1932

Abstract

The search for new ultraincompressible, superhard materials has been performed largely through trial and error. Despite the difficulties in synthesizing such materials, interest in this field has blossomed with recent experimental and theoretical results. Such progress has led to the development of superhard metal borides, ultraincompressible nitrides, and strong carbides. Our previous parameters of high electron density and high covalent bond density had served us well in synthesizing ultraincompressible, superhard metals, but after a decade of research, a more detailed understanding is needed. By studying the origin of strength from previously discovered incompressible, hard materials, we hope to gain new insight into this rapidly growing field. In particular, we propose a focus on bonding and structure to understand why some materials are ultraincompressible and superhard.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070115-032148
2016-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/matsci/46/1/annurev-matsci-070115-032148.html?itemId=/content/journals/10.1146/annurev-matsci-070115-032148&mimeType=html&fmt=ahah

Literature Cited

  1. Theophrastus. 1.  1956. Theophrastus on Stones: Introduction, Greek Text, English Translation, and Commentary Columbus, OH: Ohio State Univ.
  2. Smith R, Sandly G. 2.  1922. An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness. Proc. Inst. Mech. Eng. 102:623–41 [Google Scholar]
  3. Desgreniers S, Lagarec K. 3.  1999. High-density ZrO2 and HfO2: crystalline structures and equations of state. Phys. Rev. B 59:8467–72 [Google Scholar]
  4. Wray P.4.  2012. Other materials stories that may be of interest. Ceramic Tech Today Dec. 4. http://ceramics.org/ceramic-tech-today/biomaterials/other-materials-stories-that-may-be-of-interest-46
  5. Cook MW, Bossom PK. 5.  2000. Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. Int. J. Refract. Metals Hard Mater. 18:147–52 [Google Scholar]
  6. Faure C, Hänni W, Schmutz CJ, Gervanoni M. 6.  1999. Diamond-coated tools. Diam. Relat. Mater. 8:830–33 [Google Scholar]
  7. Komanduri R, Shaw MC. 7.  1975. Wear of synthetic diamond when grinding ferrous metals. Nature 255:211–13 [Google Scholar]
  8. Abukhshim NA, Mativenga PT, Sheikh MA. 8.  2006. Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int. J. Mach. Tools Manuf. 46:782–800 [Google Scholar]
  9. Brookes KA.9.  1995. Half a century of hardmetals. Metal Powder Rep. 50:22–28 [Google Scholar]
  10. Haines J, Leger JM, Bocquillon G. 10.  2001. Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31:1–23 [Google Scholar]
  11. Gilman JJ, Cumberland RW, Kaner RB. 11.  2006. Design of hard crystals. Int. J. Refract. Metals Hard Mater. 24:1–5 [Google Scholar]
  12. Kaner RB, Gilman JJ, Tolbert SH. 12.  2005. Designing superhard materials. Science 308:1268–69 [Google Scholar]
  13. Levine JB, Tolbert SH, Kaner RB. 13.  2009. Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19:3519–33 [Google Scholar]
  14. Mohammadi R, Kaner RB. 14.  2012. Superhard materials. Encyclopedia of Inorganic and Bioinorganic Chemistry New York: Wiley [Google Scholar]
  15. Knoop F, Peters CG, Emerson WB. 15.  1939. A sensitive pyramidal-diamond tool for indentation measurements. J. Res. Natl. Bur. Stand. 23:39–61 [Google Scholar]
  16. Schuh CA.16.  2006. Nanoindentation studies of materials. Mater. Today 9:32–40 [Google Scholar]
  17. Murnaghan F.17.  1944. The compressibility of media under extreme pressures. PNAS 30:244–47 [Google Scholar]
  18. Birch F.18.  1947. Finite elastic strain of cubic crystals. Phys. Rev. 71:809–24 [Google Scholar]
  19. Tkachev SN, Levine JB, Kisliuk A, Sokolov AP, Guo S. 19.  et al. 2009. Shear modulus of polycrystalline rhenium diboride determined from surface Brillouin spectroscopy. Adv. Mater. 21:4284–86 [Google Scholar]
