1932

Abstract

Dual-phase (DP) steel is the flagship of advanced high-strength steels, which were the first among various candidate alloy systems to find application in weight-reduced automotive components. On the one hand, this is a metallurgical success story: Lean alloying and simple thermomechanical treatment enable use of less material to accomplish more performance while complying with demanding environmental and economic constraints. On the other hand, the enormous literature on DP steels demonstrates the immense complexity of microstructure physics in multiphase alloys: Roughly 50 years after the first reports on ferrite-martensite steels, there are still various open scientific questions. Fortunately, the last decades witnessed enormous advances in the development of enabling experimental and simulation techniques, significantly improving the understanding of DP steels. This review provides a detailed account of these improvements, focusing specifically on () microstructure evolution during processing, () experimental characterization of micromechanical behavior, and () the simulation of mechanical behavior, to highlight the critical unresolved issues and to guide future research efforts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-021103
2015-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-021103.html?itemId=/content/journals/10.1146/annurev-matsci-070214-021103&mimeType=html&fmt=ahah

Literature Cited

  1. Speich GR, Miller RL. 1.  1979. Mechanical properties of ferrite-martensite steels. Structure and Properties of Dual-Phase Steels, ed. RA Kot, JW Morris 145–82 New York: TMS-AIME [Google Scholar]
  2. Mazinani M, Poole WJ. 2.  2007. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall. Mater. Trans. A 38:328–39 [Google Scholar]
  3. Korzekwa DA, Matlock DK, Krauss G. 3.  1984. Dislocation substructure as a function of strain in a dual-phase steel. Metall. Trans. A 15:61221–28 [Google Scholar]
  4. Ramos LF, Matlock DK, Krauss G. 4.  1979. On the deformation behavior of dual-phase steels. Metall. Trans. A 10:2259–61 [Google Scholar]
  5. Davies RG. 5.  1978. The mechanical properties of zero-carbon ferrite-plus-martensite structures. Metall. Trans. A 9:3451–55 [Google Scholar]
  6. Zaefferer S, Elhami N-N. 6.  2014. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75:15420–50 [Google Scholar]
  7. Gutierrez-Urrutia I, Zaefferer S, Raabe D. 7.  2013. Coupling of electron channeling with EBSD: toward the quantitative characterization of deformation structures in the SEM. JOM 65:91229–36 [Google Scholar]
  8. Calcagnotto M, Ponge D, Demir E, Raabe D. 8.  2010. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527:10–112738–46 [Google Scholar]
  9. Schemman L. 9.  2014. The inheritance of different microstructures found after hot rolling on the properties of a completely annealed DP-steel PhD Thesis, RWTH Aachen Univ.
  10. Zaefferer S. 10.  2011. A critical review of orientation microscopy in SEM and TEM. Cryst. Res. Technol. 46:6607–28 [Google Scholar]
  11. Benner G, Niebel H, Pavia G. 11.  2011. Nano beam diffraction and precession in an energy filtered CS corrected transmission electron microscope. Cryst. Res. Technol. 46:6580–88 [Google Scholar]
  12. Hirata A, Hirotsu Y, Matsubara E, Ohkubo T, Hono K. 12.  2006. Mechanism of nanocrystalline microstructure formation in amorphous Fe-Bb-B alloys. Phys. Rev. B 74:18184204 [Google Scholar]
  13. Zhang X, Godfrey A, Hansen N, Huang X. 13.  2013. Hierarchical structures in cold-drawn pearlitic steel wire. Acta Mater. 61:134898–909 [Google Scholar]
  14. Mueller TO, Cowan J, Sanson E. 14.  2007. The use of oxygen in SEM plasma cleaning equipment. Microsc. Microanal. 13:Suppl. 2210–11 [Google Scholar]
  15. Pinard PT, Schwedt A. 15.  2013. Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements. Microsc. Microanal. 19:4996–1006 [Google Scholar]
  16. Lerchbacher C, Zinner S, Leitner H. 16.  2012. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1. Micron 43:7818–26 [Google Scholar]
  17. Dmitrieva O, Ponge D, Inden G, Millán J, Choi P. 17.  et al. 2011. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Mater. 59:1364–74 [Google Scholar]
  18. Hutchinson B, Hagström J, Karlsson O. 18.  2011. Microstructures and hardness of as-quenched martensites (0.1–0.5% C). Acta Mater. 59:145845–58 [Google Scholar]
