1932

Abstract

The large hydration enthalpy of inorganic interlayer cations sandwiched between moderately negatively charged silicate layers endows to smectites (e.g., hectorite) remarkably rich intracrystalline reactivity compared with most other layered materials. Moreover, they are transparent and inert in most potential suspension media. Upon suspension in water, smectites readily swell. For homogeneous, melt-synthesized smectites, the degree of swelling can be tuned by choice of interlayer cation and charge density of the layer. Because swelling renders the clay stacks more shear labile, the efficiency of exfoliation by applying shearing forces can in turn be adjusted. Certain smectites even spontaneously delaminate into clay platelets of uniform thickness of 1 nm by progressive osmotic swelling. Osmotic swelling can also be applied to produce well-defined double stacks when one starts with ordered, interstratified heterostructures. Nanocomposites made with high-aspect-ratio fillers obtained this way show superior mechanical, flame retardancy, and permeability properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-020830
2015-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-020830.html?itemId=/content/journals/10.1146/annurev-matsci-070214-020830&mimeType=html&fmt=ahah

Literature Cited

  1. Lagaly G. 1.  1979. Layer charge of regular interstratified 2-1 clay-minerals. Clays Clay Miner. 27:1–10 [Google Scholar]
  2. Jasmund K, Lagaly G. 2.  1993. Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt Darmstadt, Ger.: Steinkopff
  3. Lagaly G, Ziesmer S. 3.  2003. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 100:105–28 [Google Scholar]
  4. Norrish K. 4.  1954. The swelling of montmorillonite. Discuss. Faraday Soc. 18:120–34 [Google Scholar]
  5. Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A. 5.  et al. 2007. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315:351–53 [Google Scholar]
  6. Rao C, Matte H, Maitra U. 6.  2013. Graphene analogues of inorganic layered materials. Angew. Chem. Int. Ed. 52:13162–85 [Google Scholar]
  7. Wu W, Wang L, Li Y, Zhang F, Lin L. 7.  et al. 2014. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–74 [Google Scholar]
  8. Kunz D, Max E, Weinkamer R, Lunkenbein T, Fery A, Breu J. 8.  2009. Deformation measurements on thin clay tactoids. Small 5:1816–20 [Google Scholar]
  9. Kunz DA, Erath J, Kluge D, Thurn H, Putz B. 9.  et al. 2013. In-plane modulus of singular 2:1 clay lamellae applying a simple wrinkling technique. ACS Appl. Mater. Interfaces 5:5851–55 [Google Scholar]
  10. Kane CL, Mele EJ. 10.  2005. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95:146802 [Google Scholar]
  11. Kunz DA, Feicht P, Goedrich S, Thurn H, Papastavrou G. 11.  et al. 2013. Space-resolved in-plane moduli of graphene oxide and chemically derived graphene applying a simple wrinkling procedure. Adv. Mater. 25:1337–41 [Google Scholar]
  12. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A. 12.  et al. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–65 [Google Scholar]
  13. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ. 13.  et al. 2006. Graphene-based composite materials. Nature 442:282–86 [Google Scholar]
  14. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH. 14.  et al. 2007. Preparation and characterization of graphene oxide paper. Nature 448:457–60 [Google Scholar]
  15. Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M. 15.  et al. 2013. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4:1716 [Google Scholar]
  16. Halpin JC, Kardos JL. 16.  1976. Halpin-Tsai equations—review. Polym. Eng. Sci. 16:344–52 [Google Scholar]
