeshita Y 2018. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnol. Oceanogr. Methods 16:119–31
    [Google Scholar]
  25. Carter BR, Williams NL, Gray AR, Feely RA 2016. Locally interpolated alkalinity regression for global alkalinity estimation. Limnol. Oceanogr. Methods 14:268–77
    [Google Scholar]
  26. Chacko N. 2017. Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations. Deep-Sea Res. I 124:66–72
    [Google Scholar]
  27. Chakraborty K, Valsala VK, Gupta GVM, Sarma VVSS 2018. Dominant biological control over upwelling on pCO2 in sea east of Sri Lanka. J. Geophys. Res. Biogeosci. 123:3250–61
    [Google Scholar]
  28. Chamberlain PM, Talley LD, Mazloff MR, Riser SC, Speer K et al. 2018. Observing the ice-covered Weddell gyre with profiling floats: position uncertainties and correlation statistics. J. Geophys. Res. Oceans 123:8383–410
    [Google Scholar]
  29. Checkley DM, Davis RE, Herman AW, Jackson GA, Beanlands B, Regier LA 2008. Assessing plankton and other particles in situ with the SOLOPC. Limnol. Oceanogr. 53:2123–36
    [Google Scholar]
  30. Cheng LJ, Abraham J, Hausfather Z, Trenberth KE 2019. How fast are the oceans warming?. Science 363:128–29
    [Google Scholar]
  31. Cheung WWL, Watson R, Pauly D 2013. Signature of ocean warming in global fisheries catch. Nature 497:365–68
    [Google Scholar]
  32. Claustre H, Bishop J, Boss E, Stewart B, Berthon J-F et al. 2010. Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: potential synergies with ocean color remote sensing. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society Vol. 2: Community White Papers J Hall, DE Harrison, D Stammer, pap. 17. ESA Pub. WPP-306. Paris: Eur. Space Agency. https://doi.org/10.5270/OceanObs09.cwp.17
    [Crossref] [Google Scholar]
  33. Cossarini G, Mariotti L, Feudale L, Mignot A, Salon S et al. 2019. Towards operational 3D-Var assimilation of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea. Ocean Model 133:112–28
    [Google Scholar]
  34. Czeschel R, Stramma L, Johnson GC 2012. Oxygen decreases and variability in the eastern equatorial Pacific. J. Geophys. Res. Oceans 117:C11019
    [Google Scholar]
  35. Dall'Olmo G, Dingle J, Polimene L, Brewin RJW, Claustre H 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9:820–23
    [Google Scholar]
  36. Dall'Olmo G, Mork KA. 2014. Carbon export by small particles in the Norwegian Sea. Geophys. Res. Lett. 41:2921–27
    [Google Scholar]
  37. Damien P, de Fommervault OP, Sheinbaum J, Jouanno J, Camacho-Ibar VF, Duteil O 2018. Partitioning of the open waters of the Gulf of Mexico based on the seasonal and interannual variability of chlorophyll concentration. J. Geophys. Res. Oceans 123:2592–614
    [Google Scholar]
  38. Davies AR, Veron F, Oliver MJ 2019. Biofloat observations of a phytoplankton bloom and carbon export in the Drake Passage. Deep-Sea Res. I 146:91–102
    [Google Scholar]
  39. Davis RE, Regier LA, Dufour J, Webb DC 1992. The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Ocean. Technol. 9:264–85
    [Google Scholar]
  40. Davis RE, Sherman JT, Dufour J 2001. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Ocean. Technol. 18:982–93
    [Google Scholar]
  41. Deutsch C, Brix H, Ito T, Frenzel H, Thompson L 2011. Climate-forced variability of ocean hypoxia. Science 333:336–39
    [Google Scholar]
  42. Doney SC, Fabry VJ, Feely RA, Kleypas JA 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  43. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F et al. 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4:11–37
    [Google Scholar]
  44. D'Ortenzio F, d'Alcala MR. 2009. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–48
    [Google Scholar]
  45. D'Ortenzio F, Lavigne H, Besson F, Claustre H, Coppola L et al. 2014. Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: a combined satellite and NO3 profiling floats experiment. Geophys. Res. Lett. 41:6443–51
    [Google Scholar]
  46. Dufois F, Hardman-Mountford NJ, Fernandes M, Wojtasiewicz B, Shenoy D et al. 2017. Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies. Geophys. Res. Lett. 44:3255–64
    [Google Scholar]
