1932

Abstract

Compound-specific isotope analysis encompasses a variety of methods for examining the naturally occurring isotope ratios of individual organic molecules. In marine environments, these methods have revealed heterogeneous sources and alteration processes that underlie the more commonly measured isotope ratios of bulk materials, as well as revealing signatures of marine metabolisms that may otherwise be impossible to isolate. Recently, compound-specific isotopic techniques have improved the reconstruction of metazoan diets and revealed a new potential of metazoan biomass as an archive of paleoecological information. Despite six decades of practice and a diversity of applications, the use of compound-specific isotopic techniques remains uncommon in marine studies. This review examines broad theoretical motivations behind compound-specific isotopic approaches, some applications to studies of marine carbon cycling and trophic relationships, and methodological limitations. In coming years, improvements in analytical efficiency and molecular or intramolecular specificity may transform compound-specific isotope analysis into a tool that can be applied more broadly and help to build global oceanographic data sets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-121916-063634
2019-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/marine/11/1/annurev-marine-121916-063634.html?itemId=/content/journals/10.1146/annurev-marine-121916-063634&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson PH, Hoering T 1961. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. PNAS 47:623–32Widely considered to be the first study to employ CSIA.
    [Google Scholar]
  2. Abraham W-R, Hesse C, Pelz O 1998. Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl. Environ. Microbiol. 64:4202–9
    [Google Scholar]
  3. Altabet MA, Deuser WG, Honjo S, Stienen C 1991. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature 354:136–39
    [Google Scholar]
  4. Altabet MA, Francois R 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8:103–16
    [Google Scholar]
  5. Arthur KE, Kelez S, Larsen T, Choy CA, Popp BN 2014. Tracing the biosynthetic source of essential amino acids in marine turtles using δ13C fingerprints. Ecology 95:1285–93
    [Google Scholar]
  6. Baczynski AA, Polissar PJ, Juchelka D, Schwieters J, Hilkert A et al. 2018. Picomolar‐scale compound‐specific isotope analyses. Rapid Commun. Mass Spectrom. 32:730–38
    [Google Scholar]
  7. Batista FC, Ravelo AC, Crusius J, Casso MA, McCarthy MD 2014. Compound specific amino acid δ15N in marine sediments: a new approach for studies of the marine nitrogen cycle. Geochim. Cosmochim. Acta 142:553–69
    [Google Scholar]
  8. Belt ST, Massé G, Vare LL, Rowland SJ, Poulin M et al. 2008. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps. Mar. Chem. 112:158–67
    [Google Scholar]
  9. Benner R, Fogel ML, Sprague EK, Hodson RE 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708–10
    [Google Scholar]
  10. Bidigare RR, Fluegge A, Freeman KH, Hanson KL, Hayes JM et al. 1997. Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Glob. Biogeochem. Cycles 11:279–92
    [Google Scholar]
  11. Bidigare RR, Kennicutt MC, Keeney-Kennicutt WL, Macko SA 1991. Isolation and purification of chlorophylls a and b for the determination of stable carbon and nitrogen isotope compositions. Anal. Chem. 63:130–33
    [Google Scholar]
  12. Bour AL, Walker BD, Broek TA, McCarthy MD 2016. Radiocarbon analysis of individual amino acids: carbon blank quantification for a small-sample high-pressure liquid chromatography purification method. Anal. Chem. 88:3521–28
    [Google Scholar]
  13. Brand WA, Dobberstein P 1996. Isotope-ratio-monitoring liquid chromatography mass spectrometry (IRM-LCMS): first results from a moving wire interface system. Isotopes Environ. Health Stud. 32:275–83
