1932

Abstract

In the last four to five years, there has been a great resurgence of research on two-dimensional inorganic materials, partly because of the impetus received from graphene research. Unlike graphene, which is a gap-less material, most inorganic layered materials are semiconductors or insulators. Some of them, as exemplified by MoS, exhibit unexpected properties, not unlike graphene, with possible applications. Thus, layered metal chalcogenides are being explored intensely, and MoS is emerging as a wonder material. In this article, we present the synthesis and properties of nanosheets composing single or few layers of these fascinating materials. Besides metal chalcogenides, boron nitride, borocarbonitrides (BCN), metal oxides, and metal-organic frameworks are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070214-021141
2015-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/45/1/annurev-matsci-070214-021141.html?itemId=/content/journals/10.1146/annurev-matsci-070214-021141&mimeType=html&fmt=ahah

Literature Cited

  1. Geim AK, Novoselov KS. 1.  2007. The rise of graphene. Nat. Mater. 6:183–91 [Google Scholar]
  2. Rao CNR, Sood AK. 2.  2013. Graphene: Synthesis, Properties, and Phenomena Weinheim, Ger: Wiley
  3. Tenne R. 3.  2006. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1:103–11 [Google Scholar]
  4. Rao CNR, Nath M. 4.  2003. Inorganic nanotubes. Dalton Trans. 2003:1–24 [Google Scholar]
  5. Rao CNR, Govindaraj A. 5.  2009. Synthesis of inorganic nanotubes. Adv. Mater. 21:4208–33 [Google Scholar]
  6. Rao CNR, Matte HSSR, Maitra U. 6.  2013. Graphene analogues of inorganic layered materials. Angew. Chem. Int. Ed. 52:13162–85 [Google Scholar]
  7. Rao CNR, Maitra U, Waghmare UV. 7.  2014. Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chem. Phys. Lett. 609:172–83 [Google Scholar]
  8. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS. 8.  2010. Some novel attributes of graphene. J. Phys. Chem. Lett. 1:572–80 [Google Scholar]
  9. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV. 9.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:10451–53 [Google Scholar]
  10. Rao CNR, Nag A. 10.  2010. Inorganic analogues of graphene. Eur. J. Inorg. Chem. 2010:4244–50 [Google Scholar]
  11. Raidongia K, Gomathi A, Rao CNR. 11.  2010. Synthesis and characterization of nanoparticles, nanotubes, nanopans, and graphene-like structures of boron nitride. Israel J. Chem. 50:399–404 [Google Scholar]
  12. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 12.  2011. 2D materials: to graphene and beyond. Nanoscale 3:20–30 [Google Scholar]
  13. Frindt RF. 13.  1966. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37:1928–29 [Google Scholar]
  14. Late DJ, Liu B, Luo J, Yan A, Matte HSSR. 14.  et al. 2012. GaS and GaSe ultrathin layer transistors. Adv. Mater. 24:3549–54 [Google Scholar]
  15. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 15.  2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699–712 [Google Scholar]
  16. Late DJ, Liu B, Matte HSSR, Rao CNR, Dravid VP. 16.  2012. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 22:1894–905 [Google Scholar]
  17. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ. 17.  et al. 2011. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–71 [Google Scholar]
  18. O'Neill A, Khan U, Coleman JN. 18.  2012. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24:2414–21 [Google Scholar]
  19. Zhou K-G, Mao N-N, Wang H-X, Peng Y, Zhang H-L. 19.  2011. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 50:10839–42 [Google Scholar]
  20. Yao Y, Lin Z, Li Z, Song X, Moon K-S, Wong C-P. 20.  2012. Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22:13494–99 [Google Scholar]
  21. Feng J, Peng L, Wu C, Sun X, Hu S. 21.  et al. 2012. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24:1969–74 [Google Scholar]
  22. Castellanos-Gomez A, Barkelid M, Goossens AM, Calado VE, van der Zant HSJ, Steele GA. 22.  2012. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12:3187–92 [Google Scholar]