  17. Cussler EL, Hughes SE, Ward WJ, Aris R. 17.  1988. Barrier membranes. J. Membr. Sci. 38:161–74 [Google Scholar]
  18. Nielsen LE. 18.  1967. Models for the permeability of filled polymer systems. J. Macromol. Sci. A 1:929–42 [Google Scholar]
  19. Kalo H, Möller MW, Kunz DA, Breu J. 19.  2012. How to maximize the aspect ratio of clay nanoplatelets. Nanoscale 4:5633–39 [Google Scholar]
  20. Duer MJ, Rocha J, Klinowski J. 20.  1992. Solid-state NMR studies of the molecular-motion in the kaolinite: DMSO intercalate. J. Am. Chem. Soc. 114:6867–74 [Google Scholar]
  21. Li Y, Sun D, Pan X, Zhang B. 21.  2009. Kaolinite intercalation precursors. Clays Clay Miner. 57:779–86 [Google Scholar]
  22. Komori Y, Sugahara Y, Kuroda K. 22.  1998. A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. J. Mater. Res. 13:930–34 [Google Scholar]
  23. Komori Y, Enoto H, Takenawa R, Hayashi S, Sugahara Y, Kuroda K. 23.  2000. Modification of the interlayer surface of kaolinite with methoxy groups. Langmuir 16:5506–8 [Google Scholar]
  24. Franco F, Cruz MDR. 24.  2004. Factors influencing the intercalation degree (‘reactivity’) of kaolin minerals with potassium acetate, formamide, dimethylsulphoxide and hydrazine. Clay Miner. 39:193–205 [Google Scholar]
  25. Tonle IK, Letaief S, Ngameni E, Detellier C. 25.  2009. Nanohybrid materials from the grafting of imidazolium cations on the interlayer surfaces of kaolinite. Application as electrode modifier. J. Mater. Chem. 19:5996–6003 [Google Scholar]
  26. Letaief S, Detellier C. 26.  2007. Functionalized nanohybrid materials obtained from the interlayer grafting of aminoalcohols on kaolinite. Chem. Commun. 2007:2613–15 [Google Scholar]
  27. Hirsemann D, Koester TKJ, Wack J, van Wuellen L, Breu J, Senker J. 27.  2011. Covalent Grafting to μ-hydroxy-capped surfaces? A kaolinite case study. Chem. Mater. 23:3152–58 [Google Scholar]
  28. Schafhäutl C. 28.  1840. Über die Verbindungen des Kohlenstoffes mit Silicium, Eisen und andern Metallen, welche die verschiedenen Gattungen von Gusseisen, Stahl und Schmiedeeisen bilden. J. Prakt. Chem. 21:129–57 [Google Scholar]
  29. Hofmann U, Frenzel A. 29.  1930. Quellung von Graphit und die Bildung von Graphitsäure. Ber. Dtsch. Chem. Ges. A/B 63:1248–62 [Google Scholar]
  30. Hofmann U, Frenzel A, Csalán E. 30.  1934. Die Konstitution der Graphitsäure und ihre Reaktionen. Justus Liebigs Ann. Chem. 510:1–41 [Google Scholar]
  31. Winter M, Besenhard JO, Spahr ME, Novak P. 31.  1998. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10:725–63 [Google Scholar]
  32. Schöllhorn R, Weiss A. 32.  1973. Hydration, layer solvate formation and cation exchange of nonstoichiometric ternary sulfides of titanium. Z. Naturforsch. B 28:711–15 [Google Scholar]
  33. Butz T, Lerf A, Besenhard JO. 33.  1984. Metastable configurations during lithium intercalation into 2H-TaS2. Rev. Chim. Miner. 21:556–87 [Google Scholar]
  34. Benavente E, Santa Ana MA, Mendizabal F, Gonzalez G. 34.  2002. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224:87–109 [Google Scholar]
  35. Schöllhorn R, Weiss A. 35.  1974. Cation exchange reactions and layer solvate complexes of ternary phases MxMoS2. J. Less Common Met. 36:229–36 [Google Scholar]
  36. Adireddy S, Carbo CE, Rostamzadeh T, Vargas JM, Spinu L, Wiley JB. 36.  2014. Peapod-type nanocomposites through the in situ growth of gold nanoparticles within preformed hexaniobate nanoscrolls. Angew. Chem. Int. Ed. 53:4614–17 [Google Scholar]
  37. Kalo H, Milius W, Bräu M, Breu J. 37.  2013. Synthesis and single crystal structure refinement of the one-layer hydrate of sodium brittle mica. J. Solid State Chem. 198:57–64 [Google Scholar]