    [Google Scholar]
  14. Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H et al. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7:740–50
    [Google Scholar]
  15. Close HG, Shah SR, Ingalls AE, Diefendorf AF, Brodie EL et al. 2013. Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. PNAS 110:12565–70
    [Google Scholar]
  16. Close HG, Wakeham SG, Pearson A 2014. Lipid and 13C signatures of submicron and suspended particulate organic matter in the Eastern Tropical North Pacific: implications for the contribution of Bacteria. Deep-Sea Res. I 85:15–34
    [Google Scholar]
  17. Çoban-Yıldız Y, Altabet MA, Yılmaz A, Tuğrul S 2006. Carbon and nitrogen isotopic ratios of suspended particulate organic matter (SPOM) in the Black Sea water column. Deep-Sea Res. II 53:1875–92
    [Google Scholar]
  18. Collister JW, Lichtfouse E, Hieshima G, Hayes JM 1994. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Org. Geochem. 21:645–59
    [Google Scholar]
  19. Degens E, Behrendt M, Gotthardt B, Reppmann E 1968. Metabolic fractionation of carbon isotopes in marine plankton—II. Data on samples collected off the coasts of Peru and Ecuador. Deep-Sea Res. Oceanogr. Abstr. 15:11–20
    [Google Scholar]
  20. Drenzek NJ, Montluçon DB, Yunker MB, Macdonald RW, Eglinton TI 2007. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements. Mar. Chem. 103:146–62
    [Google Scholar]
  21. Druffel ER, Zhang D, Xu X, Ziolkowski LA, Southon JR et al. 2010. Compound-specific radiocarbon analyses of phospholipid fatty acids and n-alkanes in ocean sediments. Radiocarbon 52:1215–23
    [Google Scholar]
  22. Eglinton TI, Aluwihare LI, Bauer JE, Druffel ER, McNichol AP 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68:904–12Introduced the application of natural-abundance radiocarbon measurements to CSIA.
    [Google Scholar]
  23. Eglinton TI, Benitez-Nelson BC, Pearson A, McNichol AP, Bauer JE, Druffel ER 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277:796–99
    [Google Scholar]
  24. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A et al. 2012. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403:2471–91
    [Google Scholar]
  25. Elvert M, Suess E, Whiticar MJ 1999. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300
    [Google Scholar]
  26. Estep MF, Hoering TC 1980. Biogeochemistry of the stable hydrogen isotopes. Geochim. Cosmochim. Acta 44:1197–206
    [Google Scholar]
  27. Fassbender AJ, Palevsky HI, Martz TR, Ingalls AE, Gledhill M et al. 2017. Perspectives on chemical oceanography in the 21st century: participants of the COME ABOARD meeting examine aspects of the field in the context of 40 years of DISCO. Mar. Chem. 196:181–90
    [Google Scholar]
  28. Fawcett SE, Lomas MW, Casey JR, Ward BB, Sigman DM 2011. Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat. Geosci. 4:717–22
    [Google Scholar]
  29. Federherr E, Willach S, Roos N, Lange L, Molt K, Schmidt T 2016. A novel high-temperature combustion interface for compound-specific stable isotope analysis of carbon and nitrogen via high-performance liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 30:944–52
    [Google Scholar]
  30. Feng X, Vonk JE, Van Dongen BE, Gustafsson Ö, Semiletov IP et al. 2013. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. PNAS 110:14168–73
    [Google Scholar]
  31. Fogel ML, Griffin PL, Newsome SD 2016. Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli. PNAS 113:E4648–53
    [Google Scholar]
  32. Freeman KH, Hayes JM, Trendel J-M, Albrecht P 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–56First CSIA study applied to diverse sedimentary compounds, using the new technique of GC-IRMS.