  47. Emerson SR. 2014. Annual net community production and the biological carbon flux in the ocean. Glob. Biogeochem. Cycles 28:14–28
    [Google Scholar]
  48. Estapa ML, Buesseler K, Boss E, Gerbi G 2013. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean. Biogeosciences 10:5517–31
    [Google Scholar]
  49. Estapa ML, Durkin C, Buesseler K, Johnson R, Feen M 2017. Carbon flux from bio-optical profiling floats: calibrating transmissometers for use as optical sediment traps. Deep-Sea Res. I 120:100–11
    [Google Scholar]
  50. Estapa ML, Feen ML, Breves E 2019. Direct observations of biological carbon export from profiling floats in the subtropical North Atlantic. Glob. Biogeochem. Cycles 33:282–300
    [Google Scholar]
  51. Estapa ML, Siegel DA, Buesseler KO, Stanley RHR, Lomas MW, Nelson NB 2015. Decoupling of net community and export production on submesoscales. Glob. Biogeochem. Cycles 29:1266–82
    [Google Scholar]
  52. Fawcett SE, Johnson KS, Riser SC, Van Oostende N, Sigman DM 2018. Low-nutrient organic matter in the Sargasso Sea thermocline: a hypothesis for its role, identity, and carbon cycle implications. Mar. Chem. 207:108–23
    [Google Scholar]
  53. Fiedler B, Fietzek P, Vieira N, Silva P, Bittig HC, Körtzinger A 2013. In situ CO2 and O2 measurements on a profiling float. J. Atmos. Ocean. Technol. 30:112–26
    [Google Scholar]
  54. Fiedler B, Grundle DS, Schutte F, Karstensen J, Loscher CR et al. 2016. Oxygen utilization and downward carbon flux in an oxygen-depleted eddy in the eastern tropical North Atlantic. Biogeosciences 13:5633–47
    [Google Scholar]
  55. Gerbi GP, Boss E, Werdell PJ, Proctor CW, Haentjens N et al. 2016. Validation of ocean color remote sensing reflectance using autonomous floats. J. Atmos. Ocean. Technol. 33:2331–52
    [Google Scholar]
  56. Girishkumar MS, Thangaprakash VP, Udaya Bhaskar TVS, Suprit K, Sureshkumar N et al. 2019. Quantifying tropical cyclone's effect on the biogeochemical processes using profiling float observations in the Bay of Bengal. J. Geophys. Res. Oceans 124:1945–63
    [Google Scholar]
  57. Graff JR, Westberry TK, Milligan AJ, Brown MB, Dall'Olmo G et al. 2015. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep-Sea Res. I 102:16–25
    [Google Scholar]
  58. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL et al. 2018. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45:9049–57
    [Google Scholar]
  59. Gruber N, Doney SC, Emerson SR, Gilbert D, Kobayashi T et al. 2007. The Argo-Oxygen program: a white paper to promote the addition of oxygen sensors to the international Argo float program White Pap., Argo Steer. Comm http://www-argo.ucsd.edu/o2_white_paper_web.pdf
  60. Gruber N, Doney SC, Emerson SR, Gilbert D, Kobayashi T et al. 2010. Adding oxygen to Argo: developing a global in-situ observatory for ocean deoxygenation and biogeochemistry. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society Vol. 2: Community White Papers J Hall, DE Harrison, D Stammer, pap. 39. ESA Pub. WPP-306 Paris: Eur. Space Agency https://doi.org/10.5270/OceanObs09.cwp.39
    [Crossref] [Google Scholar]
  61. Gruber N, Gloor M, Fan SM, Sarmiento JL 2001. Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Glob. Biogeochem. Cycles 15:783–803
    [Google Scholar]
  62. Guenther EA, Johnson KS, Coale KH 2001. Direct ultraviolet spectrophotometric determination of total sulfide and iodide in natural waters. Anal. Chem. 73:3481–87
    [Google Scholar]
  63. Haentjens N, Boss E, Talley LD 2017. Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans 122:6583–93
    [Google Scholar]
  64. Hennon TD, Riser SC, Mecking S 2016. Profiling float-based observations of net respiration beneath the mixed layer. Glob. Biogeochem. Cycles 30:920–32
    [Google Scholar]
  65. Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world's marine ecosystems. Science 328:1523–28
    [Google Scholar]
  66. Huang Y, Yang B, Chen B, Qiu G, Wang H, Huang B 2018. Net community production in the South China Sea Basin estimated from in situ O2 measurements on an Argo profiling float. Deep-Sea Res. I 131:54–61
    [Google Scholar]