  19. Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S. 19.  2014. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 112:12126103 [Google Scholar]
  20. Marceau RKW, Gutierrez-Urrutia I, Herbig M, Moore KL, Lozano-Perez S, Raabe D. 20.  2013. Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe-Mn-C steel. Microsc. Microanal. 19:61581–85 [Google Scholar]
  21. Ray RK. 21.  1984. Texture in an intercritically annealed dual-phase steel. Scr. Metall. 18:1211–14 [Google Scholar]
  22. Ray RK. 22.  1986. Orientation distribution function analysis of texture in a dual-phase steel. Mater. Sci. Eng. 77:169–74 [Google Scholar]
  23. Mondal DK, Ray RK. 23.  1992. Development of {111} texture during cold rolling and recrystallization of a C-Mn-V dual-phase steel. Mater. Sci. Eng. A 158:2147–56 [Google Scholar]
  24. Chowdhury SG, Pereloma EV, Santos DB. 24.  2008. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: effect of heating rate. Mater. Sci. Eng. A 480:1–2540–48 [Google Scholar]
  25. Gardey B, Bouvier S, Richard V, Bacroix B. 25.  2005. Texture and dislocation structures observation in a dual-phase steel under strain-path changes at large deformation. Mater. Sci. Eng. A400–401136–41
  26. Rocha RO, Melo TMF, Pereloma EV, Santos DB. 26.  2005. Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel. Mater. Sci. Eng. A 391:1–2296–304 [Google Scholar]
  27. Calcagnotto M, Ponge D, Raabe D. 27.  2008. Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing. ISIJ Int. 48:81096–101 [Google Scholar]
  28. Zheng YS, Wang ZG, Ai SH. 28.  1994. Effect of dislocation substructure of crack tip on near fatigue threshold in dual-phase steels. Mater. Sci. Eng. A 176:1–2393–96 [Google Scholar]
  29. Qu J, Dabboussi W, Hassani F, Nemes J, Yue S. 29.  2008. Effect of microstructure on the dynamic deformation behavior of dual phase steel. Mater. Sci. Eng. A 479:1–293–104 [Google Scholar]
  30. Hölscher M, Raabe D, Lücke K. 30.  1994. Relationship between rolling textures and shear textures in fcc and bcc metals. Acta Metall. Mater. 42:3879–86 [Google Scholar]
  31. Raabe D. 31.  2003. Overview on basic types of hot rolling textures of steels. Steel Res. Int. 74:5327–37 [Google Scholar]
  32. Landau LD. 32.  1937. Theory of phase transformations. Zh. Eksp. Teor. Fiz. 7:19–32 [Google Scholar]
  33. Huh M, Lee J, Park SH, Engler O, Raabe D. 33.  2005. Effect of through-thickness macro and micro-texture gradients on ridging of 17% Cr ferritic stainless steel sheet. Steel Res. Int. 76:11797–806 [Google Scholar]
  34. Raabe D, Lücke K. 34.  1993. Textures of ferritic stainless steels. Mater. Sci. Technol. 9:302–12 [Google Scholar]
  35. Speich GR, Demarest VA, Miller RL. 35.  1981. Formation of austenite during intercritical annealing of dual-phase steels. Metall. Mater. Trans. A 12:81419–28 [Google Scholar]
  36. Kim S, Lee S. 36.  2000. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. Metall. Mater. Trans. A 31:71753–60 [Google Scholar]
  37. Jiang Z, Guan Z, Lian J, Mechanics F. 37.  1995. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater. Sci. Eng. A 190:1–255–64 [Google Scholar]
  38. Nakajima K, Urabe T, Hosoya Y, Kamishi S, Miyata T, Takeda N. 38.  2001. Influence of microstructural morphology and prestraining on short fatigue crack propagation in dual-phase steels. ISIJ Int. 41:3298–304 [Google Scholar]
  39. Matlock DK, Zia-Ebrahimi F, Krauss G. 39.  1982. Structure, properties and strain hardening of dual-phase steels. Deform. Process. Struct.47–87
  40. Peranio N, Li YJ, Roters F, Raabe D. 40.  2010. Microstructure and texture evolution in dual-phase steels: competition between recovery, recrystallization, and phase transformation. Mater. Sci. Eng. A 527:16–174161–68 [Google Scholar]
  41. Peranio N, Roters F, Raabe D. 41.  2012. Microstructure evolution during recrystallization in dual-phase steels. Mater. Sci. Forum 715–716:13–22 [Google Scholar]
  42. Yang DZ, Brown EL, Matlock DK, Krauss G. 42.  1985. Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel. Metall. Trans. A 16:81385–92 [Google Scholar]
  43. Huang J, Poole WJ, Militzer M. 43.  2004. Austenite formation during intercritical annealing. Metall. Mater. Trans. A 35:113363–75 [Google Scholar]
  44. Azizi-Alizamini H, Militzer M, Poole WJ. 44.  2010. Austenite formation in plain low-carbon steels. Metall. Mater. Trans. A 42:61544–57 [Google Scholar]
  45. Militzer M. 45.  2011. Phase field modeling of microstructure evolution in steels. Curr. Opin. Solid State Mater. Sci. 15:3106–15 [Google Scholar]