    [Google Scholar]
  33. Freeman KH, Wakeham SG, Hayes JM 1994. Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins. Org. Geochem. 21:629–44
    [Google Scholar]
  34. Fry B 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33:1182–90
    [Google Scholar]
  35. Fry B, Garritt R, Tholke K, Neill C, Michener RH et al. 1996. Cryoflow: cryofocusing nanomole amounts of CO2, N2, and SO2 from an elemental analyzer for stable isotopic analysis. Rapid Commun. Mass Spectrom. 10:953–58
    [Google Scholar]
  36. Fulton JM, Arthur MA, Freeman KH 2012. Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene. Glob. Biogeochem. Cycles 26:GB2030
    [Google Scholar]
  37. Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M 2009. 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ. Microbiol. 11:326–37
    [Google Scholar]
  38. Gloeckler K, Choy CA, Hannides CCS, Close HG, Goetze E et al. 2018. Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnol. Oceanogr. 63:1168–80
    [Google Scholar]
  39. Godin JP, McCullagh JS 2011. Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid Commun. Mass Spectrom. 25:3019–28
    [Google Scholar]
  40. Goericke R, Fry B 1994. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Glob. Biogeochem. Cycles 8:85–90
    [Google Scholar]
  41. Gong C, Hollander DJ 1997. Differential contribution of bacteria to sedimentary organic matter in oxic and anoxic environments, Santa Monica Basin, California. Org. Geochem. 26:545–63
    [Google Scholar]
  42. Goñi MA, Ruttenberg KC, Eglinton TI 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389:275–78
    [Google Scholar]
  43. Gutierrez-Rodriguez A, Décima M, Popp BN, Landry MR 2014. Isotopic invisibility of protozoan trophic steps in marine food webs. Limnol. Oceanogr. 59:1590–98
    [Google Scholar]
  44. Hannides C, Popp BN, Choy CA, Drazen JC 2013. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58:1931–46
    [Google Scholar]
  45. Hansman RL, Sessions AL 2016. Measuring the in situ carbon isotopic composition of distinct marine plankton populations sorted by flow cytometry. Limnol. Oceanogr. Methods 14:87–99
    [Google Scholar]
  46. Harvey HR, Macko SA 1997. Catalysts or contributors? Tracking bacterial mediation of early diagenesis in the marine water column. Org. Geochem. 26:531–44
    [Google Scholar]
  47. Harvey HR, Tuttle JH, Bell JT 1995. Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59:3367–77
    [Google Scholar]
  48. Hayes JM 1983. Practice and principles of isotopic measurements in organic geochemistry. Organic Geochemistry of Contemporaneous and Ancient Sediments WG Meinschein 5–131 Tulsa, OK: Soc. Econ. Paleontol. Mineral.The seminal reference for correct treatment of CSIA data; a 2002 revised and expanded version is available online.
    [Google Scholar]
  49. Hayes JM 2001. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev. Mineral. Geochem. 43:225–77The seminal reference for understanding how biosynthetic routing leads to isotopic fractionation among compound classes.
    [Google Scholar]
  50. Hayes JM, Freeman KH, Popp BN, Hoham CH 1990. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Org. Geochem. 16:1115–28Introduced the most widely used contemporary method for CSIA: GC-IRMS.
    [Google Scholar]
  51. Hedges JI 2002. Why dissolved organics matter. Biogeochemistry of Marine Dissolved Organic Matter DA Hansell, CA Carlson 1–33 London: Academic
    [Google Scholar]
  52. Hener U, Brand W, Hilkert A, Juchelka D, Mosandl A, Podebrad F 1998. Simultaneous on-line analysis of 18O/16O and 13C/12C ratios of organic compounds using GC-pyrolysis-IRMS. Z. Lebensmitt. Forsch. A 206:230–32
    [Google Scholar]
  53. Higgins MB, Robinson RS, Carter SJ, Pearson A 2010. Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the eastern Mediterranean Sea. Earth Planet. Sci. Lett. 290:102–7
