1932

Abstract

The ocean interacts with the atmosphere via interfacial exchanges of momentum, heat (via radiation and convection), and fresh water (via evaporation and precipitation). These fluxes, or exchanges, constitute the ocean-surface energy and water budgets and define the ocean's role in Earth's climate and its variability on both short and long timescales. However, direct flux measurements are available only at limited locations. Air–sea fluxes are commonly estimated from bulk flux parameterization using flux-related near-surface meteorological variables (winds, sea and air temperatures, and humidity) that are available from buoys, ships, satellite remote sensing, numerical weather prediction models, and/or a combination of any of these sources. Uncertainties in parameterization-based flux estimates are large, and when they are integrated over the ocean basins, they cause a large imbalance in the global-ocean budgets. Despite the significant progress that has been made in quantifying surface fluxes in the past 30 years, achieving a global closure of ocean-surface energy and water budgets remains a challenge for flux products constructed from all data sources. This review provides a personal perspective on three questions: First, to what extent can time-series measurements from air–sea buoys be used as benchmarks for accuracy and reliability in the context of the budget closures? Second, what is the dominant source of uncertainties for surface flux products, the flux-related variables or the bulk flux algorithms? And third, given the coupling between the energy and water cycles, precipitation and surface radiation can act as twin budget constraints—are the community-standard precipitation and surface radiation products pairwise compatible?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-010816-060704
2019-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-010816-060704.html?itemId=/content/journals/10.1146/annurev-marine-010816-060704&mimeType=html&fmt=ahah

Literature Cited

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P et al. 2003. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4:1147–67
    [Google Scholar]
  2. Allan RP, Liu C, Loeb NG, Palmer MD, Roberts M et al. 2014. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41:5588–97
    [Google Scholar]
  3. Andersson A, Klepp C, Fennig K, Bakan S, Grassl H, Schulz J 2011. Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteorol. Climatol. 50:379–98
    [Google Scholar]
  4. Andreas EL, Edson JB, Monahan EC, Rouault M, Smith SD 1995. The spray contribution to net evaporation from the sea: a review of recent progress. Bound. Layer Meteorol. 72:3–52
    [Google Scholar]
  5. Andreas EL, Persson POG, Hare JE 2008. A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr. 38:1581–96
    [Google Scholar]
  6. Bengtsson L, Hodges KI, Koumoutsaris S, Zahn M, Berrisford P 2013. The changing energy balance of the polar regions in a warmer climate. J. Clim. 26:3112–29
    [Google Scholar]
  7. Bentamy A, Grodsky SA, Katsaros KB, Mestas-Nunñez AM, Blanke B, Desbiolles F 2013. Improvement in air–sea flux estimates derived from satellite observations. Int. J. Remote Sens. 34:5243–61
    [Google Scholar]
  8. Bentamy A, Piolléa JF, Grouazela A, Danielsone R, Gulevf S et al. 2017. Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ. 201:196–218
    [Google Scholar]
  9. Berry DI, Kent EC 2011. Air–Sea fluxes from ICOADS: the construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol. 31:987–1001
    [Google Scholar]
  10. Blanc TV 1983. An error analysis of profile flux, stability, and roughness length measurements made in the marine atmospheric surface layer. Bound. Layer Meteorol. 26:243–67
    [Google Scholar]
  11. Bradley F, Fairall CW 2007. A guide to making climate quality meteorological and flux measurements at sea Tech. Memo. OAR PSD-311, Phys. Sci. Div., Earth Syst. Res. Lab., Natl. Ocean. Atmos Adm., Boulder, CO:
