1932

Abstract

Microbes in marine sediments represent a large portion of the biosphere, and resolving their ecology is crucial for understanding global ocean processes. Single-gene diversity surveys have revealed several uncultured lineages that are widespread in ocean sediments and whose ecological roles are unknown, and advancements in the computational analysis of increasingly large genomic data sets have made it possible to reconstruct individual genomes from complex microbial communities. Using these metagenomic approaches to characterize sediments is transforming our view of microbial communities on the ocean floor and the biodiversity of the planet. In recent years, marine sediments have been a prominent source of new lineages in the tree of life. The incorporation of these lineages into existing phylogenies has revealed that many belong to distinct phyla, including archaeal phyla that are advancing our understanding of the origins of cellular complexity and eukaryotes. Detailed comparisons of the metabolic potentials of these new lineages have made it clear that uncultured bacteria and archaea are capable of mediating key previously undescribed steps in carbon and nutrient cycling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032020-014552
2021-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/marine/13/1/annurev-marine-032020-014552.html?itemId=/content/journals/10.1146/annurev-marine-032020-014552&mimeType=html&fmt=ahah

Literature Cited

  1. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S 2017. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–25
    [Google Scholar]
  2. Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3:401–25
    [Google Scholar]
  3. Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D et al. 2010. Enigmatic, ultrasmall, uncultivated Archaea. PNAS 107:8806–11
    [Google Scholar]
  4. Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG 2020. Diversity, ecology, and evolution of Archaea. Nat. Microbiol. 5:887–900
    [Google Scholar]
  5. Baker BJ, Lazar CS, Teske AP, Dick GJ 2015. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3:14
    [Google Scholar]
  6. Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U et al. 2016. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1:16002
    [Google Scholar]
  7. Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P et al. 2006. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314:1933–35
    [Google Scholar]
  8. Barns SM, Delwiche CF, Palmer JD, Pace NR 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. PNAS 93:9188–93
    [Google Scholar]
  9. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–78
    [Google Scholar]
  10. Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M et al. 2019. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–11
    [Google Scholar]
  11. Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW et al. 2019. The importance of designating type material for uncultured taxa. Syst. Appl. Microbiol. 42:15–21
    [Google Scholar]
  12. Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF 2009. Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3:159–67
    [Google Scholar]
  13. Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243
    [Google Scholar]
  14. Dombrowski N, Seitz KW, Teske AP, Baker BJ 2017. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 5:106
    [Google Scholar]
  15. Dombrowski N, Teske AP, Baker BJ 2018. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9:4999
    [Google Scholar]
  16. Durbin AM, Teske A. 2011. Microbial diversity and stratification of South Pacific abyssal marine sediments. Environ. Microbiol. 13:321934
    [Google Scholar]
  17. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y et al. 2008. A korarchaeal genome reveals insights into the evolution of the Archaea. PNAS 105:81027
    [Google Scholar]
  18. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG 2017. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15:71123
    [Google Scholar]
  19. Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH et al. 2019. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17:21932
    [Google Scholar]
  20. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ et al. 2015. Methane metabolism in the archaeal phylum bathyarchaeota revealed by genome-centric metagenomics. Science 350:43438
    [Google Scholar]
  21. Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G 2008. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 66:18196
    [Google Scholar]
  22. He Y, Li M, Perumal V, Feng X, Fang J et al. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1:16035
    [Google Scholar]
  23. Huang J-M, Baker BJ, Li J-T, Wang Y 2019. New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the northern South China Sea. Appl. Environ. Microbiol. 85:e00523–19
    [Google Scholar]
  24. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. 2016. A new view of the tree of life. Nat. Microbiol. 1:16048
    [Google Scholar]
  25. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M et al. 2020. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577:51925
    [Google Scholar]
  26. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. PNAS 103:281520
    [Google Scholar]
  27. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T et al. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl. Environ. Microbiol. 69:722435
    [Google Scholar]
  28. Kubo K, Lloyd KG, Biddle JF, Amann R, Teske A, Knittel K 2012. Archaea of the miscellaneous crenarchaeotal group are abundant, diverse and widespread in marine sediments. ISME J 6:194965