    [Google Scholar]
  54. Higgins MB, Wolfe-Simon F, Robinson RS, Qin Y, Saito MA, Pearson A 2011. Paleoenvironmental implications of taxonomic variation among δ15N values of chloropigments. Geochim. Cosmochim. Acta 75:7351–63
    [Google Scholar]
  55. Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM 2000. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org. Geochem. 31:1685–701
    [Google Scholar]
  56. Hoefs MJL, Schouten S, De Leeuw JW, King LL, Wakeham SG, Sinninghe Damsté JS 1997. Ether lipids of planktonic archaea in the marine water column. Appl. Environ. Microbiol. 63:3090–95
    [Google Scholar]
  57. Hoppe H-G, Arnosti C, Herndl G 2002. Ecological significance of bacterial enzymes in the marine environment. Enzymes in the Environment: Activity, Ecology, and Applications RG Burns, RP Dick 73–107 New York: Dekker
    [Google Scholar]
  58. Hwang J, Druffel ER 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean. Science 299:881–84
    [Google Scholar]
  59. Ingalls AE, Pearson A 2005. Ten years of compound-specific radiocarbon analysis. Oceanography 18:318–31
    [Google Scholar]
  60. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM et al. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. PNAS 103:6442–47
    [Google Scholar]
  61. Jahnke LL, Summons RE, Dowling LM, Zahiralis KD 1995. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis. Appl. Environ. Microbiol. 61:576–82
    [Google Scholar]
  62. Jasper JP, Hayes JM 1990. A carbon isotope record of CO2 levels during the late Quaternary. Nature 347:462–64
    [Google Scholar]
  63. Jeffrey AW, Pflaum RC, Brooks JM, Sackett WM 1983. Vertical trends in particulate organic carbon 13C:12C ratios in the upper water column. Deep-Sea Res. A 30:971–83
    [Google Scholar]
  64. Jones AA, Sessions AL, Campbell BJ, Li C, Valentine DL 2008. D/H ratios of fatty acids from marine particulate organic matter in the California Borderland Basins. Org. Geochem. 39:485–500
    [Google Scholar]
  65. Kennicutt M, Bidigare R, Macko S, Keeney-Kennicutt W 1992. The stable isotopic composition of photosynthetic pigments and related biochemicals. Chem. Geol. Isotope Geosci. 101:235–45
    [Google Scholar]
  66. Kump LR, Arthur MA 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161:181–98
    [Google Scholar]
  67. LaRowe DE, Van Cappellen P 2011. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75:2030–42
    [Google Scholar]
  68. Larsen T, Bach LT, Salvatteci R, Wang Y, Andersen N et al. 2015. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis. Biogeosciences 12:4979–92
    [Google Scholar]
  69. Larsen T, Ventura M, Andersen N, O'Brien DM, Piatkowski U, McCarthy MD 2013. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLOS ONE 8:e73441
    [Google Scholar]
  70. Laws EA, Popp BN, Cassar N, Tanimoto J 2002. 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct. Plant Biol. 29:323–33
    [Google Scholar]
  71. Li C, Sessions AL, Kinnaman FS, Valentine DL 2009. Hydrogen-isotopic variability in lipids from Santa Barbara Basin sediments. Geochim. Cosmochim. Acta 73:4803–23
    [Google Scholar]
  72. Lin YS, Lipp JS, Yoshinaga MY, Lin SH, Elvert M, Hinrichs KU 2010. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids. Rapid Commun. Mass Spectrom. 24:2817–26
    [Google Scholar]
  73. Macko SA, Engel MH, Qian Y 1994. Early diagenesis and organic matter preservation—a molecular stable carbon isotope perspective. Chem. Geol. 114:365–79
    [Google Scholar]
  74. Macko SA, Estep ML 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org. Geochem. 6:787–90
    [Google Scholar]
  75. Macko SA, Fogel ML, Hare PE, Hoering T 1987. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol. Isotope Geosci. 65:79–92
    [Google Scholar]