  46. Rudnizki J, Böttger B, Prahl U, Bleck W. 46.  2011. Phase-field modeling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel. Metall. Mater. Trans. A 42:82516–25 [Google Scholar]
  47. Bos C, Mecozzi MG, Sietsma J. 47.  2010. A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput. Mater. Sci. 48:3692–99 [Google Scholar]
  48. Bos C, Mecozzi MG, Hanlon DN, Aarnts MP, Sietsma J. 48.  2011. Application of a three-dimensional microstructure evolution model to identify key process settings for the production of dual-phase steels. Metall. Mater. Trans. A 42:123602–10 [Google Scholar]
  49. Okuda K, Yoshida H, Nagataki Y, Tanaka Y, Rollett AD. 49.  2007. Preliminary simulation for competing behaviors between recrystallization and transformation in dual phase steels. Mater. Sci. Forum 558–559:1145–50 [Google Scholar]
  50. Savran VI, Van Leeuwen Y, Hanlon DN, Kwakernaak C, Sloof WG, Sietsma J. 50.  2007. Microstructural features of austenite formation in C35 and C45 alloys. Metall. Mater. Trans. A 38:5946–55 [Google Scholar]
  51. Savran VI, Offerman SE, Sietsma J. 51.  2010. Austenite nucleation and growth observed on the level of individual grains by three-dimensional X-ray diffraction microscopy. Metall. Mater. Trans. A 41:3583–91 [Google Scholar]
  52. Krielaart GP, Sietsma J, van der Zwaag S. 52.  1997. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions. Mater. Sci. Eng. A 237:216–23 [Google Scholar]
  53. Loginova I, Odqvist J, Amberg G, Ågren J. 53.  2003. The phase-field approach and solute drag modeling of the transition to massive γ → α transformation in binary Fe-C alloys. Acta Mater. 51:51327–39 [Google Scholar]
  54. Zheng C, Raabe D. 54.  2013. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater. 61:145504–17 [Google Scholar]
  55. Zheng C, Raabe D, Li D. 55.  2012. Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Mater. 60:124768–79 [Google Scholar]
  56. Masimov M, Peranio N, Springub B, Roters F, Raabe D. 56.  2010. EBSD study of substructure and texture formation in dual-phase steel sheets for semi-finished products. Solid State Phenom. 160:251–56 [Google Scholar]
  57. Fedosseev AI, Raabe D. 57.  1994. Application of the method of superposition of harmonic currents for the simulation of inhomogeneous deformation during hot rolling of FeCr. Scr. Metall. Mater. 30:11–6 [Google Scholar]
  58. Aborn RH. 58.  1956. Low carbon martensite. Trans. ASM 48:51–85 [Google Scholar]
  59. Waterschoot T, Verbeken K, De Cooman BC. 59.  2006. Tempering kinetics of the martensitic phase in DP steel. ISIJ Int. 46:1138–46 [Google Scholar]
  60. Krauss G. 60.  1995. Heat treated martensitic steels: microstructural systems for advanced manufacture. ISIJ Int. 35:4349–59 [Google Scholar]
  61. Calcagnotto M, Adachi Y, Ponge D, Raabe D. 61.  2011. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 59:2658–70 [Google Scholar]
  62. Kim S-J, Cho Y-G, Oh C-S, Kim DE, Moon MB, Han HN. 62.  2009. Development of a dual phase steel using orthogonal design method. Mater. Des. 30:41251–57 [Google Scholar]
  63. Raabe D. 63.  2007. Multiscale recrystallization models for the prediction of crystallographic textures with respect to process simulation. J. Strain Anal. Eng. Des. 42:4253–68 [Google Scholar]
  64. Zhu B, Militzer M. 64.  2015. Phase-field modeling for intercritical annealing of a dual-phase steel. Metall. Mater. Trans. A 46:31073–84 [Google Scholar]
  65. Offerman SE, van Dijk NH, Sietsma J, Lauridsen EM, Margulies L. 65.  et al. 2004. Solid-state phase transformations involving solute partitioning: modeling and measuring on the level of individual grains. Acta Mater. 52:164757–66 [Google Scholar]
  66. Bos C, Sietsma J. 66.  2007. A mixed-mode model for partitioning phase transformations. Scr. Mater. 57:121085–88 [Google Scholar]
  67. Song X, Rettenmayr M, Müller C, Exner HE. 67.  2001. Modeling of recrystallization after inhomogeneous deformation. Metall. Mater. Trans. A 32:92199–206 [Google Scholar]
  68. Raabe D, Hantcherli L. 68.  2005. 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Comput. Mater. Sci. 34:4299–313 [Google Scholar]
  69. Raabe D. 69.  1999. Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena. Philos. Mag. A 79:102339–58 [Google Scholar]
  70. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D. 70.  2010. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58:41152–211 [Google Scholar]
