1932

Abstract

The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives—integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean–atmosphere system in anoxic, low-oxygen, and high-oxygen states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-031721-104005
2022-01-03
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-031721-104005.html?itemId=/content/journals/10.1146/annurev-marine-031721-104005&mimeType=html&fmt=ahah

Literature Cited

  1. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Nature 317:1903–6
    [Google Scholar]
  2. Anbar AD, Holland HD. 1992. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56:2595–603
    [Google Scholar]
  3. Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  4. Bekker A, Kaufman AJ, Karhu JA, Eriksson KA. 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambr. Res. 137:167–206
    [Google Scholar]
  5. Bellefroid EJ, Hood AVS, Hoffman PF, Thomas MD, Reinhard CT, Planavsky NJ 2018. Constraints on Paleoproterozoic atmospheric oxygen levels. PNAS 115:8104–9
    [Google Scholar]
  6. Bellefroid EJ, Planavsky NJ, Hood AVS, Halverson GP, Spokas K. 2019. Shallow water redox conditions of the mid-Proterozoic Muskwa Assemblage, British Columbia, Canada. Am. J. Sci. 319:122–57
    [Google Scholar]
  7. Berry WBN, Wilde P. 1978. Progressive ventilation of the oceans—an explanation for the distribution of the lower Paleozoic black shales. Am. J. Sci. 278:257–75
    [Google Scholar]
  8. Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA et al. 2019. Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate HO Pörtner, DC Roberts, V Masson-Delmonte, P Zhai, M Tignor et al.447–587 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  9. Bjerrum CJ, Canfield DE. 2002. Ocean productivity before about 1.9 Ga ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–62
    [Google Scholar]
  10. Blättler CL, Claire MW, Prave AR, Kirsimäe K, Higgins JA et al. 2018. Two-billion-year-old evaporites capture Earth's great oxidation. Science 360:320–23
    [Google Scholar]
  11. Boyer TP, Garcia HE, Locarnini RA, Zweng MM, Mishonov AV et al. 2018. World Ocean Atlas 2018 Data Set, Natl. Cent. Environ. Inf., Natl. Ocean. Atmos. Adm., Silver Spring, MD https://www.ncei.noaa.gov/products/world-ocean-atlas
  12. Burke KD, Williams JW, Chandler MA, Haywood AM, Lunt DJ, Otto-Bliesner BL 2018. Pliocene and Eocene provide best analogs for near-future climates. PNAS 115:13288–93
    [Google Scholar]
  13. Busigny V, Lebaeu O, Ader M, Krapez B, Bekker A. 2013. Nitrogen cycle in the late Archean ferruginous ocean. Chem. Geol. 362:115–30
    [Google Scholar]
  14. Busigny V, Planavsky NJ, Jézéquel D, Crowe S, Louvat P et al. 2014. Iron isotopes in an Archean ocean analogue. Geochim. Cosmochim. Acta 133:443–62
    [Google Scholar]
  15. Canfield DE. 2005. The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu. Rev. Earth Planet. Sci. 33:1–36
    [Google Scholar]
  16. Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengston S, Chaussidon M et al. 2015. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere. PNAS 110:16736–41
    [Google Scholar]
  17. Cole DB, Ozaki K, Reinhard CT. 2021. Atmospheric oxygen abundance, marine nutrient availability, and organic carbon fluxes to the seafloor. Earth and Space Science Open Archive https://www.essoar.org/doi/10.1002/essoar.10506930.1
    [Google Scholar]
  18. Croal LR, Johnson CM, Beard BL, Newman DK. 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68:1227–42
    [Google Scholar]
  19. Crockford PW, Hayles JA, Bao H, Planavsky NJ, Bekker A et al. 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559:613–16
    [Google Scholar]
  20. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86:118–37
    [Google Scholar]
  21. Dahl TW, Arens SKM. 2020. The impacts of land plant evolution on Earth's climate and oxygenation state – an interdisciplinary review. Chem. Geol. 547:119665
    [Google Scholar]
  22. Dahl TW, Connelly JN, Li D, Kouchinsky A, Gill BC et al. 2019. Atmosphere-ocean oxygen and productivity dynamics during early animal radiations. PNAS 116:19352–61
    [Google Scholar]
  23. Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC et al. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial planets and large predatory fish. PNAS 107:17911–15
    [Google Scholar]
  24. Dal Corso J, Bernardi M, Sun Y, Song H, Seyfullah LJ et al. 2020. Extinction and dawn of the modern world in the Carnian (Late Triassic).. Sci. Adv. 6:eaba0099