  76. Marchal O, Lam PJ 2012. What can paired measurements of Th isotope activity and particle concentration tell us about particle cycling in the ocean. Geochim. Cosmochim. Acta 90:126–48
    [Google Scholar]
  77. Mariotti A, Germon J, Hubert P, Kaiser P, Letolle R et al. 1981. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62:413–30
    [Google Scholar]
  78. McCarthy MD, Benner R, Lee C, Fogel ML 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71:4727–44
    [Google Scholar]
  79. McCarthy MD, Benner R, Lee C, Hedges JI, Fogel ML 2004. Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: an unaltered photoautotrophic source for dissolved organic nitrogen in the ocean. Mar. Chem. 92:123–34
    [Google Scholar]
  80. McCarthy MD, Lehman J, Kudela R 2013. Compound-specific amino acid δ15N patterns in marine algae: tracer potential for cyanobacterial versus eukaryotic organic nitrogen sources in the ocean. Geochim. Cosmochim. Acta 103:104–20
    [Google Scholar]
  81. McClelland JW, Montoya JP 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83:2173–80
    [Google Scholar]
  82. McIntyre CP, Sylva SP, Roberts ML 2009. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry. Anal. Chem. 81:6422–28
    [Google Scholar]
  83. McMahon KW, McCarthy MD, Sherwood OA, Larsen T, Guilderson TP 2015. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean. Science 350:1530–33
    [Google Scholar]
  84. Meador T, Aluwihare L, Mahaffey C 2007. Isotopic heterogeneity and cycling of organic nitrogen in the oligotrophic ocean. Limnol. Oceanogr. 52:934–47
    [Google Scholar]
  85. Meier-Augenstein W 2004. GC and IRMS technology for 13C and 15N analysis on organic compounds and related gases. Handbook of Stable Isotope Analytical Techniques 1 PA de Groot 153–76 Amsterdam: Elsevier
    [Google Scholar]
  86. Meier-Augenstein W 2011. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis New York: Wiley
  87. Minagawa M, Wada E 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48:1135–40
    [Google Scholar]
  88. Mohr W, Tang T, Sattin SR, Bovee RJ, Pearson A 2014. Protein stable isotope fingerprinting: multidimensional protein chromatography coupled to stable isotope-ratio mass spectrometry. Anal. Chem. 86:8514–20
    [Google Scholar]
  89. Monson KD, Hayes JM 1982. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim. Cosmochim. Acta 46:139–49
    [Google Scholar]
  90. Montoya JP 2008. Natural abundance of 15N in marine planktonic ecosystems. Stable Isotopes in Ecology and Environmental Science K Lajtha, R Michener 176–201 London: Blackwell. , 2nd ed..
    [Google Scholar]
  91. Newsome SD, Clementz MT, Koch PL 2010. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26:509–72
    [Google Scholar]
  92. O'Leary MH 1988. Carbon isotopes in photosynthesis. Bioscience 38:328–36
    [Google Scholar]
  93. O'Leary T, Trull T, Griffiths F, Tilbrook B, Revill A 2001. Euphotic zone variations in bulk and compound-specific δ13C of suspended organic matter in the Subantarctic Ocean, south of Australia. J. Geophys. Res. Oceans 106:31669–84
    [Google Scholar]
  94. Ogawa NO, Nagata T, Kitazato H, Ohkouchi N 2010. Ultra sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. Earth, Life, and Isotopes N Ohkouchi, I Tayasu, K Koba 339–53 Kyoto, Jpn.: Kyoto Univ. Press
    [Google Scholar]
  95. Ohkouchi N, Chikaraishi Y, Close HG, Fry B, Larsen T et al. 2017. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113:150–74
    [Google Scholar]
  96. Ohkouchi N, Eglinton TI, Keigwin LD, Hayes JM 2002. Spatial and temporal offsets between proxy records in a sediment drift. Science 298:1224–27
    [Google Scholar]
  97. Pagani M, Freeman KH, Ohkouchi N, Caldeira K 2002. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: a test of the alkenone-CO2 proxy. Paleoceanography 17:21–112
