1932

Abstract

Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063619
2018-01-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/marine/10/1/annurev-marine-121916-063619.html?itemId=/content/journals/10.1146/annurev-marine-121916-063619&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson A, Denny M. 1997. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst 28:317–39 [Google Scholar]
  2. Alford MH. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423:159–62 [Google Scholar]
  3. Alford MH, MacKinnon JA, Zhao Z, Pinkel R, Klymak J, Peacock T. 2007. Internal waves across the Pacific. Geophys. Res. Lett. 34:L24601 [Google Scholar]
  4. Arthur RS, Fringer OB. 2014. The dynamics of breaking internal solitary waves on slopes. J. Fluid Mech. 761:360–98 [Google Scholar]
  5. Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK. et al. 1986. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol 90:379–94 [Google Scholar]
  6. Baines PG. 1986. Internal tides, internal waves and near-inertial motions. Baroclinic Processes on Continental Shelves CNK Mooers 19–31 Washington, DC: Am. Geophys. Union [Google Scholar]
  7. Bell TH. 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80:320–27 [Google Scholar]
  8. Blanchette CA. 1997. Size and survival of intertidal plants in response to wave action: a case study with Fucus gardneri. Ecology 78:1563–78 [Google Scholar]
  9. Boehm AB, Sanders BF, Winant CD. 2002. Cross-shelf transport at Huntington Beach. Implications for the fate of sewage discharged through an offshore ocean outfall. Environ. Sci. Technol. 36:1899–906 [Google Scholar]
  10. Booth JAT, McPhee-Shaw EE, Chua P, Kingsley E, Denny MW. et al. 2012. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf Res 45:108–15 [Google Scholar]
  11. Breitburg D. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries Coasts 25:767–81 [Google Scholar]
  12. Broitman BR, Blanchette CA, Menge BA, Lubchenco J, Krenz C. et al. 2008. Spatial and temporal patterns of invertebrate recruitment along the west coast of the United States. Ecol. Monogr 78:403–21 [Google Scholar]
  13. Buerger P, Schmidt GM, Wall M, Held C, Richter C. 2015. Temperature tolerance of the coral Porites lutea exposed to simulated large amplitude internal waves (LAIW). J. Exp. Mar. Biol. Ecol 471:232–39 [Google Scholar]
  14. Carter GS, Gregg MC, Lien R-C. 2005. Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf. Cont. Shelf Res 25:1499–520 [Google Scholar]
  15. Crimaldi JP. 2012. The role of structured stirring and mixing on gamete dispersal and aggregation in broadcast spawning. J. Exp. Biol 215:1031–39 [Google Scholar]
  16. Crimaldi JP, Browning HS. 2004. A proposed mechanism for turbulent enhancement of broadcast spawning efficiency. J. Mar. Syst 49:3–18 [Google Scholar]
  17. Crimaldi JP, Zimmer RK. 2014. The physics of broadcast spawning in benthic invertebrates. Annu. Rev. Mar. Sci 6:141–65 [Google Scholar]
  18. D'Alessandro E, Sponaugle S, Lee T. 2007. Patterns and processes of larval fish supply to the coral reefs of the upper Florida Keys. Mar. Ecol. Prog. Ser 331:85–100 [Google Scholar]
  19. Dunphy M, Lamb KG. 2014. Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans 119:523–36 [Google Scholar]
  20. Embling CB, Sharples J, Armstrong E, Palmer MR, Scott BE. 2013. Fish behaviour in response to tidal variability and internal waves over a shelf sea bank. Prog. Oceanogr 117:106–17 [Google Scholar]
  21. Ezer T, Heyman WD, Houser C, Kjerfve B. 2011. Modeling and observations of high-frequency flow variability and internal waves at a Caribbean reef spawning aggregation site. Ocean Dyn 61:581–98 [Google Scholar]
  22. Frieder CA, Gonzalez JP, Bockmon EE, Navarro MO, Levin LA. 2014. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Glob. Change Biol 20:754–64 [Google Scholar]
  23. Frieder CA, Nam SH, Martz TR, Levin LA. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9:3917–30 [Google Scholar]
  24. Garrett C, Munk W. 1979. Internal waves in the ocean. Annu. Rev. Fluid Mech 11:339–69 [Google Scholar]