  71. Rashid MS. 71.  1981. Dual phase steels. Annu. Rev. Mater. Sci. 11:245–66 [Google Scholar]
  72. Dutta VB, Suresh S, Ritchie RO. 72.  1984. Fatigue crack propagation in dual-phase steels: effects of ferritic-martensitic microstructures on crack path morphology. Metall. Trans. A 15:1193–207 [Google Scholar]
  73. Huh H, Kim SB, Song JH, Lim JH. 73.  2008. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body. Int. J. Mech. Sci. 50:918–31 [Google Scholar]
  74. Grässel O, Krüger L, Frommeyer G, Meyer LW. 74.  2000. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 16:1391–409 [Google Scholar]
  75. Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P. 75.  et al. 2014. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 81:386–400 [Google Scholar]
  76. Shen HP, Lei TC, Liu JZ. 76.  1986. Microscopic deformation behaviour of martensitic–ferritic dual-phase steels. Mater. Sci. Technol. 2:128–33 [Google Scholar]
  77. Kang J, Ososkov Y, Embury JD, Wilkinson DS. 77.  2007. Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr. Mater. 56:11999–1002 [Google Scholar]
  78. Tasan CC, Hoefnagels JPM, Geers MGD. 78.  2010. Microstructural banding effects clarified through micrographic digital image correlation. Scr. Mater. 62:11835–38 [Google Scholar]
  79. Ghadbeigi H, Pinna C, Celotto S, Yates JR. 79.  2010. Local plastic strain evolution in a high strength dual-phase steel. Mater. Sci. Eng. A 527:18–195026–32 [Google Scholar]
  80. Kapp M, Hebesberger T, Kolednik O. 80.  2011. A micro-level strain analysis of a high-strength dual-phase steel. Int. J. Mater. Res. 102:6687–91 [Google Scholar]
  81. Joo S-H, Lee JK, Koo J-M, Lee S, Suh D-W, Kim HS. 81.  2013. Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scr. Mater. 68:5245–48 [Google Scholar]
  82. Marteau J, Haddadi H, Bouvier S. 82.  2012. Investigation of strain heterogeneities between grains in ferritic and ferritic-martensitic steels. Exp. Mech. 53:3427–39 [Google Scholar]
  83. Han Q, Kang Y, Hodgson PD, Stanford N. 83.  2013. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr. Mater. 69:113–16 [Google Scholar]
  84. Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D. 84.  2014. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int. J. Plast. 63:198–210 [Google Scholar]
  85. Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS. 85.  2014. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 62:197–211 [Google Scholar]
  86. Maire E, Bouaziz O, Di Michiel M, Verdu C. 86.  2008. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 56:184954–64 [Google Scholar]
  87. Stevenson R. 87.  1979. Crack initiation and propagation in thermal mechanically treated sheet steels. Formable HSLA and Dual Phase Steels AT Davenport 99–108 New York: TMS-AIME [Google Scholar]
  88. Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS. 88.  2009. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall. Mater. Trans. A 40:133117–27 [Google Scholar]
  89. Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS. 89.  2009. Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater. Sci. Eng. A 516:1–27–16 [Google Scholar]
  90. He XJ, Terao N, Berghezan A. 90.  1984. Influence of martensite morphology and its dispersion on mechanical properties and fracture mechanisms of Fe-Mn-C dual phase steels. Met. Sci. 18:367–73 [Google Scholar]
  91. Azuma M, Goutianos S, Hansen N, Winther G, Huang X. 91.  2012. Effect of hardness of martensite and ferrite on void formation in dual phase steel. Mater. Sci. Technol. 28:9–101092–100 [Google Scholar]
  92. Kadkhodapour J, Butz A, Ziaei-Rad S. 92.  2011. Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater. 59:72575–88 [Google Scholar]
  93. Tasan CC, Hoefnagels JPM, ten Horn CHLJ, Geers MGD. 93.  2009. Experimental analysis of strain path dependent ductile damage mechanics and forming limits. Mech. Mater. 41:111264–76 [Google Scholar]
  94. Lee HS, Hwang B, Lee S, Lee CG, Kim SJ. 94.  2004. Effects of martensite morphology and tempering on dynamic deformation behavior of dual-phase steels. Metall. Mater. Trans. A 35:82371–82 [Google Scholar]
  95. Erdogan M. 95.  2002. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. J. Mater. Process. Technol. 37:73623–30 [Google Scholar]
  96. Kang S-M, Kwon H. 96.  1987. Fracture behavior of intercritically treated complex structure in medium-carbon 6Ni steel. Metall. Trans. A 18:91587–92 [Google Scholar]