  12. Brunke MA, Fairall CW, Zeng X, Eymard L, Curry JA 2003. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?. J. Clim. 16:619–35
    [Google Scholar]
  13. Chang H, Grossman RL 1999. Evaluation of bulk surface flux algorithms for light wind conditions using data from the coupled ocean‐atmosphere response experiment (COARE). Q. J. R. Meteorol. Soc. 125:1551–88
    [Google Scholar]
  14. Charnock H 1955. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81:639–40
    [Google Scholar]
  15. Cheng L, Trenberth KE, Fasullo J, Boyer T, Abraham J, Zhu J 2017. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3:e1601545
    [Google Scholar]
  16. Chou S-H, Atlas RM, Shie C-L, Ardizzone J 1995. Estimates of surface humidity and latent heat fluxes over oceans from SSM/I Data. Mon. Weather Rev. 123:2405–25
    [Google Scholar]
  17. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ et al. 2011. The Twentieth Century Reanalysis project. Q. J. R. Meteorol. Soc. 137:1–28
    [Google Scholar]
  18. Crawford TL, McMillen RT, Meyers TP, Hicks BB 1993. Spatial and temporal variability of heat, water, vapor, carbon dioxide, and momentum air-sea exchange in a coastal environment. J. Geophys. Res. 98:12869–80
    [Google Scholar]
  19. Curry JA, Bentamy A, Bourassa MA, Bourras D, Bradley EF et al. 2004. SEAFLUX. Bull. Am. Meteorol. Soc. 85:409–24
    [Google Scholar]
  20. da Silva AM, Young CC, Levitus S 1994. Atlas of Surface Marine Data, Vol. 1: Algorithms and Procedures NOAA Atlas NESDIS 6 Washington, DC: US Dep. Commerce
    [Google Scholar]
  21. DeCosmo J, Katsaros KB, Smith SD, Anderson RJ, Oost WA et al. 1996. Air-sea exchange of water vapor and sensible heat: the Humidity Exchange Over the Sea Experiment (HEXOS) results. Geophys. Res. 101:12001–16
    [Google Scholar]
  22. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:553–97
    [Google Scholar]
  23. Drennan WM, Graber HC, Hauser D, Quentin C 2003. On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res. 108:8062
    [Google Scholar]
  24. Drennan WM, Zhang J, French JR, McCormick C, Black PG 2007. Turbulent fluxes in the hurricane boundary layer. Part II: latent heat flux. J. Atmos. Sci. 64:1103–15
    [Google Scholar]
  25. Drijfhout SS, Blaker AT, Josey SA, Nurser AJG, Sinha B, Balmaseda MA 2014. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41:7868–74
    [Google Scholar]
  26. Edson JB 2008. Review of airsea transfer processes Paper presented at the European Centre for MediumRange Weather Forecasts (ECMWF) Workshop on OceanAtmosphere Interactions, Reading, UK, Nov 10–12
  27. Edson JB, Hinton AA, Prada KE, Hare JE, Fairall CW 1998. Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Ocean. Technol. 15:547–62
    [Google Scholar]
  28. Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ et al. 2013. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 43:1589–610
    [Google Scholar]
  29. Esbensen SK, Chelton DB, Vockers D, Sun J 1993. An analysis of errors in Special Sensor Microwave Imager evaporation estimates over the global oceans. J. Geophys. Res. 98:7081–101
    [Google Scholar]
  30. Fairall CW, Barnier B, Berry DI, Bourassa MA, Bradley EF et al. 2010. Observations to quantify air-sea fluxes and their role in climate variability and predictability. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society 2 Community White Papers, ed. J Hall, DE Harrison, D Stammer, chap. 27 Paris: Eur. Space Agency
    [Google Scholar]
  31. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB 2003. Bulk parameterization of air–sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16:571–91
    [Google Scholar]
  32. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS 1996. Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res. 101:3747–64
    [Google Scholar]
  33. Fairall CW, Larsen SE 1986. Inertial dissipation methods and turbulent fluxes at the air ocean interface. Bound. Layer Meteorol. 34:287–301
    [Google Scholar]
  34. Føre I, Kristjansson JE, Kolstad EW, Bracegirdle TJ, Saetra Ø, Røsting B 2012. A ‘hurricane-like’ polar low fuelled by sensible heat flux: high-resolution numerical simulations. Q. J. R. Meteorol. Soc. 138:1308–24