  25. Greer AT, Cowen RK, Guigand CM, Hare JA, Tang D. 2014. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr 127:47–61 [Google Scholar]
  26. Haapala J. 1994. Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 38:507–21 [Google Scholar]
  27. Harrison PL, Babcock RC, Bull GD, Oliver JK, Wallace CC, Willis BL. 1984. Mass spawning in tropical reef corals. Science 223:1186–89 [Google Scholar]
  28. Helfrich KR, Melville WK. 2006. Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38:395–425 [Google Scholar]
  29. Heyman WD, Kjerfve B, Graham RT, Rhodes KL, Garbutt L. 2005. Spawning aggregations of Lutjanus cyanopterus (Cuvier) on the Belize Barrier Reef over a 6 year period. J. Fish Biol. 67:83–101 [Google Scholar]
  30. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA. et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLOS ONE 6:e28983 [Google Scholar]
  31. Holeton GF. 1980. Oxygen as an environmental factor of fishes. Environmental Physiology of Fishes MA Ali 7–32 New York: Springer [Google Scholar]
  32. Holligan PM, Pingree RD, Mardell GT. 1985. Oceanic solitons, nutrient pulses and phytoplankton growth. Nature 314:348–50 [Google Scholar]
  33. Holloway PE, Pelinovsky E, Talipova T, Barnes B. 1997. A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27:871–96 [Google Scholar]
  34. Jantzen C, Schmidt GM, Wild C, Roder C, Khokiattiwong S, Richter C. 2013. Benthic reef primary production in response to large amplitude internal waves at the Similan Islands (Andaman Sea, Thailand). PLOS ONE 8:e81834 [Google Scholar]
  35. Johnson DR, Weidemann A, Pegau WS. 2001. Internal tidal bores and bottom nepheloid layers. Cont. Shelf Res. 21:1473–84 [Google Scholar]
  36. Kaartvedt S, Klevjer TA, Aksnes DL. 2012. Internal wave-mediated shading causes frequent vertical migrations in fishes. Mar. Ecol. Prog. Ser. 452:1–10 [Google Scholar]
  37. Kingsford MJ, Choat JH. 1986. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91:161–71 [Google Scholar]
  38. Kroeker KJ, Kordas RL, Crim RN, Singh GG. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:1419–34 [Google Scholar]
  39. Kundu PK, Cohen IM. 2004. Fluid Mechanics San Diego, CA: Academic, 3rd ed..
  40. Ladah LB, Tapia FJ, Pineda J, López M. 2005. Spatially heterogeneous, synchronous settlement of Chthamalus spp. larvae in northern Baja California. Mar. Ecol. Prog. Ser. 302:177–85 [Google Scholar]
  41. Lamb KG. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46:231–54 [Google Scholar]
  42. Leary PR, Woodson CB, Squibb ME, Denny MW, Monismith SG, Micheli F. 2017. Internal tide pools prolong kelp forest hypoxic events. Limnol. Oceanogr. In press. https://doi.org/10.1002/lno.10716 [Crossref]
  43. Leichter JJ, Deane GB, Stokes MD. 2005. Spatial and temporal variability of internal wave forcing on a coral reef. J. Phys. Oceanogr. 35:1945–62 [Google Scholar]
  44. Leichter JJ, Shellenbarger G, Genovese SJ, Wing SR. 1998. Breaking internal waves on a Florida (USA) coral reef: a plankton pump at work? Mar. Ecol. Prog. Ser. 166:83–97 [Google Scholar]
  45. Leichter JJ, Wing SR, Miller SL, Denny MW. 1996. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41:1490–501 [Google Scholar]
  46. Lerczak JA, Hendershott MC, Winant CD. 2001. Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res. Oceans 106:19715–29 [Google Scholar]
  47. Lerczak JA, Winant CD, Hendershott MC. 2003. Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res. Oceans 108:3068 [Google Scholar]
  48. Lucas AJ, Dupont CL, Tai V, Largier JL, Palenik B, Franks PJ. 2011a. The green ribbon: multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnol. Oceanogr. 56:611–26 [Google Scholar]
  49. Lucas AJ, Franks PJ, Dupont CL. 2011b. Horizontal internal-tide fluxes support elevated phytoplankton productivity over the inner continental shelf. Limnol. Oceanogr. Fluids Environ. 1:56–74 [Google Scholar]
  50. MacKenzie BR. 2000. Turbulence, larval fish ecology and fisheries recruitment: a review of field studies. Oceanol. Acta 23:357–75 [Google Scholar]
  51. MacKenzie BR, Kiørboe T. 2000. Larval fish feeding and turbulence: a case for the downside. Limnol. Oceanogr. 45:1–10 [Google Scholar]