  23. Matte HSSR, Maitra U, Kumar P, Govinda Rao B, Pramoda K, Rao CNR. 23.  2012. Synthesis, characterization, and properties of few-layer metal dichalcogenides and their nanocomposites with noble metal particles, polyaniline, and reduced graphene oxide. Z. Anorg. Allg. Chem. 638:2617–24 [Google Scholar]
  24. Joensen P, Frindt RF, Morrison SR. 24.  1986. Single-layer MoS2. Mater. Res. Bull. 21:457–61 [Google Scholar]
  25. Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. 25.  2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:263–75 [Google Scholar]
  26. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. 26.  2011. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11:5111–16 [Google Scholar]
  27. Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. 27.  2012. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6:7311–17 [Google Scholar]
  28. Maitra U, Gupta U, De M, Datta R, Govindaraj A, Rao CNR. 28.  2013. Highly effective visible-light induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew. Chem. Int. Ed. 52:13057–61 [Google Scholar]
  29. Gupta U, Naidu BS, Maitra U, Singh A, Shirodkar S. 29.  et al. 2014. Characterization of few-layer 1T-MoSe2 and it superior photocatalytic activity in the hydrogen evolution reaction. Appl. Phys. Lett. Mater. 2:092802 [Google Scholar]
  30. Ganal P, Olberding W, Butz T, Ouvrard G. 30.  1993. Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2. Solid State Ionics 59:313–19 [Google Scholar]
  31. Gupta U, Rao BG, Maitra U, Prasad BE, Rao CNR. 31.  2014. Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles. Chem. Asian J. 9:1311–15 [Google Scholar]
  32. Zeng Z, Yin Z, Huang X, Li H, He Q. 32.  et al. 2011. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50:11093–97 [Google Scholar]
  33. Zeng Z, Sun T, Zhu J, Huang X, Yin Z. 33.  et al. 2012. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51:9052–56 [Google Scholar]
  34. Matte HSSR, Gomathi A, Manna AK, Late DJ, Datta R. 34.  et al. 2010. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49:4059–62 [Google Scholar]
  35. Matte HSSR, Plowman B, Datta R, Rao CNR. 35.  2011. Graphene analogues of layered metal selenides. Dalton Trans. 40:10322–25 [Google Scholar]
  36. Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T. 36.  et al. 2012. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24:2320–25 [Google Scholar]
  37. Li H, Lu G, Wang Y, Yin Z, Cong C. 37.  et al. 2012. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9:1974–81 [Google Scholar]
  38. Kim D, Sun D, Lu W, Cheng Z, Zhu Y. 38.  et al. 2011. Toward the growth of an aligned single-layer MoS2 film. Langmuir 27:11650–53 [Google Scholar]
  39. Koroteev VO, Bulusheva LG, Okotrub AV, Yudanov NF, Vyalikh DV. 39.  2011. Formation of MoS2 nanoparticles on the surface of reduced graphite oxide. Phys. Status Solid. B 248:2740–43 [Google Scholar]
  40. Lin Y-C, Zhang W, Huang J-K, Liu K-K, Lee Y-H. 40.  et al. 2012. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–41 [Google Scholar]
  41. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T. 41.  et al. 2012. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12:1538–44 [Google Scholar]
  42. Gautam UK, Vivekchand SRC, Govindaraj A, Rao CNR. 42.  2005. GaS and GaSe nanowalls and their transformation to Ga2O3 and GaN nanowalls. Chem. Commun. 2005:3995–97 [Google Scholar]
  43. Lin Y, Connell JW. 43.  2012. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–39 [Google Scholar]
  44. Altavilla C, Sarno M, Ciambelli P. 44.  2011. A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W). Chem. Mater. 23:3879–85 [Google Scholar]
  45. Vaughn DD II, Patel RJ, Hickner MA, Schaak RE. 45.  2010. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 132:15170–72 [Google Scholar]
  46. Feng J, Sun X, Wu C, Peng L, Lin C. 46.  et al. 2011. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133:17832–38 [Google Scholar]
  47. Zhang Y, Lu J, Shen S, Xu H, Wang Q. 47.  2011. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 47:5226–28 [Google Scholar]
  48. Vaughn DD, In S-I, Schaak RE. 48.  2011. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. ACS Nano 5:8852–60 [Google Scholar]