    [Google Scholar]
  98. Pancost RD, Boot CS 2004. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Mar. Chem. 92:239–61
    [Google Scholar]
  99. Pancost RD, Freeman KH, Wakeham SG, Robertson CY 1997. Controls on carbon isotope fractionation by diatoms in the Peru upwelling region. Geochim. Cosmochim. Acta 61:4983–91
    [Google Scholar]
  100. Pancost RD, Sinninghe Damsté JS 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem. Geol. 195:29–58
    [Google Scholar]
  101. Pearson A 2010. Pathways of carbon assimilation and their impact on organic matter values δ13C. Handbook of Hydrocarbon and Lipid Microbiology KN Timmis 143–56 Berlin: Springer
    [Google Scholar]
  102. Pearson A, Eglinton TI 2000. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific Δ14C and δ13C data. Org. Geochem. 31:1103–16
    [Google Scholar]
  103. Pearson A, Hurley SJ, Walter SRS, Kusch S, Lichtin S, Zhang YG 2016. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments. Geochim. Cosmochim. Acta 181:18–35
    [Google Scholar]
  104. Pearson A, McNichol AP, Benitez-Nelson BC, Hayes JM, Eglinton TI 2001. Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ14C analysis. Geochim. Cosmochim. Acta 65:3123–37
    [Google Scholar]
  105. Pel R, Hoogveld H, Floris V 2003. Using the hidden isotopic heterogeneity in phyto- and zooplankton to unmask disparity in trophic carbon transfer. Limnol. Oceanogr. 48:2200–7
    [Google Scholar]
  106. Petsch ST, Eglinton TI, Edwards KJ 2001. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292:1127–31
    [Google Scholar]
  107. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW et al. 2014. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92:823–35
    [Google Scholar]
  108. Podlaha OG, Sessions AL, Freeman K 2017. John M. Hayes 1940–2017. Father of isotopes in modern and ancient biogeochemical processes, biosynthetic carbon and hydrogen isotope fractionation and compound specific isotope analytical techniques. Org. Geochem. 108:113–16
    [Google Scholar]
  109. Polissar PJ, D'Andrea WJ 2014. Uncertainty in paleohydrologic reconstructions from molecular δD values. Geochim. Cosmochim. Acta 129:146–56
    [Google Scholar]
  110. Polissar PJ, Fulton JM, Junium CK, Turich CC, Freeman KH 2008. Measurement of 13C and 15N isotopic composition on nanomolar quantities of C and N. Anal. Chem. 81:755–63
    [Google Scholar]
  111. Popp BN, Graham BS, Olson RJ, Hannides CC, Lott MJ et al. 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Terr. Ecol. 1:173–90
    [Google Scholar]
  112. Popp BN, Trull T, Kenig F, Wakeham SG, Rust TM et al. 1999. Controls on the carbon isotopic composition of Southern Ocean phytoplankton. Glob. Biogeochem. Cycles 13:827–43
    [Google Scholar]
  113. Raven MR, Adkins JF, Werne JP, Lyons TW, Sessions AL 2015. Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org. Geochem. 80:53–59
    [Google Scholar]
  114. Repeta DJ, Aluwihare LI 2006. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: implications for organic carbon cycling. Limnol. Oceanogr. 51:1045–53
    [Google Scholar]
  115. Roberts ML, von Reden KF, Burton JR, McIntyre CP, Beaupre SR 2013. A gas-accepting ion source for accelerator mass spectrometry: progress and applications. Nucl. Instrum. Methods Phys. Res. B 294:296–99
    [Google Scholar]
  116. Sachs JP, Repeta DJ 2000. The purification of chlorins from marine particles and sediments for nitrogen and carbon isotopic analysis. Org. Geochem. 31:317–29
    [Google Scholar]
  117. Sacks GL, Zhang Y, Brenna JT 2007. Fast gas chromatography combustion isotope ratio mass spectrometry. Anal. Chem. 79:6348–58
    [Google Scholar]
  118. Savidge WB, Blair NE 2004. Patterns of intramolecular carbon isotopic heterogeneity within amino acids of autotrophs and heterotrophs. Oecologia 139:178–89