    [Google Scholar]
  29. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ et al. 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396401
    [Google Scholar]
  30. Lazar CS, Baker BJ, Seitz KW, Hyde AS, Dick GJ et al. 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18:120011
    [Google Scholar]
  31. Lazar CS, Baker BJ, Seitz KW, Teske AP 2017. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J 11:111829
    [Google Scholar]
  32. Lazar CS, Biddle JF, Meador TB, Blair N, Hinrichs K-U, Teske AP 2015. Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ. Microbiol. 17:222838
    [Google Scholar]
  33. Lee YMI, Hwang K, Lee JI, Kim M, Hwang CY et al. 2018. Genomic insight into the predominance of candidate phylum Atribacteria JS1 lineage in marine sediments. Front. Microbiol. 9:2909
    [Google Scholar]
  34. Liu Y, Zhou Z, Pan J, Baker BJ, Gu J-D, Li M 2018. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J 12:102131
    [Google Scholar]
  35. Liu Y-F, Qi Z-Z, Shou L-B, Liu J-F, Yang S-Z et al. 2019. Anaerobic hydrocarbon degradation in candidate phylum ‘Atribacteria’ (JS1) inferred from genomics. ISME J 13:237790
    [Google Scholar]
  36. Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA et al. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature 496:21518
    [Google Scholar]
  37. Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L 2018. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3:e00055–18
    [Google Scholar]
  38. Martin WF, Garg S, Zimorski V 2015. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B 370:20140330
    [Google Scholar]
  39. Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM et al. 2019. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the cyanobacteria. Nat. Commun. 10:463
    [Google Scholar]
  40. McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM et al. 2019. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4:61422
    [Google Scholar]
  41. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:65059
    [Google Scholar]
  42. Minh BQ, Nguyen MAT, von Haeseler A 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30:118895
    [Google Scholar]
  43. Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W et al. 2016. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci. Rep. 6:19181
    [Google Scholar]
  44. Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H 2014. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Mar. Geol. 352:40925
    [Google Scholar]
  45. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ et al. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:39094
    [Google Scholar]
  46. Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP et al. 2002. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl. Environ. Microbiol. 68:375970
    [Google Scholar]
  47. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:43137
    [Google Scholar]
  48. Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J et al. 2019. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10:1822
    [Google Scholar]
  49. Seitz KW, Lazar CS, Hinrichs K-U, Teske AP, Baker BJ 2016. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10:1696705
    [Google Scholar]
  50. Sørensen KB, Teske A. 2006. Stratified communities of active archaea in deep marine subsurface sediments. Appl. Environ. Microbiol. 72:4596603
    [Google Scholar]
  51. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:17379
    [Google Scholar]
  52. Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J et al. 2019. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4:11348
    [Google Scholar]
  53. Takai K, Horikoshi K. 1999. Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl. Environ. Microbiol. 65:558689
    [Google Scholar]
  54. Takai K, Komatsu T, Inagaki F, Horikoshi K 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67:361829
    [Google Scholar]
  55. Teske A, Sørensen KB. 2008. Uncultured archaea in deep marine subsurface sediments: Have we caught them all. ? ISME J 2:318
    [Google Scholar]
  56. Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS et al. 2017. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. PNAS 114:E9206–15
    [Google Scholar]
  57. Tully BJ, Graham ED, Heidelberg JF 2018. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5:170203
    [Google Scholar]
  58. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL 1999. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65:437584
    [Google Scholar]
  59. Webster G, Watt LC, Rinna J, Fry JC, Evershed RP et al. 2006. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ. Microbiol. 8:157589
    [Google Scholar]
  60. Whitman WB, Coleman DC, Wiebe WJ 1998. Prokaryotes: the unseen majority. PNAS 95:657883
    [Google Scholar]
  61. Yu T, Wu W, Liang W, Lever MA, Hinrichs K-W, Wang F 2018. Growth of sedimentary Bathyarchaeota on lignin as an energy source. PNAS 115:602227
    [Google Scholar]
  62. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:35358
    [Google Scholar]
  63. Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y et al. 2019. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 13:885901
    [Google Scholar]
  64. Zhou Z, Zhang G-X, Xu Y-B, Gu J-D 2018. Successive transitory distribution of Thaumarchaeota and partitioned distribution of Bathyarchaeota from the Pearl River estuary to the northern South China Sea. Appl. Microbiol. Biotechnol. 102:803548
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032020-014552
Loading
/content/journals/10.1146/annurev-marine-032020-014552
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error