  49. Zhai C, Du N, Yang HZD. 49.  2011. Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chem. Commun. 47:1270–72 [Google Scholar]
  50. Ye F, Wang C, Du G, Chen X, Zhong Y, Jiang JZ. 50.  2011. Large-scale synthesis of In2S3 nanosheets and their rechargeable lithium-ion battery. J. Mater. Chem. 21:17063–65 [Google Scholar]
  51. Dong G-H, Zhu Y-J, Chen L-D. 51.  2010. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J. Mater. Chem. 20:1976–81 [Google Scholar]
  52. Dong G-H, Zhu Y-J, Cheng G-F, Ruan Y-J. 52.  2013. Sb2Te3 nanobelts and nanosheets: hydrothermal synthesis, morphology evolution and thermoelectric properties. J. Alloys Compd. 550:164–68 [Google Scholar]
  53. Min Y, Moon GD, Kim BS, Lim B, Kim J-S. 53.  et al. 2012. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 134:2872–75 [Google Scholar]
  54. Jana MK, Biswas K, Rao CNR. 54.  2013. Ionothermal synthesis of few-layer nanostructures of Bi2Se3 and related materials. Chem. Eur. J. 19:9110–13 [Google Scholar]
  55. Teweldebrhan D, Goyal V, Balandin AA. 55.  2010. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 10:1209–18 [Google Scholar]
  56. Zhao Y, Hughes RW, Su Z, Zhou W, Gregory DH. 56.  2011. One-step synthesis of bismuth telluride nanosheets of a few quintuple layers in thickness. Angew. Chem. Int. Ed. 50:10397–401 [Google Scholar]
  57. Hao G, Qi X, Liu Y, Huang Z, Li H. 57.  et al. 2012. Ambipolar charge injection and transport of few-layer topological insulator Bi2Te3 and Bi2Se3 nanoplates. J. Appl. Phys. 111:114312–15 [Google Scholar]
  58. Pacile D, Meyer JC, Girit CO, Zettl A. 58.  2008. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92:133107 [Google Scholar]
  59. Alem N, Erni R, Kisielowski C, Rossell MD, Gannett W, Zettl A. 59.  2009. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80:155425 [Google Scholar]
  60. Meyer JC, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U. 60.  2009. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9:2683–89 [Google Scholar]
  61. Lin Y, Williams TV, Connell JW. 61.  2009. Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Lett. 1:277–83 [Google Scholar]
  62. Huang JY, Yasuda H, Mori H. 62.  2000. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 83:403–9 [Google Scholar]
  63. Li LH, Chen Y, Behan G, Zhang H, Petravic M, Glushenkov AM. 63.  2011. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J. Mater. Chem. 21:11862–66 [Google Scholar]
  64. Chen X, Dobson JF, Raston CL. 64.  2012. Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48:3703–5 [Google Scholar]
  65. Yurdakul H, Göncü Y, Durukan O, Akay A, Seyhan AT. 65.  et al. 2012. Nanoscopic characterization of two-dimensional (2D) boron nitride nanosheets (BNNSs) produced by microfluidization. Ceram. Int. 38:2187–93 [Google Scholar]
  66. Han W-Q, Wu L, Zhu Y, Watanabe K, Taniguchi T. 66.  2008. Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93:223103 [Google Scholar]
  67. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D. 67.  2009. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21:2889–93 [Google Scholar]
  68. Lin Y, Williams TV, Xu T-B, Cao W, Elsayed-Ali HE, Connell JW. 68.  2011. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J. Phys. Chem. C 115:2679–85 [Google Scholar]
  69. Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C. 69.  1995. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51:4606–13 [Google Scholar]
  70. Preobrajenski AB, Vinogradov AS, Mårtensson N. 70.  2005. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): the role of the transition metal 3d states. Surf. Sci. 582:21–30 [Google Scholar]
  71. Song L, Ci L, Lu H, Sorokin PB, Jin C. 71.  et al. 2010. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10:3209–15 [Google Scholar]
  72. Hiura H, Miyazaki H, Tsukagoshi K. 72.  2010. Determination of the number of graphene layers: discrete distribution of the secondary electron intensity stemming from individual graphene layers. Appl. Phys. Exp. 3:095101 [Google Scholar]
  73. Lee KH, Shin H-J, Lee J, Lee I-Y, Kim G-H. 73.  et al. 2012. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12:714–18 [Google Scholar]