  38. Weiss Z, Valaskova M, Seidlerova J, Supkova-Kristkova M, Sustai O. 38.  et al. 2006. Preparation of vermiculite nanoparticles using thermal hydrogen peroxide treatment. J. Nanosci. Nanotechnol. 6:726–30 [Google Scholar]
  39. Obut A, Girgin I. 39.  2002. Hydrogen peroxide exfoliation of vermiculite and phlogopite. Miner. Eng. 15:683–87 [Google Scholar]
  40. Besenhard JO, Fritz HP. 40.  1983. The electrochemistry of black carbons. Angew. Chem. Int. Ed. 22:950–75 [Google Scholar]
  41. Möller MW, Hirsemann D, Haarmann F, Senker J, Breu J. 41.  2010. Facile scalable synthesis of rectorites. Chem. Mater. 22:186–96 [Google Scholar]
  42. Stöter M, Biersack B, Reimer N, Herling M, Stock N. 42.  et al. 2014. Ordered heterostructures of two strictly alternating types of nanoreactors. Chem. Mater. 26:5412–19 [Google Scholar]
  43. Shih CJ, Vijayaraghavan A, Krishnan R, Sharma R, Han JH. 43.  et al. 2011. Bi- and trilayer graphene solutions. Nat. Nanotechnol. 6:439–45 [Google Scholar]
  44. Stöter M, Biersack B, Rosenfeldt S, Leitl MJ, Kalo H. 44.  et al. 2015. Encapsulation of functional organic compounds in nanoglass for optically anisotropic coatings. Angew. Chem. Int. Ed. In press; doi: 10.1002/anie.201411137
  45. Palin EJ, Dove MT, Hernandez-Laguna A, Sainz-Diaz CI. 45.  2004. A computational investigation of the Al/Fe/Mg order-disorder behavior in the dioctahedral sheet of phyllosilicates. Am. Mineral. 89:164–75 [Google Scholar]
  46. Lagaly G. 46.  1981. Characterization of clays by organic compounds. Clay Miner. 16:1–21 [Google Scholar]
  47. Brindley GW. 47.  1966. Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Miner. 6:237–59 [Google Scholar]
  48. Ferrage E, Lanson B, Sakharov BA, Geoffroy N, Jacquot E, Drits VA. 48.  2007. Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: influence of layer charge and charge location. Am. Mineral. 92:1731–43 [Google Scholar]
  49. Hofmann U. 49.  1942. Neues aus der Chemie des Tons. Chemie 55:283–89 [Google Scholar]
  50. Breu J, Seidl W, Stoll AJ, Lange KG, Probst TU. 50.  2001. Charge homogeneity in synthetic fluorohectorite. Chem. Mater. 13:4213–20 [Google Scholar]
  51. Hou XQ, Bish DL, Wang SL, Johnston CT, Kirkpatrick RJ. 51.  2003. Hydration, expansion, structure, and dynamics of layered double hydroxides. Am. Mineral. 88:167–79 [Google Scholar]
  52. Radha S, Jayanthi K, Breu J, Kamath PV. 52.  2014. Relative humidity–induced reversible hydration of sulfate-intercalated layered double hydroxides. Clays Clay Miner. 62:53–61 [Google Scholar]
  53. Smith DW. 53.  1977. Ionic hydration enthalpies. J. Chem. Educ. 54:540–42 [Google Scholar]
  54. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y. 54.  et al. 2006. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128:4872–80 [Google Scholar]
  55. Ziadeh M, Chwalka B, Kalo H, Schütz MR, Breu J. 55.  2012. A simple approach for producing high aspect ratio fluorohectorite nanoplatelets utilizing a stirred media mill (ball mill). Clay Miner. 47:341–53 [Google Scholar]
  56. Segad M, Hanski S, Olsson U, Ruokolainen J, Akesson T, Jonsson B. 56.  2012. Microstructural and swelling properties of Ca and Na montmorillonite: (in situ) observations with cryo-TEM and SAXS. J. Phys. Chem. C 116:7596–601 [Google Scholar]
  57. Hofmann U. 57.  1932. Eindimensionale Quellung von Graphitsäure und Graphit. (Die Reaktionsweisen des Graphits.). Kolloid Z. 61:297–304 [Google Scholar]
  58. Hofmann U, Kurd E, Diederich W. 58.  1933. Kristallstruktur und Quellung von Montmorillonit. (Das Tonmineral der Bentonittone.). Z. Kristallogr. 86:340–48 [Google Scholar]
  59. Berghout A, Tunega D, Zaoui A. 59.  2010. Density functional theory (DFT) study of the hydration steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-exchanged montmorillonites. Clays Clay Miner. 58:174–87 [Google Scholar]