  20. Tkachev SN, Solozhenko VL, Zinin PV, Manghnani MH, Ming LC. 20.  2003. Elastic moduli of the superhard cubic BC2N phase by Brillouin scattering. Phys. Rev. B 68:052104 [Google Scholar]
  21. Djemia P, Dugautier C, Chauveau T, Dogheche E, De Barros MI, Vandenbulcke L. 21.  2001. Mechanical properties of diamond films: a comparative study of polycrystalline and smooth fine-grained diamonds by Brillouin light scattering. J. Appl. Phys. 90:3771–79 [Google Scholar]
  22. Teter DM.22.  1998. Computational alchemy: the search for new superhard materials. MRS Bull. 23:22–27 [Google Scholar]
  23. Liu AY, Cohen ML. 23.  1989. Prediction of new low compressibility solids. Science 245:841–42 [Google Scholar]
  24. Wixom MR.24.  1990. Chemical preparation and shock wave compression of carbon nitride precursors. J. Am. Ceram. Soc. 73:1973–78 [Google Scholar]
  25. Li D, Chu X, Cheng SC, Lin XW, Dravid VP. 25.  et al. 1995. Synthesis of superhard carbon nitride composite coatings. Appl. Phys. Lett. 67:203–5 [Google Scholar]
  26. Li D, Chung YW, Wong MS, Sproul WD. 26.  1993. Nano-indentation studies of ultrahigh strength carbon nitride thin films. J. Appl. Phys. 74:219–23 [Google Scholar]
  27. Muhl S, Méndez JM. 27.  1999. A review of the preparation of carbon nitride films. Diam. Relat. Mater. 8:1809–30 [Google Scholar]
  28. Niu C, Lu YZ, Lieber CM. 28.  1993. Experimental realization of the covalent solid carbon nitride. Science 261:334–37 [Google Scholar]
  29. Wei J.29.  2001. Formation of β-C3N4 crystals at low temperature. J. Appl. Phys. 89:4099–104 [Google Scholar]
  30. Browne MW.30.  1993. New material may be harder than diamond. New York Times July 20
  31. Tian Y, Xu B, Yu D, Ma Y, Wang Y. 31.  et al. 2013. Ultrahard nanotwinned cubic boron nitride. Nature 493:385–88 [Google Scholar]
  32. Huang Q, Yu D, Xu B, Hu W, Ma Y. 32.  et al. 2014. Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–53 [Google Scholar]
  33. Jayaraman A.33.  1983. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55:65–108 [Google Scholar]
  34. Fujii Y, Hase K, Hamaya N, Ohishi Y, Onodera A. 34.  et al. 1987. Pressure-induced face-centered-cubic phase of monatomic metallic iodine. Phys. Rev. Lett. 58:796–99 [Google Scholar]
  35. Kenichi T, Kyoko S, Hiroshi F, Mitsuko O. 35.  2003. Modulated structure of solid iodine during its molecular dissociation under high pressure. Nature 423:971–74 [Google Scholar]
  36. Shimomura C, Takemura K, Fujii Y, Minomura S, Mori M. 36.  et al. 1978. Structure analysis of high-pressure metallic state of iodine. Phys. Rev. B 18:715–19 [Google Scholar]
  37. Goettel KA, Eggert JH, Silvera IF, Moss WC. 37.  1989. Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62:665–68 [Google Scholar]
  38. Nelson DA, Ruoff AL. 38.  1979. Metallic xenon at static pressures. Phys. Rev. Lett. 42:383–86 [Google Scholar]
  39. Reichlin R, Brister KE, McMahan AK, Ross M, Martin S. 39.  et al. 1989. Evidence for the insulator-metal transition in xenon from optical, X-ray, and band-structure studies to 170 GPa. Phys. Rev. Lett. 62:669–72 [Google Scholar]
  40. Chen NH, Sterer E, Silvera IF. 40.  1996. Extended infrared studies of high pressure hydrogen. Phys. Rev. Lett. 76:1663–66 [Google Scholar]
  41. Weir ST, Mitchell AC, Nellis WJ. 41.  1996. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76:1860–63 [Google Scholar]
  42. Hemley RJ, Mao H-k, Goncharov AF, Hanfland M, Struzhkin V. 42.  1996. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures. Phys. Rev. Lett. 76:1667–70 [Google Scholar]
  43. Mao HK, Hemley RJ. 43.  1989. Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap. Science 244:1462–65 [Google Scholar]
  44. Loubeyre P, LeToullec R, Hausermann D, Hanfland M, Hemley RJ. 44.  et al. 1996. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383:702–4 [Google Scholar]