  67. IOCCG (Int. Ocean-Colour Coord. Group) 2011. Bio-optical sensors on Argo floats Rep. 11, IOCCG Dartmouth, Can:.
  68. Ito T, Follows MJ, Boyle EA 2004. Is AOU a good measure of respiration in the oceans. ? Geophys. Res. Lett. 31:L17305
    [Google Scholar]
  69. Johnson GC, Purkey SG, Zilberman NV, Roemmich D 2019. Deep Argo quantifies bottom water warming rates in the southwest Pacific Basin. Geophys. Res. Lett. 46:2662–69
    [Google Scholar]
  70. Johnson KS. 2017. Developing chemical sensors to observe the health of the global ocean. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)10–15 Piscataway, NJ: IEEE
    [Google Scholar]
  71. Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H et al. 2009. Observing biogeochemical cycles at global scale with profiling floats and gliders: prospect for a global array. Oceanography 22:3216–25
    [Google Scholar]
  72. Johnson KS, Claustre H. 2016. Bringing biogeochemistry into the Argo age. Eos Nov 8: https://eos.org/project-updates/bringing-biogeochemistry-into-the-argo-age
    [Google Scholar]
  73. Johnson KS, Coletti LJ. 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Res. I 49:1291–305
    [Google Scholar]
  74. Johnson KS, Coletti LJ, Jannasch HW, Sakamoto CM, Swift DD, Riser SC 2013. Long-term nitrate measurements in the ocean using the in situ ultraviolet spectrophotometer: sensor integration into the APEX profiling float. J. Atmos. Ocean. Technol. 30:1854–66
    [Google Scholar]
  75. Johnson KS, Jannasch HW, Coletti LJ, Elrod VA, Martz TR et al. 2016. Deep-sea DuraFET: a pressure tolerant pH sensor designed for global sensor networks. Anal. Chem. 88:3249–56
    [Google Scholar]
  76. Johnson KS, Pasqueron de Fommervault O, Serra R, D'Ortenzio F, Schmechtig C et al. 2018. Processing Bio-Argo nitrate concentration at the DAC level Norm. Doc., IFREMER, Issy-les-Moulineaux, Fr. https://doi.org/10.13155/46121
    [Crossref]
  77. Johnson KS, Plant JN, Coletti LJ, Jannasch HW, Sakamoto CM et al. 2017a. Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. Oceans 122:6416–36
    [Google Scholar]
  78. Johnson KS, Plant JN, Dunne JP, Talley LD, Sarmiento JL 2017b. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. J. Geophys. Res. Oceans 122:6668–83
    [Google Scholar]
  79. Johnson KS, Plant JN, Riser SC, Gilbert D 2015. Air oxygen calibration of oxygen optodes on a profiling float array. J. Atmos. Ocean. Technol. 32:2160–72
    [Google Scholar]
  80. Johnson KS, Riser SC, Karl DM 2010. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465:1062–65
    [Google Scholar]
  81. Johnson KS, Riser SC, Ravichandran M 2019. Oxygen variability controls denitrification in the Bay of Bengal oxygen minimum zone. Geophys. Res. Lett. 46:804–11
    [Google Scholar]
  82. Kamenkovich I, Haza A, Gray AR, Dufour CO, Garraffo Z 2017. Observing system simulation experiments for an array of autonomous biogeochemical profiling floats in the Southern Ocean. J. Geophys. Res. Oceans 122:7595–611
    [Google Scholar]
  83. Karl DM, Bidigare RR, Church MJ, Dore JE, Letelier RM et al. 2008. The nitrogen cycle in the North Pacific trades biome: an evolving paradigm. Nitrogen in the Marine Environment DG Capone, DA Bronk, MR Mulholland, EJ Carpenter 705–69 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  84. Karstensen J, Fiedler B, Schutte F, Brandt P, Körtzinger A et al. 2015. Open ocean dead zones in the tropical North Atlantic Ocean. Biogeosciences 12:2597–605
    [Google Scholar]
  85. Keeling RF, Körtzinger A, Gruber N 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229
    [Google Scholar]
  86. Keeling RF, Oschlies A, Orr JC 2009. Atmospheric evidence for recent global ocean deoxygenation. Geochim. Cosmochim. Acta 73:A632
    [Google Scholar]
  87. Kihm C, Körtzinger A. 2010. Air-sea gas transfer velocity for oxygen derived from float data. J. Geophys. Res. Oceans 115:C12003