  52. MacKenzie BR, Leggett WC. 1991. Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide. Mar. Ecol. Prog. Ser. 73:149–60 [Google Scholar]
  53. McManus MA, Benoit-Bird KJ, Woodson CB. 2008. Behavior exceeds physical forcing in the diel horizontal migration of the midwater sound-scattering layer in Hawaiian waters. Mar. Ecol. Prog. Ser. 365:91–101 [Google Scholar]
  54. McPhee-Shaw EE, Siegel DA, Washburn L, Brzezinski MA, Jones JL. et al. 2007. Mechanisms for nutrient delivery to the inner shelf: observations from the Santa Barbara Channel. Limnol. Oceanogr. 52:1748–66 [Google Scholar]
  55. Monismith SG, Davis KA, Shellenbarger GG, Hench JL, Nidzieko NJ. et al. 2010. Flow effects on benthic grazing on phytoplankton by a Caribbean reef. Limnol. Oceanogr. 55:1881–92 [Google Scholar]
  56. Nash JD, Kelly SM, Shroyer EL, Moum JN, Duda TF. 2012a. The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr. 42:1981–2000 [Google Scholar]
  57. Nash JD, Moum JN. 2005. River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437:400–3 [Google Scholar]
  58. Nash JD, Shroyer EL, Kelly SM, Inall ME, Duda TF. et al. 2012b. Are any coastal internal tides predictable?. Oceanography 25:280–95 [Google Scholar]
  59. Oliver TA, Palumbi SR. 2011. Do fluctuating temperature environments elevate coral thermal tolerance?. Coral Reefs 30:429–40 [Google Scholar]
  60. Omand MM, Leichter JJ, Franks PJ, Guza RT, Lucas AJ, Feddersen F. 2011. Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore. Limnol. Oceanogr. 56:787–801 [Google Scholar]
  61. Paine RT. 1974. Intertidal community structure. Oecologia 15:93–120 [Google Scholar]
  62. Palardy JE, Rodrigues LJ, Grottoli AG. 2008. The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J. Exp. Mar. Biol. Ecol. 367:180–88 [Google Scholar]
  63. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. 2014. Mechanisms of reef coral resistance to future climate change. Science 344:895–98 [Google Scholar]
  64. Paris CB, Cowen RK, Claro R, Lindeman KC. 2005. Larval transport pathways from Cuban snapper (Lutjanidae) spawning aggregations based on biophysical modeling. Mar. Ecol. Prog. Ser. 296:93–106 [Google Scholar]
  65. Peregrine DH. 1976. Interaction of water waves and currents. Advances in Applied Mechanics 16 C-S Yih 9–117 New York: Academic [Google Scholar]
  66. Pineda J. 1991. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 253:548–49 [Google Scholar]
  67. Pineda J. 1994. Internal tidal bores in the nearshore: warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52:427–58 [Google Scholar]
  68. Pineda J. 1999. Circulation and larval distribution in internal tidal bore warm fronts. Limnol. Oceanogr. 44:1400–14 [Google Scholar]
  69. Pineda J, Starczak VR, Tarrant AM, Blythe JN, Davis KA. et al. 2013. Two spatial scales in a bleaching event: corals from the mildest and the most extreme thermal environments escape mortality. Limnol. Oceanogr. 58:1531–45 [Google Scholar]
  70. Pomar L, Morsilli M, Hallock P, Bádenas B. 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth Sci. Rev. 111:56–81 [Google Scholar]
  71. Raimondi PT. 1990. Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecol. Monogr. 60:283–309 [Google Scholar]
  72. Ray RD, Mitchum GT. 1996. Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett. 23:2101–4 [Google Scholar]
  73. Riisgaard HU. 1998. Filter feeding and plankton dynamics in a Danish fjord: a review of the importance of flow, mixing and density-driven circulation. J. Environ. Manag. 53:195–207 [Google Scholar]
  74. Roder C, Fillinger L, Jantzen C, Schmidt GM, Khokiattiwong S, Richter C. 2010. Trophic response of corals to large amplitude internal waves. Mar. Ecol. Prog. Ser. 412:113–28 [Google Scholar]
  75. Rothschild BJ, Osborn TR. 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res. 10:465–74 [Google Scholar]
  76. Samoilys MA. 1997. Periodicity of spawning aggregations of coral trout Plectropomus leopardus (Pisces: Serranidae) on the northern Great Barrier Reef. Mar. Ecol. Prog. Ser. 160:149–59 [Google Scholar]
  77. Shanks AL. 1983. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13:311–15 [Google Scholar]