    [Google Scholar]
  35. Garratt JR 1977. Review of drag coefficients over oceans and continents. Mon. Weather Rev. 105:915–29
    [Google Scholar]
  36. Grachev AA, Fairall CW, Hare JE, Edson JB, Miller SD 2003. Wind stress vector over ocean waves. J. Phys. Oceanogr. 33:2408–29
    [Google Scholar]
  37. Grist JP, Josey SA 2003. Inverse analysis of the SOC air-sea flux climatology using ocean heat transport constraints. J. Clim. 16:3274–95
    [Google Scholar]
  38. Gulev SK, Belyaev K 2012. Probability distribution characteristics for surface air–sea turbulent heat fluxes over the global ocean. J. Clim. 25:184–206
    [Google Scholar]
  39. Gulev SK, Josey SA, Bourassa M, Breivik L-A, Cronin MF et al. 2010. Surface energy and CO2 fluxes in the Global Ocean-Atmosphere-Ice System. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 1: Plenary Papers, ed. J Hall, DE Harrison, D Stammer, chap. 19 Paris: Eur. Space Agency
    [Google Scholar]
  40. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J et al. 2005. Earth's energy imbalance: confirmation and implications. Science 308:1431–35
    [Google Scholar]
  41. Hwang PA 2005. Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. J. Geophys. Res. 110:C07024
    [Google Scholar]
  42. Isemer H, Willebrand J, Hasse L 1989. Fine adjustment of large-scale air–sea energy flux parameterizations by direct estimates of ocean heat transport. J. Clim. 2:1173–84
    [Google Scholar]
  43. Jackson DL, Wick GA, Bates JJ 2006. Near-surface retrieval of air temperature and specific humidity using multi-sensor microwave satellite observations. J. Geophys. Res. 111:D10306
    [Google Scholar]
  44. Janssen P 2008. Air‐sea interaction through waves Paper presented at the European Centre for MediumRange Weather Forecasts (ECMWF) Workshop on Ocean‐Atmosphere Interactions, Reading, UK, Nov 10–12
  45. Jin X, Yu L 2013. Assessing high-resolution analysis of surface heat fluxes in the Gulf Stream region. J. Geophys. Res. Oceans 118:5353–75
    [Google Scholar]
  46. Jin X, Yu L, Jackson DL, Wick GA 2015. An improved near-surface specific humidity and air temperature climatology for the SSM/I satellite period. J. Atmos. Ocean. Technol. 32:412–33
    [Google Scholar]
  47. Josey SA, Gulev SK, Yu L 2013. Exchanges through the ocean surface. Ocean Circulation and Climate: A 21st Century Perspective G Siedler, S Griffies, J Gould, J Church 115–40 Oxford, UK: Academic. , 2nd ed..
    [Google Scholar]
  48. Josey SA, Kent EC, Taylor PK 1999. New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim. 12:2856–80
    [Google Scholar]
  49. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D et al. 1996. The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77:437–71
    [Google Scholar]
  50. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ et al. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83:1631–43
    [Google Scholar]
  51. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA et al. 2013. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26:2719–40
    [Google Scholar]
  52. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M et al. 2015. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93:5–48
    [Google Scholar]
  53. Kubota M, Ichikawa K, Iwasaka N, Kizu S, Konda M, Kutsuwada K 2002. Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J. Oceanogr. 58:213–15
    [Google Scholar]
  54. Landwehr S, O'Sullivan N, Ward B 2015. Direct flux measurements from mobile platforms at sea: motion and airflow distortion corrections revisited. J. Atmos. Ocean. Technol. 32:1163–78
    [Google Scholar]
  55. Large WG, Danabasoglu G, Doney SC, McWilliams JC 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual mean climatology. J. Phys. Oceanogr. 27:2418–47
    [Google Scholar]
  56. Large WG, Pond S 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11:324–36
    [Google Scholar]