  45. Loubeyre P, Occelli F, LeToullec R. 45.  2002. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 416:613–17 [Google Scholar]
  46. Narayana C, Luo H, Orloff J, Ruoff AL. 46.  1998. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature 393:46–49 [Google Scholar]
  47. Struzhkin VV, Hemley RJ, Mao H-k, Timofeev YA. 47.  1997. Superconductivity at 10–17 K in compressed sulphur. Nature 390:382–84 [Google Scholar]
  48. Shimizu K, Kimura T, Furomoto S, Takeda K, Kontani K. 48.  et al. 2001. Superconductivity in the non-magnetic state of iron under pressure. Nature 412:316–18 [Google Scholar]
  49. Schilling A, Cantoni M, Guo JD, Ott HR. 49.  1993. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363:56–58 [Google Scholar]
  50. Gao L, Xue YY, Chen F, Xiong Q, Meng RL. 50.  et al. 1994. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50:4260–63 [Google Scholar]
  51. Bovenkerk HP, Bundy FP, Hall HT, Strong HM, Wentorf RH. 51.  1959. Preparation of diamond. Nature 184:1094–98 [Google Scholar]
  52. Bundy FP, Hall HT, Strong HM, Wentorf RH. 52.  1955. Man-made diamonds. Nature 176:51–55 [Google Scholar]
  53. Gillet P, Fiquet G, Daniel I, Reynard B, Hanfland M. 53.  1999. Equations of state of 12C and 13C diamond. Phys. Rev. B 60:14660–64 [Google Scholar]
  54. McSkimin HJ, Andreatch P. 54.  1972. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 43:2944–48 [Google Scholar]
  55. Kenichi T.55.  2004. Bulk modulus of osmium: high-pressure powder X-ray diffraction experiments under quasihydrostatic conditions. Phys. Rev. B 70:012101 [Google Scholar]
  56. Occelli F, Farber DL, Badro J, Aracne CM, Teter DM. 56.  et al. 2004. Experimental evidence for a high-pressure isostructural phase transition in osmium. Phys. Rev. Lett. 93:095502 [Google Scholar]
  57. Cynn H, Klepeis JE, Yoo C-S, Young DA. 57.  2002. Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88:135701 [Google Scholar]
  58. Cumberland RW, Weinberger MB, Gilman JJ, Clark SM, Tolbert SH, Kaner RB. 58.  2005. Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127:7264–65 [Google Scholar]
  59. Weinberger MB, Levine JB, Chung H-Y, Cumberland RW, Rasool HI. 59.  et al. 2009. Incompressibility and hardness of solid solution transition metal diborides: Os1−xRuxB2. Chem. Mater. 21:1915–21 [Google Scholar]
  60. Hebbache M, Stuparević L, Živković D. 60.  2006. A new superhard material: osmium diboride OsB2. Solid State Commun. 139:227–31 [Google Scholar]
  61. Frotscher M, Hölzel M, Albert B. 61.  2010. Crystal structures of the metal diborides ReB2, RuB2, and OsB2 from neutron powder diffraction. Z. Anorg. Allg. Chem. 636:1783–86 [Google Scholar]
  62. Kavner A, Weinberger MB, Shahar A, Cumberland RW, Levine JB. 62.  et al. 2012. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress. J. Appl. Phys. 112:013526 [Google Scholar]
  63. Armentrout MM, Kavner A. 63.  2010. Incompressibility of osmium metal at ultrahigh pressures and temperatures. J. Appl. Phys. 107:093528 [Google Scholar]
  64. Duffy TS, Shen G, Heinz DL, Shu J, Ma Y. 64.  et al. 1999. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa. Phys. Rev. B 60:15063–73 [Google Scholar]
  65. Manghnani MH, Katahara K, Fisher ES. 65.  1974. Ultrasonic equation of state of rhenium. Phys. Rev. B 9:1421–31 [Google Scholar]
  66. Chung H-Y, Weinberger MB, Levine JB, Kavner A, Yang J-M. 66.  et al. 2007. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316:436–39 [Google Scholar]
  67. Levine JB, Nguyen SL, Rasool HI, Wright JA, Brown SE, Kaner RB. 67.  2008. Preparation and properties of metallic, superhard rhenium diboride crystals. J. Am. Chem. Soc. 130:16953–58 [Google Scholar]
  68. Latini A, Rau JV, Ferro D, Teghil R, Albertini VR, Barinov SM. 68.  2008. Superhard rhenium diboride films: preparation and characterization. Chem. Mater. 20:4507–11 [Google Scholar]