  60. Bérend I, Cases J-M, François M, Uriot J-P, Michot L. 60.  et al. 1995. Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites. 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays Clay Miner. 43:324–36 [Google Scholar]
  61. Tambach TJ, Bolhuis PG, Smit B. 61.  2004. A molecular mechanism of hysteresis in clay swelling. Angew. Chem. Int. Ed. 43:2650–52 [Google Scholar]
  62. Laird DA, Shang C, Thompson ML. 62.  1995. Hysteresis in crystalline swelling of smectites. J. Colloid Interface Sci. 171:240–45 [Google Scholar]
  63. Tambach TJ, Bolhuis PG, Hensen EJM, Smit B. 63.  2006. Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states. Langmuir 22:1223–34 [Google Scholar]
  64. Kalo H, Milius W, Breu J. 64.  2012. Single crystal structure refinement of one- and two-layer hydrate of sodium fluorohectorite. RSC Adv. 2:8452–59 [Google Scholar]
  65. Möller MW, Handge UA, Kunz DA, Lunkenbein T, Altstadt V, Breu J. 65.  2010. Tailoring shear-stiff, mica-like nanoplatelets. ACS Nano 4:717–24 [Google Scholar]
  66. Dazas B, Ferrage E, Delville A, Lanson B. 66.  2014. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble. Am. Mineral. 99:1724–35 [Google Scholar]
  67. Singh V, Bosman S, Schneider B, Blanter Y, Castellanos-Gomez A, Steele G. 67.  2014. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9:820–24 [Google Scholar]
  68. Scherrer P. 68.  1918. Bestimmung der Gröβe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Gött. 2:96–100 [Google Scholar]
  69. Cao T, Fasulo PD, Rodgers WR. 69.  2010. Investigation of the shear stress effect on montmorillonite platelet aspect ratio by atomic force microscopy. Appl. Clay Sci. 49:21–28 [Google Scholar]
  70. Kwade A. 70.  2003. A stressing model for the description and optimization of grinding processes. Chem. Eng. Technol. 26:199–205 [Google Scholar]
  71. Kwade A, Schwedes J. 71.  2007. Wet grinding in stirred media mills. Handbook of Powder Technology: Particle Breakage AD Salman, M Ghadiri, MJ Hounslow 251–382 Amsterdam: Elsevier Sci. B.V. [Google Scholar]
  72. Vdovic N, Jurina I, Skapin SD, Sondi I. 72.  2010. The surface properties of clay minerals modified by intensive dry milling—revisited. Appl. Clay Sci. 48:575–80 [Google Scholar]
  73. Schramm LL, Kwak JCT. 73.  1982. Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspension. Clays Clay Miner. 30:40–48 [Google Scholar]
  74. Stöter M, Kunz DA, Schmidt M, Hirsemann D, Kalo H. 74.  et al. 2013. Nanoplatelets of sodium hectorite showing aspect ratios of ∼20,000 and superior purity. Langmuir 29:1280–85 [Google Scholar]
  75. Segad M, Jonsson B, Cabane B. 75.  2012. Tactoid formation in montmorillonite. J. Phys. Chem. C 116:25425–33 [Google Scholar]
  76. Shomer I, Mingelgrin U. 76.  1978. Direct procedure for determining mumber of plates in tactoids of smectites—Na-Ca-montmorillonite case. Clays Clay Miner. 26:135–38 [Google Scholar]
  77. Skipper NT, Lock PA, Titiloye JO, Swenson J, Mirza ZA. 77.  et al. 2006. The structure and dynamics of 2-dimensional fluids in swelling clays. Chem. Geol. 230:182–96 [Google Scholar]
  78. Kalo H, Möller MW, Ziadeh M, Dolejs D, Breu J. 78.  2010. Large scale melt synthesis in an open crucible of Na-fluorohectorite with superb charge homogeneity and particle size. Appl. Clay Sci. 48:39–45 [Google Scholar]
  79. Feicht P, Kunz DA, Lerf A, Breu J. 79.  2014. Facile and scalable one-step production of organically modified graphene oxide by a two-phase extraction. Carbon 80:229–34 [Google Scholar]
  80. Kloprogge JT, Komarneni S, Amonette JE. 80.  1999. Synthesis of smectite clay minerals: a critical review. Clays Clay Miner. 47:529–54 [Google Scholar]