  57. Large WG, Yeager SG 2009. The global climatology of an interannually varying air-sea flux data set. Clim. Dyn. 33:341–64
    [Google Scholar]
  58. Levitus S, Antonov J, Boyer T, Stephens C 2005. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32:L02604
    [Google Scholar]
  59. Liu C, Liu C, Allan RP, Mayer M, Hyder P et al. 2017. Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates. J. Geophys. Res. Atmos. 122:6250–72
    [Google Scholar]
  60. Liu WT 1988. Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J. Geophys. Res. 93:6749–60
    [Google Scholar]
  61. Liu WT, Katsaros KB, Businger JA 1979. Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 36:1722–35
    [Google Scholar]
  62. Loeb NG, Doelling DR, Wang H, Su W, Nguyen C et al. 2018. Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 data product. J. Clim. 31:895–918
    [Google Scholar]
  63. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR et al. 2012. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5:110–113
    [Google Scholar]
  64. Louis JF 1979. A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer Meteorol. 17:187–202
    [Google Scholar]
  65. Lyman JM, Johnson GC 2013. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim. 27:1945–57
    [Google Scholar]
  66. Miller MJ, Beljaars ACM, Palmer TN 1992. The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J. Clim. 5:418–34
    [Google Scholar]
  67. Molod A, Takacs L, Suarez M, Bacmeister J 2015. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8:1339–56
    [Google Scholar]
  68. Monin AS, Obukhov AM 1954. Basic regularity in turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad. Nauk SSSR 24:163–87
    [Google Scholar]
  69. Newman M, Sardeshmukh PD, Bergman JW 2000. An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical west Pacific warm pool. Bull. Am. Meteorol. Soc. 81:41–48
    [Google Scholar]
  70. Paulson CA, Leavitt E, Fleagle RG 1972. Air-sea transfer of momentum, heat and water determined from profile measurements during BOMEX. J. Phys. Oceanogr. 2:487–97
    [Google Scholar]
  71. Poli P, Hersbach H, Tan DGH, Dee DP, Thépaut J-N et al. 2013. The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C) ERA Rep. Ser. 14, Eur. Cent. Medium‐Range Weather Forecasts, Reading, UK
  72. Powell MD, Vickery PJ, Reinhold TA 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–83
    [Google Scholar]
  73. Prytherch J, Kent EC, Fangohr S, Berry DI 2014. A comparison of SSM/I-derived global marine surface-specific humidity datasets. Int. J. Climatol. 35:2359–81
    [Google Scholar]
  74. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J et al. 2011. MERRA: NASA's modern-era retrospective analysis for research and applications. J. Clim. 24:3624–48
    [Google Scholar]
  75. Roberts JB, Clayson CA, Robertson FR, Jackson D 2010. Predicting near-surface characteristics from SSM/I using neural networks with a first guess approach. J. Geophys. Res. 115:D19113
    [Google Scholar]
  76. Rosenfeld D, Lensky IM 1998. Satellite‐based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Am. Meteorol. Soc. 79:2457–76
    [Google Scholar]
  77. Saha S, Moorthi S, Pan H-L, Wu X, Wang J et al. 2010. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 91:1015–57
    [Google Scholar]
  78. Schlüssel P, Schanz L, Englisch G 1995. Retrieval of latent‐heat flux and longwave irradiance at the sea‐surface from SSM/I and AVHRR measurements. Adv. Space Res. 16:107–16
    [Google Scholar]
  79. Schulz J, Schlüssel P, Grassl H 1993. Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens. 14:2773–89
    [Google Scholar]
  80. Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE 2007. The large‐scale energy budget of the Arctic. J. Geophys. Res. 112:D11122
    [Google Scholar]
  81. Simonot J-YR, Gautier C 1989. Satellite estimates of surface evaporation in the Indian Ocean during the 1979 monsoon. Ocean-Air Interact 1:239–56
    [Google Scholar]
  82. Smith SD 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res. 93:15467–15472
    [Google Scholar]