  97. Sun S, Pugh M. 97.  2002. Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Mater. Sci. Eng. A 335:1–2298–308 [Google Scholar]
  98. Kim NJ, Thomas G. 98.  1981. Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel. Metall. Trans. A 12:3483–89 [Google Scholar]
  99. Sarwar M, Priestner R. 99.  1996. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 31:2091–95 [Google Scholar]
  100. Steinbrunner DL, Matlock DK, Krauss G. 100.  1988. Void formation during tensile testing of dual phase steels. Metall. Trans. A 19:3579–89 [Google Scholar]
  101. Koyama M, Tasan CC, Akiyama E, Tsuzaki K, Raabe D. 101.  2014. Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Mater. 70:174–87 [Google Scholar]
  102. Davies RG. 102.  1981. Hydrogen embrittlement of dual-phase steels. Metall. Trans. A 12:91667–72 [Google Scholar]
  103. Davies RG. 103.  1983. Influence of martensite content on the hydrogen embrittlement of dual-phase steels. Scr. Metall. 17:7889–92 [Google Scholar]
  104. Toji Y, Takagi S, Yoshino M, Hasegawa K, Tanaka Y. 104.  2010. Evaluation of hydrogen embrittlement for high strength steel sheets. Mater. Sci. Forum 638–642:3537–42 [Google Scholar]
  105. Marder AR. 105.  1982. Deformation characteristics of dual-phase steels. Metall. Trans. A 13:85–92 [Google Scholar]
  106. Ahmad E, Manzoor T, Ali KL, Akhter JI. 106.  2000. Effect of microvoid formation on the tensile properties of dual-phase steel. J. Mater. Eng. Perform. 9:6306–10 [Google Scholar]
  107. Azizi-Alizamini H, Militzer M, Poole WJ. 107.  2011. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int. 51:6958–64 [Google Scholar]
  108. Bergström Y, Granbom Y, Sterkenburg D. 108.  2010. A dislocation-based theory for the deformation hardening behavior of DP steels: impact of martensite content and ferrite grain size. J. Metall. 2010:1–16 [Google Scholar]
  109. Davies RG. 109.  1978. Influence of martensite composition and content on the properties of dual phase steels. Metall. Trans. A 9:671–79 [Google Scholar]
  110. Nakada N, Arakawa Y, Park K-S, Tsuchiyama T, Takaki S. 110.  2012. Dual phase structure formed by partial reversion of cold-deformed martensite. Mater. Sci. Eng. A 553:128–33 [Google Scholar]
  111. Park K-T, Lee YK, Shin DH. 111.  2005. Fabrication of ultrafine grained ferrite/martensite dual phase steel by severe plastic deformation. ISIJ Int. 45:5750–55 [Google Scholar]
  112. Shin DH, Kim WG, Ahn JY, Park K. 112.  2006. Ultrafine grained dual phase steels fabricated by equal channel angular pressing. Mater. Sci. Forum 504:447–53 [Google Scholar]
  113. Zhang MD, Hu J, Cao WQ, Dong H. 113.  2014. Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels. Mater. Sci. Eng. A 618:168–75 [Google Scholar]
  114. Szewczyk AF, Gurland J. 114.  1982. A study of the deformation and fracture of a dual-phase steel. Metall. Trans. A 13:101821–26 [Google Scholar]
  115. Zhang H, Ponge D, Raabe D. 115.  2014. Designing quadplex (four-phase) microstructures in an ultrahigh carbon steel. Mater. Sci. Eng. A 612:46–53 [Google Scholar]
  116. Pierman A-P, Bouaziz O, Pardoen T, Jacques PJ, Brassart L. 116.  2014. The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater. 73:298–311 [Google Scholar]
  117. Maresca F, Kouznetsova V, Geers MGD. 117.  2014. On the role of interlath retained austenite in the deformation of lath martensite. Model. Simul. Mater. Sci. Eng. 22:4045011 [Google Scholar]
  118. Maresca F, Kouznetsova V, Geers MGD. 118.  2014. Subgrain lath martensite mechanics: a numerical-experimental analysis. J. Mech. Phys. Solids 73:69–83 [Google Scholar]
  119. Yuan L, Ponge D, Wittig J, Choi P, Jiménez JA, Raabe D. 119.  2012. Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: example of a ductile 2 GPa Fe-Cr-C steel. Acta Mater. 60:2790–804 [Google Scholar]
  120. Papa Rao M, Subramanya Sarma V, Sankaran S. 120.  2014. Processing of bimodal grain-sized ultrafine-grained dual phase microalloyed V-Nb steel with 1370 MPa strength and 16 pct uniform elongation through warm rolling and intercritical annealing. Metall. Mater. Trans. A 45:125313–17 [Google Scholar]
  121. Lai Q, Bouaziz O, Bréchet Y, Gouné M, Pardoen T. 121.  2013. Phase transformation controlled architectures in steel alloys Presented at EUROMAT 2013, Sept. 8–13, Sevilla, Spain
  122. Chang P-H, Preban AG. 122.  1985. The effect of ferrite grain-size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. Mater. 33:5897–903 [Google Scholar]