    [Google Scholar]
  25. D'Antonio MP, Ibarra DE, Boyce CK 2020. Land plant evolution decreased, rather than increased, weathering rates. Geology 48:29–33
    [Google Scholar]
  26. David LA, Alm EJ. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96
    [Google Scholar]
  27. Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Ferrell-Sherman A et al. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576:311–14
    [Google Scholar]
  28. Derry LA. 2015. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42:8538–46
    [Google Scholar]
  29. Dimroth E, Chauvel J-J. 1973. Petrography of the Sokoman Iron Formation in part of the Central Labrador Trough, Quebec, Canada. Geol. Soc. Am. Bull. 84:111–34
    [Google Scholar]
  30. Doyle KA, Poulton SW, Newton RJ, Podkovyrov VN, Bekker A. 2018. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambr. Res 317:196–210
    [Google Scholar]
  31. Eltom H, Abdullatif OM, Babalola LO. 2017. Redox conditions through the Permian-Triassic transition in the upper Khuff formation, Saudi Arabia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 472:203–15
    [Google Scholar]
  32. Erwin DH. 1990. The end-Permian mass extinction. Annu. Rev. Ecol. Syst 21:69–91
    [Google Scholar]
  33. Fakhraee M, Hancisse O, Canfield DE, Crowe SA, Katsev S. 2019. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry. Nat. Geosci. 12:375–80
    [Google Scholar]
  34. Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034–39
    [Google Scholar]
  35. Fan J, Shen SZ, Erwin DH, Sadler PM, MacLeod N et al. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367:272–77
    [Google Scholar]
  36. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58
    [Google Scholar]
  37. Fralick P, Davis DW, Kissin SA. 2002. The age of the Gunflint Formation, Ontario, Canada: single zircon U-Pb age determinations from reworked volcanic ash. Can. J. Earth Sci. 39:1085–91
    [Google Scholar]
  38. Garcia HE, Gordon LI. 1992. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37:1307–12
    [Google Scholar]
  39. Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–48
    [Google Scholar]
  40. Geyman EC, Maloof AC 2019. A diurnal carbon engine explains 13C-enriched carbonates without increasing global production of oxygen. PNAS 116:24433–39
    [Google Scholar]
  41. Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature 469:80–83
    [Google Scholar]
  42. Godfrey LV, Falkowski PG. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725–29
    [Google Scholar]
  43. Goldberg T, Archer C, Vance D, Poulton SW. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 73:6502–16
    [Google Scholar]
  44. Gregory BS, Claire MW, Rugheimer S. 2021. Photochemical modelling of atmospheric oxygen levels confirms two stable states. Earth Planet. Sci. Lett. 561:116818
    [Google Scholar]
  45. Grotzinger JP, Kasting JF. 1993. New constraints on Precambrian ocean composition. J. Geol. 101:235–43
    [Google Scholar]
  46. Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 369:1980–96
    [Google Scholar]
  47. Guilbaud R, Poulton SW, Butterfield NJ, Zhu M, Shields-Zhou GA. 2015. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8:466–70
    [Google Scholar]
  48. Hansen J, Sato M, Russell G, Kharecha P. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 371:20120294
    [Google Scholar]
  49. Haqq-Misra J, Kasting JF, Lee S 2011. Availability of O2 and H2O2 on pre-photosynthetic Earth. Astrobiology 11:293–302
    [Google Scholar]
  50. Hodgskiss MSW, Crockford PW, Peng Y, Wing BA, Horner TJ 2019. A productivity collapse to end Earth's Great Oxidation. PNAS 116:17207–12
    [Google Scholar]
  51. Holland HD. 1984. The Chemical Evolution of the Atmosphere and Ocean Princeton, NJ: Princeton Univ. Press
  52. Huang Y, Chen Z, Algeo TJ, Zhao L, Baud A et al. 2019. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmire, northern India: pyrite framboid evidence. Glob. Planet. Change 172:124–39
    [Google Scholar]
  53. Huang Y, Chen Z, Wignall PB, Zhao L. 2017. Latest Permain to Middle Triassic redox condition variations in ramp settings, South China: pyrite framboid evidence. GSA Bull 129:229–43
    [Google Scholar]
  54. Ibarra DE, Caves Rugenstein JK, Bachan A, Baresch A, Lau KV et al. 2019. Modeling the consequences of land plant evolution on silicate weathering. Am. J. Sci. 319:1–43
    [Google Scholar]
  55. Isozaki Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235–38