    [Google Scholar]
  88. Körtzinger A, Schimanski J, Send U 2005. High quality oxygen measurements from profiling floats: a promising new technique. J. Atmos. Ocean. Technol. 22:302–8
    [Google Scholar]
  89. Körtzinger A, Schimanski J, Send U, Wallace D 2004. The ocean takes a deep breath. Science 306:1337
    [Google Scholar]
  90. Lacour L, Ardyna M, Stec KF, Claustre H, Prieur L et al. 2017. Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre. Nat. Geosci. 10:836–39
    [Google Scholar]
  91. Lacour L, Briggs N, Claustre H, Ardyna M, Dall'Olmo G 2019. The intra-seasonal dynamics of the mixed layer pump in the subpolar North Atlantic Ocean: a BGC-Argo float approach. Glob. Biogeochem. Cycles 33:266–81
    [Google Scholar]
  92. Lavigne H, D'Ortenzio F, D'Alcala MR, Claustre H, Sauzede R, Gacic M 2015. On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences 12:5021–39
    [Google Scholar]
  93. Le Traon P-Y, Reppucci A, Fanjul EA, Aouf L, Behrens A et al. 2019. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. 6:234
    [Google Scholar]
  94. Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE et al. 2012. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39:L10603
    [Google Scholar]
  95. Leymarie E, Penkerc'h C, Vellucci V, Lerebourg C, Antoine D et al. 2018. ProVal: a new autonomous profiling float for high quality radiometric measurements. Front. Mar. Sci. 5:437
    [Google Scholar]
  96. Llort J, Langlais C, Matear R, Moreau S, Lenton A, Strutton PG 2018. Evaluating Southern Ocean carbon eddy-pump from Biogeochemical Argo floats. J. Geophys. Res. Oceans 123:971–84
    [Google Scholar]
  97. Lotliker AA, Baliarsingh SK, Trainer VL, Wells ML, Wilson C et al. 2018. Characterization of oceanic Noctiluca blooms not associated with hypoxia in the northeastern Arabian Sea. Harmful Algae 74:46–57
    [Google Scholar]
  98. Manning AC, Keeling RF. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B 58:95–116
    [Google Scholar]
  99. Mao H, Feng M, Phillips HE, Lian S 2018. Mesoscale eddy characteristics in the interior subtropical southeast Indian Ocean, tracked from the Leeuwin Current system. Deep-Sea Res. II 161:52–62
    [Google Scholar]
  100. Martin JH, Knauer GA, Karl DM, Broenkow WW 1987. VERTEX: carbon cycling in the Northeast Pacific. Deep-Sea Res. A 34:267–85
    [Google Scholar]
  101. Martz TR, Connery JG, Johnson KS 2010. Testing the Honeywell Durafet® for seawater pH applications. Limnol. Oceanogr. Methods 8:172–84
    [Google Scholar]
  102. Martz TR, Johnson KS, Riser SC 2008. Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnol. Oceanogr. 53:2094–111
    [Google Scholar]
  103. Mayot N, Matrai P, Ellingsen IH, Steele M, Johnson K et al. 2018. Assessing phytoplankton activities in the seasonal ice zone of the Greenland Sea over an annual cycle. J. Geophys. Res. Oceans 123:8004–25
    [Google Scholar]
  104. Michaels AF, Knap AH, Dow RL, Gundersen K, Johnson RJ et al. 1994. Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study Site. Deep-Sea Res. I 41:1013–38
    [Google Scholar]
  105. Mignot A, Claustre H, Uitz J, Poteau A, D'Ortenzio F, Xing X 2014. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation. Glob. Biogeochem. Cycles 28:856–76
    [Google Scholar]
  106. Mignot A, D'Ortenzio F, Taillandier V, Cossarini G, Salon S 2019. Quantifying observational errors in Biogeochemical-Argo oxygen, nitrate and chlorophyll a concentrations. Geophys. Res. Lett. 46:4330–37
    [Google Scholar]
  107. Mignot A, Ferrari R, Claustre H 2018. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nat. Commun. 9:190
    [Google Scholar]
  108. Mitchell BG. 2003. Resolving spring bloom dynamics in the Sea of Japan. ALPS: Autonomous and Lagrangian Platforms and Sensors DL Rudnick, MJ Perry 26–27 Bethesda, MD: Geosci. Prof. Serv.