  69. Chung H-Y, Weinberger MB, Levine JB, Cumberland RW, Kavner A. 69.  et al. 2007. Response to comment on “Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”. Science 3181550–50 [Google Scholar]
  70. Zang C, Sun H, Tse JS, Chen C. 70.  2012. Indentation strength of ultraincompressible rhenium boride, carbide, and nitride from first-principles calculations. Phys. Rev. B 86:014108 [Google Scholar]
  71. Lech AT, Turner CL, Mohammadi R, Tolbert SH, Kaner RB. 71.  2015. The structure of superhard tungsten tetraboride: a missing link between MB2 and MB12 higher borides. PNAS 112:3223–28 [Google Scholar]
  72. Gu Q, Krauss G, Steurer W. 72.  2008. Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20:3620–26 [Google Scholar]
  73. Mohammadi R, Lech AT, Xie M, Weaver BE, Yeung MT. 73.  et al. 2011. Tungsten tetraboride, an inexpensive superhard material. PNAS 108:10958–62 [Google Scholar]
  74. Rau JV, Latini A, Teghil R, De Bonis A, Fosca M. 74.  et al. 2011. Superhard tungsten tetraboride films prepared by pulsed laser deposition method. ACS Appl. Mater. Interfaces 3:3738–43 [Google Scholar]
  75. Xie M, Mohammadi R, Mao Z, Armentrout MM, Kavner A. 75.  et al. 2012. Exploring the high-pressure behavior of superhard tungsten tetraboride. Phys. Rev. B 85:064118 [Google Scholar]
  76. Mohammadi R, Xie M, Lech AT, Turner CL, Kavner A. 76.  et al. 2012. Toward inexpensive superhard materials: tungsten tetraboride–based solid solutions. J. Am. Chem. Soc. 134:20660–68 [Google Scholar]
  77. Xie M, Mohammadi R, Turner CL, Kaner RB, Kavner A, Tolbert SH. 77.  2015. Exploring hardness enhancement in superhard tungsten tetraboride–based solid solutions using radial X-ray diffraction. Appl. Phys. Lett. 107:041903 [Google Scholar]
  78. Niu H, Wang J, Chen X-Q, Li D, Li Y. 78.  et al. 2012. Structure, bonding, and possible superhardness of CrB4. Phys. Rev. B 85:144116 [Google Scholar]
  79. Knappschneider A, Litterscheid C, Dzivenko D, Kurzman JA, Seshadri R. 79.  et al. 2013. Possible superhardness of CrB4. Inorg. Chem. 52:540–42 [Google Scholar]
  80. Knappschneider A, Litterscheid C, Kurzman J, Seshadri R, Albert B. 80.  2011. Crystal structure refinement and bonding patterns of CrB4: a boron-rich boride with a framework of tetrahedrally coordinated B atoms. Inorg. Chem. 50:10540–42 [Google Scholar]
  81. Xu HB, Wang YX, Lo VC. 81.  2011. First-principles study of CrB4 as a high shear modulus compound. Phys. Status Solid. Rapid Res. Lett. 5:13–15 [Google Scholar]
  82. Gou H, Li Z, Niu H, Gao F, Zhang J. 82.  et al. 2012. Unusual rigidity and ideal strength of CrB4 and MnB4. Appl. Phys. Lett. 100:111907 [Google Scholar]
  83. Pan Y, Zheng WT, Guan WM, Zhang KH, Fan XF. 83.  2013. First-principles study on the structure, elastic properties, hardness and electronic structure of TMB4 (TM=Cr, Re, Ru and Os) compounds. J. Solid State Chem. 207:29–34 [Google Scholar]
  84. Li B, Sun H, Zang C, Chen C. 84.  2013. Fundamental constraints on the strength of transition-metal borides: the case of CrB4. Phys. Rev. B 87:174106 [Google Scholar]
  85. Wang S, Yu X, Zhang J, Zhang Y, Wang L. 85.  et al. 2014. Crystal structures, elastic properties, and hardness of high-pressure synthesized CrB2 and CrB4. J. Superhard Mater. 36:279–87 [Google Scholar]
  86. Yang M, Wang Y, Yao J, Li Z, Zhang J. 86.  et al. 2014. Structural distortion and band gap opening of hard MnB4 in comparison with CrB4 and FeB4. J. Solid State Chem. 213:52–56 [Google Scholar]
  87. Knappschneider A, Litterscheid C, Brgoch J, George NC, Henke S. 87.  et al. 2015. Manganese tetraboride, MnB4: high-temperature crystal structure, p–n transition, 55Mn NMR spectroscopy, solid solutions, and mechanical properties. Chemistry 21:8177–81 [Google Scholar]