  83. Soloviev A, Lukas R, Donelan M, Haus B, Ginis I 2014. The air-sea interface and surface stress under tropical cyclones. Sci. Rep. 4:5306
    [Google Scholar]
  84. Stephens GL, Li J, Wild M, Clayson CA, Loeb N et al. 2012. An update on Earth's energy balance in light of the latest global observations. Nat. Geosci. 5:691–96
    [Google Scholar]
  85. Trenberth KE, Caron JM 2001. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14:3433–43
    [Google Scholar]
  86. Trenberth KE, Fasullo JT, Balmaseda MA 2014. Earth's energy imbalance. J. Clim. 27:3129–44
    [Google Scholar]
  87. Valdivieso M, Haines K, Balmaseda M, Chang Y-S, Drevillon M et al. 2017. An assessment of air–sea heat fluxes from ocean and coupled reanalyses. Clim. Dyn. 49:983–1008
    [Google Scholar]
  88. von Schuckmann K, Palmer MD, Trenberth KE, Cazenave A, Chambers D et al. 2016. An imperative to monitor Earth's energy imbalance. Nat. Clim. Change 6:138–44
    [Google Scholar]
  89. WCRP (World Clim. Res. Programme). 1989. WOCE surface flux determinations: a strategy for in situ measurements WMO Tech. Doc. 304, WCRP-23, World Meteorol Organ: Geneva
  90. Webster PA, Lukas R 1992. TOGA COARE: the Coupled Ocean-Atmosphere Response Experiment. Bull. Am. Meteorol. Soc. 73:1377–416
    [Google Scholar]
  91. Weller RA, Bradley EF, Edson JB, Fairall CW, Brooks I et al. 2008. Sensors for physical fluxes at the sea surface: energy, heat, water, salt. Ocean Sci 4:247–63
    [Google Scholar]
  92. Weller RA, Bradley F, Lukas R 2004. The interface or air–sea flux component of the TOGA Coupled Ocean–Atmosphere Response Experiment and its impact on subsequent air–sea interaction studies. J. Atmos. Ocean. Technol. 21:223–57
    [Google Scholar]
  93. WGASF (Work. Group Air-Sea Fluxes). 2000. Intercomparison and validation of ocean-atmosphere energy flux fields: final report of the Joint WCRP/SCOR Working Group on Air-Sea Fluxes (WGASF) WMO Tech. Doc. 1036, WCRP-112, World Meteorol Organ: Geneva
  94. Wild M, Folini D, Schar C, Loeb N, Dutton EG, König-Langlo G 2013. The global energy balance from a surface perspective. Clim. Dyn. 40:3107–34
    [Google Scholar]
  95. Wunsch C 2005. The total meridional heat flux and its oceanic and atmospheric partition. J. Clim. 18:4374–80
    [Google Scholar]
  96. Yu L, Haines K, Bourassa M, Cronin M, Gulev S et al. 2013. Towards achieving global closure of ocean heat and freshwater budgets: recommendations for advancing research in air-sea fluxes through collaborative activities Report of the CLIVAR/GSOP/WHOI Workshop on Ocean Syntheses and Surface Flux. WCRP Informal/Ser. Rep. 13/2013, ICPO Informal Rep. 189/13, Int. CLIVAR Proj. Off China:
  97. Yu L, Jin X 2012. Buoy perspective of a high-resolution global ocean vector wind analysis using passive radiometers and active scatterometers from 1987 to the present. J. Geophys. Res. Oceans 117:C11013
    [Google Scholar]
  98. Yu L, Jin X 2014. Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward). J. Geophys. Res. Oceans 119:5244–69
    [Google Scholar]
  99. Yu L, Jin X 2018. Retrieving near-surface air humidity and temperature using a regime-dependent regression model. Remote Sens. Environ 215:199–216
    [Google Scholar]
  100. Yu L, Jin X, Josey SA, Lee T, Kumar A et al. 2017. The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Clim. 30:3829–52
    [Google Scholar]
  101. Yu L, Jin X, Weller RA 2008. Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables OAFlux Proj. Tech. Rep. OA-2008-01, Woods Hole Oceanogr. Inst Woods Hole, MA:
  102. Yu L, Weller RA 2007. Objectively Analyzed air-sea heat Fluxes (OAFlux) for the global ocean. Bull. Am. Meteorol. Soc. 88:527–39
    [Google Scholar]
  103. Zeng X, Zhao M, Dickinson RE 1998. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Clim. 11:2628–44
    [Google Scholar]
/content/journals/10.1146/annurev-marine-010816-060704
Loading
/content/journals/10.1146/annurev-marine-010816-060704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error