    [Google Scholar]
  56. Jabłońska J, Tawfik DS. 2021. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5:442–48
    [Google Scholar]
  57. Johnson JE, Gerpheide A, Lamb MP, Fischer WW. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. GSA Bull 126:813–30
    [Google Scholar]
  58. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110:11238–43
    [Google Scholar]
  59. Johnston DT. 2011. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Sci. Rev. 106:161–83
    [Google Scholar]
  60. Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE. 2015. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43:135–38
    [Google Scholar]
  61. Karhu JA, Holland HD. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology 24:867–70
    [Google Scholar]
  62. Karstensen J, Stramma L, Visbeck M. 2008. Oxygen minimum zones in the easter tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77:331–50
    [Google Scholar]
  63. Kasting JF. 1991. Box models for the evolution of atmospheric oxygen: an update. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97:125–31
    [Google Scholar]
  64. Kasting JF, Liu SC, Donahue TM. 1979. Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84:3097–107
    [Google Scholar]
  65. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3
    [Google Scholar]
  66. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229
    [Google Scholar]
  67. Kendall B, Creaser RA, Reinhard CT, Lyons TW, Anbar AD. 2015a. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1:e1500777
    [Google Scholar]
  68. Kendall B, Komiya T, Lyons TW, Bates SM, Gordon GW et al. 2015b. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim. Cosmochim. Acta 156:173–93
    [Google Scholar]
  69. Koehler MC, Buick R, Kipp MA, Stüeken EE, Zaloumis J. 2018. Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. PNAS 115:7711–16
    [Google Scholar]
  70. Konhauser KO, Lalonde SV, Amskold L, Holland HD. 2007. Was there really an Archean phosphate crisis?. Science 315:1234
    [Google Scholar]
  71. Kump LR. 1988. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus. Nature 335:152–54
    [Google Scholar]
  72. Kump LR. 2008. The rise of atmospheric oxygen. Nature 451:277–78
    [Google Scholar]
  73. Kurzweil F, Claire M, Thomazo C, Peters M, Hannington M, Strauss H 2013. Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366:17–26
    [Google Scholar]
  74. Kurzweil F, Wille M, Gantert N, Beukes NJ, Schoenberg R. 2016. Manganese oxide shuttling in pre-GOE oceans – evidence from molybdenum and iron isotopes. Earth Planet. Sci. Lett. 452:69–78
    [Google Scholar]
  75. Laakso TA, Schrag DP. 2017. A theory of atmospheric oxygen. Geobiology 15:366–84
    [Google Scholar]
  76. Lei L, Shen J, Li C, Algeo TJ, Chen Z et al. 2017. Controls on regional marine redox evolution during Permian-Triassic transition in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 486:17–32
    [Google Scholar]
  77. Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K et al. 2016. Earliest land plants created modern levels of atmospheric oxygen. PNAS 113:9704–9
    [Google Scholar]
  78. Lenton TM, Daines SJ, Mills BJW. 2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178:1–28
    [Google Scholar]
  79. Levin LA. 2018. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10:229–60
    [Google Scholar]
  80. Little CTS, Johannessen KC, Bengston S, Chan CS, Ivarsson M et al. 2021. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA. Geobiology 19:228–49
    [Google Scholar]
  81. Liu A, Tang D, Shi X, Zhou X, Zhou L et al. 2020. Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China. Precambr. Res. 341:105667
    [Google Scholar]
  82. Liu X, Kah LC, Knoll AH, Cui H, Wang C et al. 2021. A persistently low level of atmospheric oxygen in Earth's middle age. Nat. Commun. 12:351
    [Google Scholar]
  83. Lu W, Ridgwell A, Thomas E, Hardisty DS, Luo G et al. 2018. Late inception of a resiliently oxygenated upper ocean. Science 361:174–77
    [Google Scholar]
  84. Luo G, Junium CK, Izon G, Ono S, Beukes NJ et al. 2018. Nitrogen fixation sustained productivity in the wake of the Palaeoproterozoic Great Oxidation Event. Nat. Commun. 9:978
    [Google Scholar]
  85. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  86. Mänd K, Lalonde SV, Robbins LJ, Thoby M, Paiste K et al. 2020. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event. Nat. Geosci. 13:302–6
    [Google Scholar]