  123. Son YI, Lee YK, Park K-T, Lee CS, Shin DH. 123.  2005. Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 53:113125–34 [Google Scholar]
  124. Tsipouridis P, Werner E, Krempaszky C, Tragl E. 124.  2006. Formability of high strength dual-phase steels. Steel Res. Int. 77:9–10654–67 [Google Scholar]
  125. Delincé M, Bréchet Y, Embury JD, Geers MGD, Jacques PJ, Pardoen T. 125.  2007. Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Mater. 55:72337–50 [Google Scholar]
  126. Mukherjee K, Hazra SS, Militzer M. 126.  2009. Grain refinement in dual-phase steels. Metall. Mater. Trans. A 40:92145–59 [Google Scholar]
  127. Calcagnotto M, Ponge D, Raabe D. 127.  2011. On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. A 43:137–46 [Google Scholar]
  128. Calcagnotto M, Ponge D, Raabe D. 128.  2012. Microstructure control during fabrication of ultrafine grained dual-phase steel: characterization and effect of intercritical annealing parameters. ISIJ Int. 52:5874–83 [Google Scholar]
  129. Calcagnotto M, Ponge D, Raabe D. 129.  2010. Effect of grain refinement to 1μm on strength and toughness of dual-phase steels. Mater. Sci. Eng. A 527:29–307832–40 [Google Scholar]
  130. Tsuji N. 130.  2010. New routes for fabricating ultrafine-grained microstructures in bulky steels without very-high strains. Adv. Eng. Mater. 12:8701–7 [Google Scholar]
  131. Karlsson B, Sundström BO. 131.  1974. Inhomogeneity in plastic deformation of two-phase steels. Mater. Sci. Eng. 16:1–2161–68 [Google Scholar]
  132. Helm D, Butz A, Raabe D, Gumbsch P. 132.  2011. Microstructure-based description of the deformation of metals: theory and application. JOM 63:Apr.26–33 [Google Scholar]
  133. Raabe D, Klose P, Engl B, Imlau KP, Friedel F, Roters F. 133.  2002. Concepts for integrating plastic anisotropy into metal forming simulations. Adv. Eng. Mater. 4:4169–80 [Google Scholar]
  134. Huh J, Huh H, Lee CS. 134.  2013. Effect of strain rate on plastic anisotropy of advanced high strength steel sheets. Int. J. Plast. 44:23–46 [Google Scholar]
  135. Wang W-R, He C-W, Zhao Z-H, Wei X-C. 135.  2011. The limit drawing ratio and formability prediction of advanced high strength dual-phase steels. Mater. Des. 32:63320–27 [Google Scholar]
  136. Lim H, Lee MG, Sung JH, Kim JH, Wagoner RH. 136.  2012. Time-dependent springback of advanced high strength steels. Int. J. Plast. 29:42–59 [Google Scholar]
  137. Tarigopula V, Hopperstad OS, Langseth M. 137.  2008. A study of localisation in dual-phase high-strength steels under dynamic loading using digital image correlation and FE analysis. Int. J. Solids Struct. 45:2601–19 [Google Scholar]
  138. Qin J, Chen R, Wen X, Lin Y, Liang M, Lu F. 138.  2013. Mechanical behaviour of dual-phase high-strength steel under high strain rate tensile loading. Mater. Sci. Eng. A 586:62–70 [Google Scholar]
  139. Banu M, Takamura M, Hama T, Naidim O, Teodosiu C, Makinouchi A. 139.  2006. Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part. J. Mater. Process. Technol. 173:2178–84 [Google Scholar]
  140. Chen P, Koç M. 140.  2007. Simulation of springback variation in forming of advanced high strength steels. J. Mater. Process. Technol. 190:1–3189–98 [Google Scholar]
  141. Firat M. 141.  2012. A finite element modeling and prediction of stamping formability of a dual-phase steel in cup drawing. Mater. Des. 34:32–39 [Google Scholar]
  142. Tarigopula V, Hopperstad OS, Langseth M. 142.  2008. Elastic-plastic behaviour of dual-phase, high-strength steel under strain-path changes. Eur. J. Mech. A 27:5764–82 [Google Scholar]
  143. Galantucci LM, Tricarico L. 143.  1999. Thermo-mechanical simulation of a rolling process with an FEM approach. J. Mater. Process. Technol.92–93494–501
  144. Gruben G, Hopperstad OS, Børvik T. 144.  2012. Simulation of ductile crack propagation in dual-phase steel. Int. J. Fract. 180:11–22 [Google Scholar]
  145. Tarigopula V, Hopperstad OS, Langseth M, Clausen AH, Hild F. 145.  et al. 2008. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp. Mech. 48:2181–96 [Google Scholar]
  146. Kim JH, Sung JH, Piao K, Wagoner RH. 146.  2011. The shear fracture of dual-phase steel. Int. J. Plast. 27:101658–76 [Google Scholar]
  147. Luo M, Wierzbicki T. 147.  2010. Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. Int. J. Solids Struct. 47:22–233084–102 [Google Scholar]