    [Google Scholar]
  119. Schouten S, Breteler WCK, Blokker P, Schogt N, Rijpstra WIC et al. 1998. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim. Cosmochim. Acta 62:1397–406
    [Google Scholar]
  120. Schouten S, Ossebaar J, Schreiber K, Kienhuis M, Langer G et al. 2006. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3:113–19
    [Google Scholar]
  121. Schouten S, Strous M, Kuypers MM, Rijpstra WIC, Baas M et al. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70:3785–88
    [Google Scholar]
  122. Schubotz F, Lipp JS, Elvert M, Hinrichs K-U 2011. Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano. Geochim. Cosmochim. Acta 75:4399–415
    [Google Scholar]
  123. Scott JH, O'Brien DM, Emerson D, Sun H, McDonald GD et al. 2006. An examination of the carbon isotope effects associated with amino acid biosynthesis. Astrobiology 6:867–80
    [Google Scholar]
  124. Sessions AL 2006. Isotope-ratio detection for gas chromatography. J. Sep. Sci. 29:1946–61
    [Google Scholar]
  125. Sessions AL, Sylva SP, Hayes JM 2005. Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatile organic carbon. Anal. Chem. 77:6519–27
    [Google Scholar]
  126. Shah SR, Griffith DR, Galy V, McNichol AP, Eglinton TI 2013. Prominent bacterial heterotrophy and sources of 13C-depleted fatty acids to the interior Canada Basin. Biogeosciences 10:7065–80
    [Google Scholar]
  127. Shah SR, Mollenhauer G, Ohkouchi N, Eglinton TI, Pearson A 2008. Origins of archaeal tetraether lipids in sediments: insights from radiocarbon analysis. Geochim. Cosmochim. Acta 72:4577–94
    [Google Scholar]
  128. Sigman DM, Karsh KL, Casciotti KL 2009. Nitrogen isotopes in the ocean. Encyclopedia of Ocean Sciences JH Steele, KK Turekian, SA Thorpe 40–54 London: Academic. , 2nd ed..
    [Google Scholar]
  129. Silfer J, Engel M, Macko S 1992. Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem. Geol. Isotope Geosci. 101:211–21
    [Google Scholar]
  130. Sinninghe Damsté JS, Wakeham SG, Kohnen ME, Hayes JM, de Leeuw JW 1993. A 6,000–year sedimentary molecular record of chemocline excursions in the Black Sea. Nature 362:827–29
    [Google Scholar]
  131. Slater GF, White HK, Eglinton TI, Reddy CM 2005. Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environ. Sci. Technol. 39:2552–58
    [Google Scholar]
  132. Sun M-Y, Wakeham SG 1994. Molecular evidence for degradation and preservation of organic matter in the anoxic Black Sea Basin. Geochim. Cosmochim. Acta 58:3395–406
    [Google Scholar]
  133. Sun M-Y, Zou L, Dai J, Ding H, Culp RA, Scranton MI 2004. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters. Org. Geochem. 35:895–908
    [Google Scholar]
  134. Svensson E, Schouten S, Stam A, Middelburg JJ, Sinninghe Damsté JS 2015. Compound‐specific stable isotope analysis of nitrogen-containing intact polar lipids. Rapid Commun. Mass Spectrom. 29:2263–71
    [Google Scholar]
  135. Taipale SJ, Peltomaa E, Hiltunen M, Jones RI, Hahn MW et al. 2015. Inferring phytoplankton, terrestrial plant and bacteria bulk δ13C values from compound specific analyses of lipids and fatty acids. PLOS ONE 10:e0133974
    [Google Scholar]
  136. Takano Y, Chikaraishi Y, Ogawa NO, Kitazato H, Ohkouchi N 2009. Compound-specific nitrogen isotope analysis of d-alanine, l-alanine, and valine: application of diastereomer separation to δ15N and microbial peptidoglycan studies. Anal. Chem. 81:394–99
    [Google Scholar]
  137. Tang T, Mohr W, Sattin S, Rogers D, Girguis P, Pearson A 2017. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180T grown photoautotrophically and photoheterotrophically. Geobiology 15:324–39
    [Google Scholar]