    [Google Scholar]
  109. Moore JK, Fu WW, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:1139–42
    [Google Scholar]
  110. Munk W. 2010. Oceanography before, and after, the advent of satellites. Satellites, Oceanography and Society D Halpern 1–4 Amsterdam: Elsevier Sci.
    [Google Scholar]
  111. Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT 2018. Climate-change-driven accelerated sea-level rise detected in the altimeter era. PNAS 115:2022–25
    [Google Scholar]
  112. Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A et al. 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8:297–323
    [Google Scholar]
  113. Organelli E, Barbieux M, Claustre H, Schmechtig C, Poteau A et al. 2017a. Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth Syst. Sci. Data 9:861–80
    [Google Scholar]
  114. Organelli E, Claustre H, Bricaud A, Barbieux M, Uitz J et al. 2017b. Bio-optical anomalies in the world's oceans: an investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 122:3543–64
    [Google Scholar]
  115. Organelli E, Claustre H, Bricaud A, Schmechtig C, Poteau A et al. 2016. A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances. J. Atmos. Ocean. Technol. 33:937–51
    [Google Scholar]
  116. Parekh P, Dutkiewicz S, Follows MJ, Ito T 2006. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 33:L03610
    [Google Scholar]
  117. Pasqueron de Fommervault O, D'Ortenzio F, Mangin A, Serra R, Migon C et al. 2015. Seasonal variability of nutrient concentrations in the Mediterranean Sea: contribution of Bio-Argo floats. J. Geophys. Res. Oceans 120:8528–50
    [Google Scholar]
  118. Picheral M, Guidi L, Stemmann L, Karl DM, Iddaoud G, Gorsky G 2010. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8:462–73
    [Google Scholar]
  119. Pierrot D, Neill C, Sullivan K, Castle R, Wanninkhof R et al. 2009. Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Res. II 56:512–22
    [Google Scholar]
  120. Plaganyi E. 2019. Climate change impacts on fisheries. Science 363:930–31
    [Google Scholar]
  121. Plant JN, Johnson KS, Sakamoto CM, Jannasch HW, Coletti LJ et al. 2016. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats. Glob. Biogeochem. Cycles 30:859–79
    [Google Scholar]
  122. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM et al. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–91
    [Google Scholar]
  123. Prakash S, Nair TMB, Bhaskar T, Prakash P, Gilbert D 2012. Oxycline variability in the central Arabian Sea: an Argo-oxygen study. J. Sea Res. 71:1–8
    [Google Scholar]
  124. Ravichandran M, Girishkumar MS, Riser S 2012. Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea. Deep-Sea Res. I 65:15–25
    [Google Scholar]
  125. Rembauville M, Briggs N, Ardyna M, Uitz J, Catala P et al. 2017. Plankton assemblage estimated with BGC-Argo floats in the Southern Ocean: implications for seasonal successions and particle export. J. Geophys. Res. Oceans 122:8278–92
    [Google Scholar]
  126. Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6:145–53
    [Google Scholar]
  127. Riser SC, Johnson KS. 2008. Net production of oxygen in the subtropical ocean. Nature 451:323–25
    [Google Scholar]
  128. Riser SC, Nystuen J, Rogers A 2008. Monsoon effects in the Bay of Bengal inferred from profiling float-based measurements of wind speed and rainfall. Limnol. Oceanogr. 53:2080–93
    [Google Scholar]
  129. Riser SC, Swift D, Drucker R 2018. Profiling floats in SOCCOM: technical capabilities for studying the Southern Ocean. J. Geophys. Res. Oceans 123:4055–73
    [Google Scholar]
  130. Roemmich D, Alford MH, Claustre H, Johnson KS, King B et al. 2019. On the future of Argo: an enhanced global array of physical and biogeochemical sensing floats. Front. Mar. Sci. 6:439