  148. Lian J, Vajragupta N, Münstermann S, Bleck W. 148.  2011. On application of a damage plasticity model to sheet metal forming of DP steel. Steel Res. Int. (Spec. Ed. 10th Int. Conf. Technol. Plast.) 901–6
  149. Hu ZG, Zhu P, Meng J. 149.  2010. Fatigue properties of transformation-induced plasticity and dual-phase steels for auto-body lightweight: experiment, modeling and application. Mater. Des. 31:62884–90 [Google Scholar]
  150. Tjahjanto DD, Eisenlohr P, Roters F. 150.  2010. A novel grain cluster–based homogenization scheme. Model. Simul. Mater. Sci. Eng. 18:1015006 [Google Scholar]
  151. Roters F, Eisenlohr P, Kords C, Tjahjanto DD, Diehl M, Raabe D. 151.  2012. Damask: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Proc. IUTAM 3:3–10 [Google Scholar]
  152. Schröder J, Balzani D, Brands D. 152.  2011. Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Arch. Appl. Mech. 81:7975–97 [Google Scholar]
  153. Uthaisangsuk V, Prahl U, Bleck W. 153.  2009. Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling. Comput. Mater. Sci. 45:3617–23 [Google Scholar]
  154. Prawoto Y, Fanone M, Shahedi S, Ismail MS, Wan Nik WB. 154.  2012. Computational approach using Johnson–Cook model on dual phase steel. Comput. Mater. Sci. 54:48–55 [Google Scholar]
  155. Al-Abbasi FM, Nemes JA. 155.  2003. Micromechanical modeling of dual phase steels. Int. J. Mech. Sci. 45:91449–65 [Google Scholar]
  156. Mileiko ST. 156.  1969. The tensile strength and ductility of continuous fibre composites. J. Mater. Sci. 4:974–77 [Google Scholar]
  157. Korzekwa DA, Lawson RD, Matlock DK, Krauss G. 157.  1980. A consideration of models describing the strength and ductility of dual-phase steels. Scr. Metall. 14:91023–28 [Google Scholar]
  158. Mori T, Tanaka K. 158.  1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21:5571–74 [Google Scholar]
  159. Tomota Y, Tamura I. 159.  1982. Mechanical behavior of steels consisting of two ductile phases. Trans. Iron Steel Inst. Jpn. 22:9665–77 [Google Scholar]
  160. Tomota Y, Kuroki K, Mori T, Tamura I. 160.  1976. Tensile deformation of two-ductile-phase alloys: flow curves of α-γ Fe-Cr-Ni alloys. Mater. Sci. Eng. 24:185–94 [Google Scholar]
  161. Gurland J. 161.  1979. A structural approach to the yield strength of two-phase alloys with coarse microstructures. Mater. Sci. Eng. 40:159–71 [Google Scholar]
  162. Bhadeshia HKDH, Edmonds DV. 162.  1980. Analysis of mechanical properties and microstructure of high-silicon dual-phase steel. Met. Sci. 14:341–49 [Google Scholar]
  163. Goel NC, Sangal S, Tangri K. 163.  1985. A theoretical model for the flow behavior of commercial dual-phase steels containing metastable retained austenite. Part I. Derivation of flow curve equations. Metall. Trans. A 16:112013–21 [Google Scholar]
  164. Paruz H, Edmonds DV. 164.  1989. The strain hardening behaviour of dual-phase steel. Mater. Sci. Eng. A 17:67–74 [Google Scholar]
  165. Lian J, Jiang Z, Liu J. 165.  1991. Theoretical model for the tensile work hardening behaviour of dual-phase steel. Mater. Sci. Eng. A 147:155–65 [Google Scholar]
  166. Bouaziz O, Lung T, Kandel M, Lecomte C. 166.  2001. Physical modelling of microstructure and mechanical properties of dual-phase steel. J. Phys. IV Fr. 11:4Pr4–22331 [Google Scholar]
  167. Yoshida K, Brenner R, Bacroix B, Bouvier S. 167.  2011. Micromechanical modeling of the work-hardening behavior of single- and dual-phase steels under two-stage loading paths. Mater. Sci. Eng. A 528:31037–46 [Google Scholar]
  168. Tsuchida N, Izaki Y, Tanaka T, Fukaura K. 168.  2012. Effects of temperature and strain rate on stress-strain curves for dual-phase steels and their calculations by using the Kocks-Mecking model. ISIJ Int. 52:4729–34 [Google Scholar]
  169. Thomser C, Uthaisangsuk V, Bleck W. 169.  2009. Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation. Steel Res. Int. 80:8582–87 [Google Scholar]
  170. Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. 170.  2012. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume. Comput. Mater. Sci. 65:197–202 [Google Scholar]
  171. Dong H-F, Li J, Zhang Y, Park J, Yang Q-X. 171.  2010. Numerical simulation on the microstress and microstrain of low Si-Mn-Nb dual-phase steel. Int. J. Miner. Metall. Mater. 17:2173–78 [Google Scholar]
  172. Ramazani A, Mukherjee K, Prahl U, Bleck W. 172.  2012. Transformation-induced, geometrically necessary, dislocation-based flow curve modeling of dual-phase steels: effect of grain size. Metall. Mater. Trans. A 43:103850–69 [Google Scholar]