  81. Li L, Harnau L, Rosenfeldt S, Ballauff M. 81.  2005. Effective interaction of charged platelets in aqueous solution: investigations of colloid laponite suspensions by static light scattering and small-angle X-ray scattering. Phys. Rev. E 72:051504 [Google Scholar]
  82. Breu J, Seidl W, Senker J. 82.  2004. Synthesis of three dimensionally ordered intercalation compounds of hectorite. Z. Anorg. Allg. Chem. 630:80–90 [Google Scholar]
  83. Breu J, Seidl W, Stoll A. 83.  2003. Disorder in smectites in dependence of the interlayer cation. Z. Anorg. Allg. Chem. 629:503–15 [Google Scholar]
  84. Ijdo WL, Lee T, Pinnavaia TJ. 84.  1996. Regularly interstratified layered silicate heterostructures: precursors to pillared rectorite-like intercalates. Adv. Mater. 8:79–83 [Google Scholar]
  85. Ijdo WL, Pinnavaia TJ. 85.  1998. Staging of organic and inorganic gallery cations in layered silicate heterostructures. J. Solid State Chem. 139:281–89 [Google Scholar]
  86. Ijdo WL, Pinnavaia TJ. 86.  2001. Amphiphilic layered silicate clay for the efficient removal of organic pollutants from water. Green Chem. 3:10–12 [Google Scholar]
  87. Ijdo WL, Pinnavaia TJ. 87.  1999. Solid solution formation in amphiphilic organic-inorganic clay heterostructures. Chem. Mater. 11:3227–31 [Google Scholar]
  88. Ozsoz M, Erdem A, Ozkan D, Kerman K, Pinnavaia TJ. 88.  2003. Clay/sol-gel-modified electrodes for the selective electrochemical monitoring of 2,4-dichlorophenol. Langmuir 19:4728–32 [Google Scholar]
  89. Ozkan D, Kerman K, Meric B, Kara P, Demirkan H. 89.  et al. 2002. Heterostructured fluorohectorite clay as an electrochemical sensor for the detection of 2,4-dichlorophenol and the herbicide 2,4-D. Chem. Mater. 14:1755–61 [Google Scholar]
  90. Brown G. 90.  1984. Crystal structures of clay minerals and related phyllosilicates. Philos. Trans. R. Soc. A 311:221–40 [Google Scholar]
  91. Stixrude L, Peacor DR. 91.  2002. First-principles study of illite-smectite and implications for clay mineral systems. Nature 420:165–68 [Google Scholar]
  92. Sanchez C, Julian B, Belleville P, Popall M. 92.  2005. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15:3559–92 [Google Scholar]
  93. Sanchez C, Belleville P, Popall M, Nicole L. 93.  2011. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40:696–753 [Google Scholar]
  94. Chen Y, Chen HR, Shi JL. 94.  2013. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25:3144–76 [Google Scholar]
  95. Ruiz-Hitzky E. 95.  2003. Functionalizing inorgnic solids: towards organic-inorganic nanostructured materials for intelligent and bioinspired systems. Chem. Rec. 3:88–100 [Google Scholar]
  96. Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G. 96.  2010. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem. 20:9306–21 [Google Scholar]
  97. Zhou CH, Shen ZF, Liu LH, Liu SM. 97.  2011. Preparation and functionality of clay-containing films. J. Mater. Chem. 21:15132–53 [Google Scholar]
  98. Takagi S, Shimada T, Ishida Y, Fujimura T, Masui D. 98.  et al. 2013. Size-matching effect on inorganic nanosheets: control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir 29:2108–19 [Google Scholar]
  99. Fujimura T, Shimada T, Hamatani S, Onodera S, Sasai R. 99.  et al. 2013. High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir 29:5060–65 [Google Scholar]
  100. Guskova O, Schünemann C, Eichhorn KJ, Walzer K, Levichkova M. 100.  et al. 2013. Light absorption in organic thin films: the importance of oriented molecules. J. Phys. Chem. C 117:17285–93 [Google Scholar]
  101. Kunz DA, Leitl MJ, Schade L, Schmid J, Bojer B. 101.  et al. 2015. Quasi-epitaxial growth of [Ru(bpy)3]2+ by confinement in clay nanoplatelets yields polarized emission. Small 11:792–96 [Google Scholar]