  87. Marsh R, Müller SA, Yool A, Edwards NR. 2011. Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE. Geosci. Model Dev. 4:957–92
    [Google Scholar]
  88. Meadows VS, Reinhard CT, Arney GN, Parenteau MN, Schwieterman EW et al. 2018. Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18:630–62
    [Google Scholar]
  89. Melezhik VA, Fallick AE, Rychanchik DV, Kuznetsov AB 2005. Paleoproterozoic evaporites in Fennoscandia: implications for seawater sulfate, the rise of atmospheric oxygen and local amplification of the δ13C excursion. Terra Nova 17:141–48
    [Google Scholar]
  90. Och LM, Shields-Zhou GA. 2012. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110:26–57
    [Google Scholar]
  91. Olson SL, Kump LR, Kasting JF. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362:35–43
    [Google Scholar]
  92. Olson SL, Schwieterman EW, Reinhard CT, Lyons TW 2018. Earth: atmospheric evolution of a habitable planet. Handbook of Exoplanets H Deeg, J Belmonte 1–37 Cham, Switz: Springer
    [Google Scholar]
  93. Ono S, Kaufman AJ, Farquhar J, Sumner DY, Beukes NJ. 2009. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambr. Res. 169:58–67
    [Google Scholar]
  94. Oschlies A, Brandt P, Stramma L, Schmidtko S. 2018. Drivers and mechanisms of ocean oxygenation. Nat. Geosci. 11:467–73
    [Google Scholar]
  95. Ossa Ossa F, Hofmann A, Vidal O, Kramers JD, Belyanin G, Cavalazzi B 2016. Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambr. Res. 281:414–33
    [Google Scholar]
  96. Ossa Ossa F, Hofmann A, Wille M, Spangenberg JE, Bekker A et al. 2018. Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth Planet. Sci. Lett. 500:28–50
    [Google Scholar]
  97. Ostrander CM, Nielsen SG, Owens JD, Kendall B, Gordon GW et al. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12:186–91
    [Google Scholar]
  98. Ozaki K, Reinhard CT, Tajika E. 2019. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance. Geobiology 17:3–11
    [Google Scholar]
  99. Partin CA, Bekker A, Planavsky NJ, Scott CT, Gill BC et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370:284–93
    [Google Scholar]
  100. Pavlov AA, Kasting JF. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41
    [Google Scholar]
  101. Penn JL, Deutsch C, Payne JL, Sperling EA. 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327
    [Google Scholar]
  102. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV et al. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7:283–86
    [Google Scholar]
  103. Planavsky NJ, Cole DB, Isson TT, Reinhard CT, Crockford PW et al. 2018a. A case for low atmospheric oxygen levels during Earth's middle history. Emerg. Top. Life Sci. 2:149–59
    [Google Scholar]
  104. Planavsky NJ, McGoldrick P, Scott CT, Li C, Reinhard CT et al. 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477:448–51
    [Google Scholar]
  105. Planavsky NJ, Rouxel OJ, Bekker A, Hofmann A, Little CTS, Lyons TW. 2012. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim. Cosmochim. Acta 80:158–69
    [Google Scholar]
  106. Planavsky NJ, Rouxel OJ, Bekker A, Shapiro R, Fralick P, Knudsen A. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet. Sci. Lett. 286:230–42
    [Google Scholar]
  107. Planavsky NJ, Slack JF, Cannon WF, O'Connell B, Isson TT et al. 2018b. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chem. Geol. 483:581–94
    [Google Scholar]
  108. Poulton SW, Fralick PW, Canfield DE. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3:486–90
    [Google Scholar]
  109. Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–18
    [Google Scholar]
  110. Raye U, Pufahl PK, Kyser TK, Ricard E, Hiatt EE 2015. The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada.. Geochim. Cosmochim. Acta 164:205–20
    [Google Scholar]
  111. Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ et al. 2017. Evolution of the global phosphorus cycle. Nature 541:386–89
    [Google Scholar]
  112. Reinhard CT, Planavsky NJ, Olson SL, Lyons TW, Erwin DH 2016. Earth's oxygen cycle and the evolution of animal life. PNAS 113:8933–38
    [Google Scholar]
  113. Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC et al. 2013. Proterozoic ocean redox and biogeochemical stasis. PNAS 110:5357–62
    [Google Scholar]
  114. Roscoe SM, Minter WEL 1993. Pyritic paleoplacer gold and uranium deposits. Mineral Deposit Modeling RV Kirkham, WD Sinclair, RI Thorpe, JM Duke 103–24 St. John's: Geol. Assoc. Can.