  78. Shanks AL. 1988. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86:703–14 [Google Scholar]
  79. Sharples J, Moore CM, Hickman AE, Holligan PM, Tweddle JF. et al. 2009. Internal tidal mixing as a control on continental margin ecosystems. Geophys. Res. Lett. 36:L23603 [Google Scholar]
  80. Sharples J, Tweddle JF, Mattias Green JA, Palmer MR, Kim Y-N. et al. 2007. Spring-neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnol. Oceanogr. 52:1735–47 [Google Scholar]
  81. Shea RE, Broenkow WW. 1982. The role of internal tides in the nutrient enrichment of Monterey Bay, CA. Estuar. Coast. Shelf Sci. 15:57–66 [Google Scholar]
  82. Simmons HL, Hallberg RW, Arbic BK. 2004. Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II 51:3043–68 [Google Scholar]
  83. Smith JE, Smith CM, Vroom PS, Beach KL, Miller S. 2004. Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: possible influence of internal tides on nutrient status and physiology. Limnol. Oceanogr. 49:1923–36 [Google Scholar]
  84. Smith KA, Rocheleau G, Merrifield MA, Jaramillo S, Pawlak G. 2016. Temperature variability caused by internal tides in the coral reef ecosystem of Hanauma Bay, Hawai'i. Cont. Shelf Res. 116:1–12 [Google Scholar]
  85. Stastna M, Lamb KG. 2002. Large fully nonlinear internal solitary waves: the effect of background current. Phys. Fluids 14:2987–99 [Google Scholar]
  86. Stastna M, Walter R. 2014. Transcritical generation of nonlinear internal waves in the presence of background shear flow. Phys. Fluids 26:086601 [Google Scholar]
  87. Thompson RO, Golding TJ. 1981. Tidally induced “upwelling” by the Great Barrier Reef. J. Geophys. Res. Oceans 86:6517–21 [Google Scholar]
  88. Underwood AJ, Jernakoff P. 1984. The effects of tidal height, wave-exposure, seasonality and rock-pools on grazing and the distribution of intertidal macroalgae in New South Wales. J. Exp. Mar. Biol. Ecol. 75:71–96 [Google Scholar]
  89. Wall M, Putchim L, Schmidt GM, Jantzen C, Khokiattiwong S, Richter C. 2015. Large-amplitude internal waves benefit corals during thermal stress. Proc. R. Soc. Lond. B 282:20140650 [Google Scholar]
  90. Walter RK, Stastna M, Woodson CB, Monismith SG. 2016. Observations of nonlinear internal waves at a persistent coastal upwelling front. Cont. Shelf Res. 117:100–17 [Google Scholar]
  91. Walter RK, Woodson CB, Arthur RS, Fringer OB, Monismith SG. 2012. Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. Oceans 117:C07017 [Google Scholar]
  92. Walter RK, Woodson CB, Leary PR, Monismith SG. 2014. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Oceans 119:3517–34 [Google Scholar]
  93. Wolanski E, Delesalle B. 1995. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15:357–68 [Google Scholar]
  94. Woodson CB, Barth JA, Cheriton OM, McManus MA, Ryan JP. et al. 2011. Observations of internal wave packets propagating along-shelf in northern Monterey Bay. Geophys. Res. Lett. 38:L01605 [Google Scholar]
  95. Woodson CB, Litvin SY. 2015. Ocean fronts drive marine fishery production and biogeochemical cycling. PNAS 112:1710–15 [Google Scholar]
  96. Woodson CB, McManus MA, Tyburczy JA, Barth JA, Washburn L. et al. 2012. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57:582–96 [Google Scholar]
  97. Woodson CB, Webster DR, Weissburg MJ, Yen J. 2007. The prevalence and implications of copepod behavioral responses to oceanographic gradients and biological patchiness. Integr. Comp. Biol. 47:831–46 [Google Scholar]
  98. Zhao Z, Alford MH. 2009. New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean. J. Phys. Oceanogr. 39:1669–84 [Google Scholar]
  99. Zimmerman RC, Kremer JN. 1984. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42:591–604 [Google Scholar]
  100. Zimmerman RC, Kremer JN. 1986. In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera: response to temporal changes in ambient nutrient availability. Mar. Ecol. Prog. Ser. 27:277–85 [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063619
Loading
/content/journals/10.1146/annurev-marine-121916-063619
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error