    [Google Scholar]
  131. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J et al. 2009. The Argo Program: observing the global ocean with profiling floats. Oceanography 22:234–43
    [Google Scholar]
  132. Roesler C, Uitz J, Claustre H, Boss E, Xing XG et al. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 15:572–85
    [Google Scholar]
  133. Sabine CL, Feely RA, Gruber N, Key RM, Lee K et al. 2004. The oceanic sink for anthropogenic CO2. Science 305:367–71
    [Google Scholar]
  134. Sarma VVSS, Udaya Bhaskar TVS 2018. Ventilation of oxygen to oxygen minimum zone due to anticyclonic eddies in the Bay of Bengal. J. Geophys. Res. Biogeosci. 123:2145–53
    [Google Scholar]
  135. Sauzède R, Bittig HC, Claustre H, Pasqueron de Fommervault O, Gattuso JP et al. 2017. Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean: a novel approach based on neural networks. Front. Mar. Sci. 4:128
    [Google Scholar]
  136. Sauzède R, Claustre H, Uitz J, Jamet C, Dall'Olmo G et al. 2016. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: retrieval of the particulate backscattering coefficient. J. Geophys. Res. Oceans 121:2552–71
    [Google Scholar]
  137. Stanev EV, Grayek S, Claustre H, Schmechtig C, Poteau A 2017. Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation. Ocean Dyn 67:1119–36
    [Google Scholar]
  138. Stanev EV, Poulain PM, Grayek S, Johnson KS, Claustre H, Murray JW 2018. Understanding the dynamics of the oxic-anoxic interface in the Black Sea. Geophys. Res. Lett. 45:864–71
    [Google Scholar]
  139. Stukel MR, Ducklow HW. 2017. Stirring up the biological pump: vertical mixing and carbon export in the Southern Ocean. Glob. Biogeochem. Cycles 31:1420–34
    [Google Scholar]
  140. Taillandier V, Wagener T, D'Ortenzio F, Mayot N, Legoff H et al. 2018. Hydrography and biogeochemistry dedicated to the Mediterranean BGC-Argo network during a cruise with RV Tethys 2 in May 2015. Earth Syst. Sci. Data 10:627–41
    [Google Scholar]
  141. Takeshita Y, Martz TR, Johnson KS, Dickson AG 2014. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater. Anal. Chem. 86:11189–95
    [Google Scholar]
  142. Takeshita Y, Martz TR, Johnson KS, Plant JN, Gilbert D et al. 2013. A climatology-based quality control procedure for profiling float oxygen data. J. Geophys. Res. Oceans 118:5640–50
    [Google Scholar]
  143. Talley LD, Feely RA, Sloyan BM, Wanninkhof R, Baringer MO et al. 2016. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8:185–215
    [Google Scholar]
  144. Talley LD, Rosso I, Kamenkovich I, Mazloff MR, Wang J et al. 2018. Southern Ocean biogeochemical float deployment strategy, with example from the Greenwich Meridian line (GO-SHIP A12). J. Geophys. Res. Oceans 124:403–31
    [Google Scholar]
  145. Tengberg A, Hovdenes J, Andersson HJ, Brocandel O, Diaz R et al. 2006. Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol. Oceanogr. Methods 4:7–17
    [Google Scholar]
  146. Terzić E, Lazzari P, Organelli E, Solidoro C, Salon S et al. 2019. Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry. Biogeosciences 16:2527–42
    [Google Scholar]
  147. Udaya Bhaskar TVS, Jayaram C, Rao PR, Rao KH 2016. Spatio-temporal evolution of chlorophyll-a in the Bay of Bengal: a remote sensing and Bio-Argo perspective. Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges RJ Frouin, SC Shenoi, KH Rao, pap. 98780Z. Proc. SPIE Vol. 9878 Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  148. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ 2012. Microbial oceanography of anoxic oxygen minimum zones. PNAS 109:15996–6003
    [Google Scholar]
  149. Valente A, Sathyendranath S, Brotas V, Groom S, Grant M et al. 2016. A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth Syst. Sci. Data 8:235–52