  102. Nino MA, Kowalik IA, Luque FJ, Arvanitis D, Miranda R, de Miguel JJ. 102.  2014. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules. Adv. Mater. 26:7474–79 [Google Scholar]
  103. Paul DR, Robeson LM. 103.  2008. Polymer nanotechnology: nanocomposites. Polymer 49:3187–204 [Google Scholar]
  104. Brune DA, Bicerano J. 104.  2002. Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43:369–87 [Google Scholar]
  105. Heinz H, Vaia RA, Farmer BL. 105.  2006. Interaction energy and surface reconstruction between sheets of layered silicates. J. Chem. Phys. 124:224713 [Google Scholar]
  106. Ziadeh M, Weiss S, Fischer B, Förster S, Altstädt V. 106.  et al. 2014. Towards completely miscible PMMA nanocomposites reinforced by shear-stiff, nano-mica. J. Colloid Interface Sci. 425:143–51 [Google Scholar]
  107. Fischer B, Ziadeh M, Pfaff A, Breu J, Altstädt V. 107.  2012. Impact of large aspect ratio, shear-stiff, mica-like clay on mechanical behaviour of PMMA/clay nanocomposites. Polymer 53:3230–37 [Google Scholar]
  108. Ziadeh M, Fischer B, Schmid J, Altstädt V, Breu J. 108.  2014. On the importance of specific interface area in clay nanocomposites of PMMA filled with synthetic nano-mica. Polymer 55:3770–81 [Google Scholar]
  109. Burrows PE, Graff GL, Gross ME, Martin PM, Shi MK. 109.  et al. 2001. Ultra barrier flexible substrates for flat panel displays. Displays 22:65–69 [Google Scholar]
  110. Kumar RS, Auch M, Ou E, Ewald G, Jin CS. 110.  2002. Low moisture permeation measurement through polymer substrates for organic light emitting devices. Thin Solid Films 417:120–26 [Google Scholar]
  111. Möller MW, Lunkenbein T, Kalo H, Schieder M, Kunz DA, Breu J. 111.  2010. Barrier properties of synthetic clay with a kilo-aspect ratio. Adv. Mater. 22:5245–49 [Google Scholar]
  112. Möller MW, Kunz DA, Lunkenbein T, Sommer S, Nennemann A, Breu J. 112.  2012. UV-cured, flexible, and transparent nanocomposite coating with remarkable oxygen barrier. Adv. Mater. 24:2142–47 [Google Scholar]
  113. Kunz DA, Schmid J, Feicht P, Erath J, Fery A, Breu J. 113.  2013. Clay-based nanocomposite coating for flexible optoelectronics applying commercial polymers. ACS Nano 7:4275–80 [Google Scholar]
  114. Law RJ, Herzke D, Harrad S, Morris S, Bersuder P, Allchin CR. 114.  2008. Levels and trends of HBCD and BDEs in the European and Asian environments, with some information for other BFRs. Chemosphere 73:223–41 [Google Scholar]
  115. Diar-Bakerly B, Beyer G, Schobert R, Breu J. 115.  2012. Significance of aspect ratio on efficiency of layered double hydroxide flame retardants. Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science407–25 Washington, DC: Am. Chem. Soc. [Google Scholar]
  116. Beyer G. 116.  2001. Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate. Fire Mater. 25:193–97 [Google Scholar]
  117. Morgan AB. 117.  2006. Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 17:206–17 [Google Scholar]
  118. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA. 118.  2001. Fire properties of polystyrene-clay nanocomposites. Chem. Mater. 13:3774–80 [Google Scholar]
  119. Schütz MR, Kalo H, Lunkenbein T, Breu J, Wilkie CA. 119.  2011. Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52:3288–94 [Google Scholar]
  120. Schütz MR, Kalo H, Lunkenbein T, Groschel AH, Muller AHE. 120.  et al. 2011. Shear stiff, surface modified, mica-like nanoplatelets: a novel filler for polymer nanocomposites. J. Mater. Chem. 21:12110–16 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-020830
Loading
/content/journals/10.1146/annurev-matsci-070214-020830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error