  173. Brands D, Schröder J, Balzani D, Dmitrieva O, Raabe D. 173.  2011. On the reconstruction and computation of dual-phase steel microstructures based on 3D EBSD data. PAMM 11:1503–4 [Google Scholar]
  174. Liedl U, Traint S, Werner E. 174.  2002. An unexpected feature of the stress–strain diagram of dual-phase steel. Comput. Mater. Sci. 25:1–2122–28 [Google Scholar]
  175. Asgari SA, Hodgson PD, Yang C, Rolfe BF. 175.  2009. Modeling of advanced high strength steels with the realistic microstructure–strength relationships. Comput. Mater. Sci. 45:4860–66 [Google Scholar]
  176. Tvergaard V. 176.  1982. On localization in ductile materials containing spherical voids. Int. J. Fract. 18:4237–52 [Google Scholar]
  177. Delannay L, Doghri I, Pierard O. 177.  2007. Prediction of tension–compression cycles in multiphase steel using a modified incremental mean-field model. Int. J. Solids Struct. 44:22–237291–306 [Google Scholar]
  178. Paul SK, Kumar A. 178.  2012. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels. Comput. Mater. Sci. 63:66–74 [Google Scholar]
  179. Paul SK. 179.  2013. Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel. Mater. Des. 44:397–406 [Google Scholar]
  180. Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. 180.  2011. A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int. J. Plast. 27:71103–25 [Google Scholar]
  181. Sun X, Choi KS, Soulami A, Liu WN, Khaleel MA. 181.  2009. On key factors influencing ductile fractures of dual phase (DP) steels. Mater. Sci. Eng. A 526:1–2140–49 [Google Scholar]
  182. Sodjit S, Uthaisangsuk V. 182.  2012. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater. Des. 41:370–79 [Google Scholar]
  183. Kadkhodapour J, Schmauder S, Raabe D, Ziaei-Rad S, Weber U, Calcagnotto M. 183.  2011. Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 59:114387–94 [Google Scholar]
  184. Choi S-H, Kim E-Y, Woo W, Han SH, Kwak JH. 184.  2013. The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int. J. Plast. 45:85–102 [Google Scholar]
  185. Woo W, Em VT, Kim E-Y, Han SH, Han YS, Choi S-H. 185.  2012. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 60:206972–81 [Google Scholar]
  186. Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S. 186.  2014. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater. 65:133–49 [Google Scholar]
  187. Ghassemi-Armaki H, Chen P, Bhat S, Sadagopan S, Kumar S, Bower A. 187.  2013. Microscale-calibrated modeling of the deformation response of low-carbon martensite. Acta Mater. 61:103640–52 [Google Scholar]
  188. Katani S, Ziaei-Rad S, Nouri N, Saeidi N, Kadkhodapour J. 188.  et al. 2013. Microstructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal models. Metallogr. Microstruct. Anal. 2:3156–69 [Google Scholar]
  189. Ramazani A, Ebrahimi Z, Prahl U. 189.  2014. Study the effect of martensite banding on the failure initiation in dual-phase steel. Comput. Mater. Sci. 87:241–47 [Google Scholar]
  190. Vajragupta N, Uthaisangsuk V, Schmaling B, Münstermann S, Hartmaier A, Bleck W. 190.  2012. A micromechanical damage simulation of dual phase steels using XFEM. Comput. Mater. Sci. 54:271–79 [Google Scholar]
  191. Kim JH, Lee MG, Kim D, Matlock DK, Wagoner RH. 191.  2010. Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique. Mater. Sci. Eng. A 527:27–287353–63 [Google Scholar]
  192. Tjahjanto DD, Turteltaub S, Suiker ASJ, van der Zwaag S. 192.  2006. Modelling of the effects of grain orientation on transformation-induced plasticity in multiphase carbon steels. Model. Simul. Mater. Sci. Eng. 14:4617–36 [Google Scholar]
  193. Ramazani A, Mukherjee K, Quade H, Prahl U, Bleck W. 193.  2013. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater. Sci. Eng. A 560:129–39 [Google Scholar]
  194. Mahadevan S, Zhao Y. 194.  2002. Advanced computer simulation of polycrystalline microstructure. Comput. Methods Appl. Mech. Eng. 191:343651–67 [Google Scholar]
  195. Kim JH, Lee M-G, Wagoner RH. 195.  2010. A boundary smoothing algorithm for image-based modeling and its application to micromechanical analysis of multi-phase materials. Comput. Mater. Sci. 47:3785–95 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-021103
Loading
/content/journals/10.1146/annurev-matsci-070214-021103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error