    [Google Scholar]
  115. Rye R, Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298:621–72
    [Google Scholar]
  116. Sahoo SK, Planavsky NJ, Jiang G, Kendall B, Owens JD et al. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14:457–68
    [Google Scholar]
  117. Sahoo SK, Planavsky NJ, Kendall B, Wang X, Shi X et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–49
    [Google Scholar]
  118. Scholz F. 2018. Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies. Earth-Sci. Rev. 184:29–45
    [Google Scholar]
  119. Schröder S, Bekker A, Beukes NJ, Strauss H, van Niekerk HS. 2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow-marine Lucknow Formation, South Africa. Terra Nova 20:108–17
    [Google Scholar]
  120. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59
    [Google Scholar]
  121. Shackleton NJ. 1987. The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere. Geol. Soc. Lond. Spec. Publ. 26:423–34
    [Google Scholar]
  122. Shang M, Tang D, Shi X, Zhou L, Zhou X et al. 2019. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth Planet. Sci. Lett. 527:115797
    [Google Scholar]
  123. Sheen AI, Kendall B, Reinhard CT, Creaser RA, Lyons TW et al. 2018. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227:75–95
    [Google Scholar]
  124. Slack JF, Grenne T, Bekker A. 2009. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 5:302–14
    [Google Scholar]
  125. Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA. 2007. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 255:243–56
    [Google Scholar]
  126. Sperling EA, Melchin MJ, Fraser T, Stockey RG, Farrell UC et al. 2021. A long-term record of early to mid-Paleozoic marine redox change. Sci. Adv. 7:eabf4382
    [Google Scholar]
  127. Sperling EA, Rooney AD, Hays LE, Sergeev VN, Vorob'eva NG et al. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology 12:373–86
    [Google Scholar]
  128. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54
    [Google Scholar]
  129. Steele JH. 1974. The Structure of Marine Ecosystems Cambridge, MA: Harvard Univ. Press
  130. Stolper DA, Keller CB. 2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553:323–27
    [Google Scholar]
  131. Sun D, Ito T, Bracco A. 2017. Oceanic uptake of oxygen during deep convection events through diffusive and bubble-mediated gas exchange. Glob. Biogeochem. Cycles 31:1579–91
    [Google Scholar]
  132. Tang D, Shi XY, Wang X, Jiang G 2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambr. Res. 276:145–57
    [Google Scholar]
  133. Tierney JE, Zhu J, King J, Malevich SB, Hakim GJ, Poulsen CJ. 2020. Glacial cooling and climate sensitivity revisited. Nature 584:569–73
    [Google Scholar]
  134. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–31
    [Google Scholar]
  135. van de Velde SJ, Hülse D, Reinhard CT, Ridgwell A. 2021. Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21). Geosci. Model Dev. 14:2713–45
    [Google Scholar]
  136. Wallace MW, Hood AVS, Shuster A, Greig A, Planavsky NJ, Reed CP. 2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466:12–19
    [Google Scholar]
  137. Wang X, Planavsky NJ, Reinhard CT, Hein JR, Johnson TM. 2016. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts. Am. J. Sci 316:64–83
    [Google Scholar]
  138. Wei G, Planavsky NJ, Tarhan LG, He T, Wang D et al. 2020. Highly dynamic marine redox state through the Cambrian explosion highlighted by authigenic δ238U records. Earth Planet. Sci. Lett. 544:116361
    [Google Scholar]
  139. Wilde P. 1987. Model of progressive ventilation of the late Precambrian-early Paleozoic ocean. Am. J. Sci. 287:442–59
    [Google Scholar]
  140. Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10:381–94
    [Google Scholar]
  141. Wyrtki K. 1962. The oxygen minima in relation to ocean circulation. Deep-Sea Res 9:11–23
    [Google Scholar]
  142. Yang S, Kendall B, Lu X, Zhang F, Zheng W. 2017. Uranium isotope compositions of mid-Proterozoic black shales: evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambr. Res. 298:187–201
    [Google Scholar]
  143. Zahnle KJ, Claire M, Catling D 2006. The loss of mass-independent fractionation in sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology 4:271–83
    [Google Scholar]
  144. Zerkle AL, Poulton SW, Newton RJ, Mettam C, Claire MW et al. 2017. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542:465–67
    [Google Scholar]
/content/journals/10.1146/annurev-marine-031721-104005
Loading
/content/journals/10.1146/annurev-marine-031721-104005
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error