    [Google Scholar]
  150. Verdy A, Mazloff MR. 2017. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. Oceans 122:6968–88
    [Google Scholar]
  151. von Schuckmann K, Sallee JB, Chambers D, Le Traon PY, Cabanes C et al. 2014. Consistency of the current global ocean observing systems from an Argo perspective. Ocean Sci 10:547–57
    [Google Scholar]
  152. Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12:351–62
    [Google Scholar]
  153. Watson AJ, Orr JC. 2003. Carbon dioxide fluxes in the global ocean. Ocean Biogeochemistry MJR Fasham 123–43 Berlin: Springer
    [Google Scholar]
  154. Westberry TK, Schultz P, Behrenfeld MJ, Dunne JP, Hiscock MR et al. 2016. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean. Glob. Biogeochem. Cycles 30:175–90
    [Google Scholar]
  155. Whitmire AL, Letelier RM, Villagran V, Ulloa O 2009. Autonomous observations of in vivo fluorescence and particle backscattering in an oceanic oxygen minimum zone. Opt. Express 17:21992–2004
    [Google Scholar]
  156. Wijffels S, Roemmich D, Monselesan D, Church J, Gilson J 2016. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Change 6:116–18
    [Google Scholar]
  157. Williams NL, Juranek LW, Feely RA, Johnson KS, Sarmiento JL et al. 2017. Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: an uncertainty analysis. Glob. Biogeochem. Cycles 31:591–604
    [Google Scholar]
  158. Williams NL, Juranek LW, Feely RA, Russell JL, Johnson KS, Hales B 2018. Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms. J. Geophys. Res. Oceans 123:4833–52
    [Google Scholar]
  159. Williams NL, Juranek LW, Johnson KS, Feely RA, Riser SC et al. 2016. Empirical algorithms to estimate water column pH in the Southern Ocean. Geophys. Res. Lett. 43:3415–22
    [Google Scholar]
  160. Wojtasiewicz B, Hardman-Mountford NJ, Antoine D, Dufois F, Slawinski D, Trull TW 2018a. Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region. Remote Sens. Environ. 209:275–90
    [Google Scholar]
  161. Wojtasiewicz B, Trull TW, Udaya Bhaskar TVS, Gauns M, Prakash S et al. 2018b. Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea. J. Mar. Syst. In press. https://doi.org/10.1016/j.jmarsys.2018.07.002
    [Crossref] [Google Scholar]
  162. Wolf MK, Hamme RC, Gilbert D, Yashayaev I, Thierry V 2018. Oxygen saturation surrounding deep water formation events in the Labrador Sea from Argo-O2 data. Glob. Biogeochem. Cycles 32:635–53
    [Google Scholar]
  163. Wong APS, Riser SC. 2011. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr. 41:1102–15
    [Google Scholar]
  164. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C et al. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–90
    [Google Scholar]
  165. Xing XG, Briggs N, Boss E, Claustre H 2018. Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Opt. Express 26:24734–51
    [Google Scholar]
  166. Xing XG, Morel A, Claustre H, Antoine D, D'Ortenzio F et al. 2011. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: chlorophyll a retrieval. J. Geophys. Res. Oceans 116:C06020
    [Google Scholar]
  167. Xu H, Tang D, Sheng J, Liu Y, Sui Y 2019. Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations. Sci. Total Environ. 659:912–22
    [Google Scholar]
  168. Yang B, Emerson SR, Bushinsky SM 2017. Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Glob. Biogeochem. Cycles 31:728–44
    [Google Scholar]
  169. Yang J, Riser SC, Nystuen JA, Asher WE, Jessup AT 2015. Regional rainfall measurements using the Passive Aquatic Listener during the SPURS field campaign. Oceanography 28:1124–33
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010419-010956
Loading
/content/journals/10.1146/annurev-marine-010419-010956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error