  138. Teece MA, Fogel ML 2004. Preparation of ecological and biochemical samples for isotope analysis. Handbook of Stable Isotope Analytical Techniques 1 PA de Groot 177–202 Amsterdam: Elsevier
    [Google Scholar]
  139. Teece MA, Fogel ML 2007. Stable carbon isotope biogeochemistry of monosaccharides in aquatic organisms and terrestrial plants. Org. Geochem. 38:458–73
    [Google Scholar]
  140. Teece MA, Fogel ML, Dollhopf ME, Nealson KH 1999. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem. 30:1571–79
    [Google Scholar]
  141. Tobias HJ, Sacks GL, Zhang Y, Brenna JT 2008. Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry. Anal. Chem. 80:8613–21
    [Google Scholar]
  142. Tolosa I, Miquel J-C, Gasser B, Raimbault P, Goyet C, Claustre H 2008. Distribution of lipid biomarkers and carbon isotope fractionation in contrasting trophic environments of the South East Pacific. Biogeosciences 5:949–68
    [Google Scholar]
  143. van Dongen BE, Schouten S, Sinninghe Damsté JS 2002. Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants. Mar. Ecol. Prog. Ser. 232:83–92
    [Google Scholar]
  144. Wakeham SG, Lewis CM, Hopmans EC, Schouten S, Sinninghe Damsté JS 2003. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim. Cosmochim. Acta 67:1359–74
    [Google Scholar]
  145. Wakeham SG, McNichol AP 2014. Transfer of organic carbon through marine water columns to sediments–insights from stable and radiocarbon isotopes of lipid biomarkers. Biogeosciences 11:6895–914
    [Google Scholar]
  146. Wakeham SG, McNichol AP, Kostka JE, Pease TK 2006. Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments. Geochim. Cosmochim. Acta 70:1761–71
    [Google Scholar]
  147. Wakeham SG, Turich C, Schubotz F, Podlaska A, Li XN et al. 2012. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep-Sea Res. I 63:133–56
    [Google Scholar]
  148. Wang W-L, Lee C, Cochran JK, Primeau FW, Armstrong RA 2017. A novel statistical analysis of chloropigment fluxes to constrain particle exchange and organic matter remineralization rate constants in the Mediterranean Sea. Mar. Chem. 192:49–58
    [Google Scholar]
  149. Wang X-C, Druffel ER, Griffin S, Lee C, Kashgarian M 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean. Geochim. Cosmochim. Acta 62:1365–78
    [Google Scholar]
  150. Werne JP, Lyons TW, Hollander DJ, Schouten S, Hopmans EC, Sinninghe Damsté JS 2008. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 72:3489–502
    [Google Scholar]
  151. Wilkes EB, Lee RB, McClelland HL, Rickaby RE, Pearson A 2018. Carbon isotope ratios of coccolith-associated polysaccharides of Emiliania huxleyi as a function of growth rate and CO2 concentration. Org. Geochem. 119:1–10
    [Google Scholar]
  152. Yamaguchi YT, Chikaraishi Y, Takano Y, Ogawa NO, Imachi H et al. 2017. Fractionation of nitrogen isotopes during amino acid metabolism in heterotrophic and chemolithoautotrophic microbes across Eukarya, Bacteria, and Archaea: effects of nitrogen sources and metabolic pathways. Org. Geochem. 111:101–12
    [Google Scholar]
  153. Yamaguchi YT, McCarthy MD 2018. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids. Geochim. Cosmochim. Acta 220:329–47
    [Google Scholar]
  154. Zeebe RE, Wolf-Gladrow DA 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: ElsevierThe seminal reference for inorganic carbon isotope systematics in seawater.
  155. Zhang L, Altabet MA 2008. Amino-group-specific natural abundance nitrogen isotope ratio analysis in amino acids. Rapid Commun. Mass Spectrom. 22:559–66
    [Google Scholar]
  156. Zhang X, Gillespie AL, Sessions AL 2009. Large D/H variations in bacterial lipids reflect central metabolic pathways. PNAS 106:12580–86
    [Google Scholar]
/content/journals/10.1146/annurev-marine-121916-063634
Loading
/content/journals/10.1146/annurev-marine-121916-063634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error