  88. Gou H, Tsirlin AA, Bykova E, Abakumov AM, Van Tendeloo G. 88.  et al. 2014. Peierls distortion, magnetism, and high hardness of manganese tetraboride. Phys. Rev. B 89:064108 [Google Scholar]
  89. Wang M, Li Y, Cui T, Ma Y, Zou G. 89.  2008. Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4. Appl. Phys. Lett. 93:101905 [Google Scholar]
  90. Li Q, Zhou D, Zheng W, Ma Y, Chen C. 90.  2013. Global structural optimization of tungsten borides. Phys. Rev. Lett. 110:136403 [Google Scholar]
  91. Liang Y, Yuan X, Zhang W. 91.  2011. Thermodynamic identification of tungsten borides. Phys. Rev. B 83:220102 [Google Scholar]
  92. Cheng X, Zhang W, Chen X-Q, Niu H, Liu P. 92.  et al. 2013. Interstitial-boron solution strengthened WB3+x. Appl. Phys. Lett. 103:171903 [Google Scholar]
  93. Gou H, Li Z, Wang L-M, Lian J, Wang Y. 93.  2012. Peculiar structure and tensile strength of WB4: nonstoichiometric origin. AIP Adv. 2:012171 [Google Scholar]
  94. Liang Y, Gou Y, Yuan X, Zhong Z, Zhang W. 94.  2013. Unexpectedly hard and highly stable WB3 with a noncompact structure. Chem. Phys. Lett. 580:48–52 [Google Scholar]
  95. Wu H, Sun H, Chen C. 95.  2014. Unexpected structural softening of interstitial boron solid solution WB3+x. Appl. Phys. Lett. 105:211901 [Google Scholar]
  96. Zang C, Sun H, Chen C. 96.  2012. Unexpectedly low indentation strength of WB3 and MoB3 from first principles. Phys. Rev. B 86:180101 [Google Scholar]
  97. Spriggs GE.97.  1995. A history of fine grained hardmetal. Int. J. Refract. Metals Hard Mater. 13:241–55 [Google Scholar]
  98. Lin Z, Wang L, Zhang J, Mao H-k, Zhao Y. 98.  2009. Nanocrystalline tungsten carbide: as incompressible as diamond. Appl. Phys. Lett. 95:211906 [Google Scholar]
  99. Fan C-Z, Zeng S-Y, Li L-X, Zhan Z-J, Liu R-P. 99.  et al. 2006. Potential superhard osmium dinitride with fluorite and pyrite structure: first-principles calculations. Phys. Rev. B 74:125118 [Google Scholar]
  100. Du XP, Wang YX. 100.  2010. Investigation of osmium carbides with various stoichiometries: first-principles calculations. J. Appl. Phys. 107:053506 [Google Scholar]
  101. Guo X, Xu B, He J, Yu D, Liu Z, Tian Y. 101.  2008. Structure and mechanical properties of osmium carbide: first-principles calculations. Appl. Phys. Lett. 93:041904 [Google Scholar]
  102. Clark P, Dhandapani B, Oyama ST. 102.  1999. Preparation and hydrodenitrogenation performance of rhenium nitride. Appl. Catal. A 184:L175–80 [Google Scholar]
  103. Hahn H, Konrad A. 103.  1951. Metallamide und Metallnitride. 22. Mitteilung. Über Das System Rhenium/Stickstoff. Z. Anorg. Allg. Chem. 264:174–80 [Google Scholar]
  104. Friedrich A, Winkler B, Bayarjargal L, Morgenroth W, Juarez-Arellano EA. 104.  et al. 2010. Novel rhenium nitrides. Phys. Rev. Lett. 105:085504 [Google Scholar]
  105. Zhao Z, Bao K, Li D, Duan D, Tian F. 105.  et al. 2014. Nitrogen concentration driving the hardness of rhenium nitrides. Sci. Rep. 4:4797 [Google Scholar]
  106. Kawamura F, Yusa H, Taniguchi T. 106.  2012. Synthesis of rhenium nitride crystals with MoS2 structure. Appl. Phys. Lett. 100:251910 [Google Scholar]
  107. Soignard E, McMillan PF, Chaplin TD, Farag SM, Bull CL. 107.  et al. 2003. High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1−x) phases. Phys. Rev. B 68:132101 [Google Scholar]
  108. Rivadulla F, Banobre-Lopez M, Quintela CX, Pineiro A, Pardo V. 108.  et al. 2009. Reduction of the bulk modulus at high pressure in CrN. Nat. Mater. 8:947–51 [Google Scholar]
  109. Xie M, Mohammadi R, Turner CL, Kaner RB, Kavner A, Tolbert SH. 109.  2014. Lattice stress states of superhard tungsten tetraboride from radial X-ray diffraction under nonhydrostatic compression. Phys. Rev. B 90:104104 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070115-032148
Loading
/content/journals/10.1146/annurev-matsci-070115-032148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error