  74. Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J. 74.  2004. Boron nitride nanomesh. Science 303:217–20 [Google Scholar]
  75. Auwärter W, Suter HU, Sachdev H, Greber T. 75.  2003. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16:343–45 [Google Scholar]
  76. Müller F, Stöwe K, Sachdev H. 76.  2005. Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 17:3464–67 [Google Scholar]
  77. Chatterjee S, Luo Z, Acerce M, Yates DM, Johnson ATC, Sneddon LG. 77.  2011. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem. Mater. 23:4414–16 [Google Scholar]
  78. Li Q, Jie Y, Mingyu L, Fei L, Xuedong B. 78.  2011. Catalyst-free growth of mono- and few-atomic-layer boron nitride sheets by chemical vapor deposition. Nanotechnology 22:215602 [Google Scholar]
  79. Liu Z, Song L, Zhao S, Huang J, Ma L. 79.  et al. 2011. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11:2032–37 [Google Scholar]
  80. Kim KK, Hsu A, Jia X, Kim SM, Shi Y. 80.  et al. 2012. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12:161–66 [Google Scholar]
  81. Han W-Q, Yu H-G, Liu Z. 81.  2011. Convert graphene sheets to boron nitride and boron nitride–carbon sheets via a carbon-substitution reaction. Appl. Phys. Lett. 98:203112 [Google Scholar]
  82. Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D. 82.  2011. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 5:6507–15 [Google Scholar]
  83. Fujita D, Homma T. 83.  1988. Characterization and thermal desorption spectroscopy study on a new, low outgassing material surface for improved ultrahigh vacuum uses. J. Vac. Sci. Technol. A 6:230–34 [Google Scholar]
  84. Yoshihara K, Tosa M, Nii K. 84.  1985. Surface precipitation of boron nitride on the surface of type 304 stainless steels doped with nitrogen, boron, and cerium. J. Vac. Sci. Technol. A 3:1804–8 [Google Scholar]
  85. Minami Y, Tohyama A, Yamada T. 85.  1989. Effect of some elements and temperature on the surface segregation of boron nitride. J. Vac. Sci. Technol. A 7:1585–88 [Google Scholar]
  86. Xu M, Fujita D, Chen H, Hanagata N. 86.  2011. Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nanoscale 3:2854–58 [Google Scholar]
  87. Zhao Z, Yang Z, Wen Y, Wang Y. 87.  2011. Facile synthesis and characterization of hexagonal boron nitride nanoplates by two-step route. J. Am. Ceram. Soc. 94:4496–501 [Google Scholar]
  88. Nag A, Raidongia K, Hembram KPSS, Datta R, Waghmare UV, Rao CNR. 88.  2010. Graphene analogues of BN: novel synthesis and properties. ACS Nano 4:1539–44 [Google Scholar]
  89. Wang X, Zhi C, Li L, Zeng H, Li C. 89.  et al. 2011. “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets. Adv. Mater. 23:4072–76 [Google Scholar]
  90. Sutter P, Lahiri J, Zahl P, Wang B, Sutter E. 90.  2012. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 13:276–81 [Google Scholar]
  91. Sen R, Satishkumar BC, Govindaraj A, Harikumar KR, Raina G. 91.  et al. 1998. B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287:671–76 [Google Scholar]
  92. Suenaga K, Colliex C, Demoncy N, Loiseau A, Pascard H, Willaime F. 92.  1997. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278:653–55 [Google Scholar]
  93. Shelimov KB, Moskovits M. 93.  1999. Composite nanostructures based on template-grown boron nitride nanotubules. Chem. Mater. 12:250–54 [Google Scholar]
  94. Raidongia K, Hembram KPSS, Waghmare UV, Eswaramoorthy M, Rao CNR. 94.  2010. Synthesis, structure, and properties of mesoporous B/C/N microspheres. Z. Anorg. Allg. Chem. 636:30–35 [Google Scholar]
  95. Vinu A, Terrones M, Golberg D, Hishita S, Ariga K, Mori T. 95.  2005. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem. Mater. 17:5887–90 [Google Scholar]
  96. Portehault D, Giordano C, Gervais C, Senkovska I, Kaskel S. 96.  et al. 2010. High-surface-area nanoporous boron carbon nitrides for hydrogen storage. Adv. Funct. Mater. 20:1827–33 [Google Scholar]
  97. Liu H, Ye PD. 97.  2011. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as to-gate dielectric. arXiv 1112.4397 [cond-mat.mtrl-sci]
  98. Tang S, Wang H, Zhang Y, Li A, Xie H. 98.  et al. 2013. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 3:1–7 [Google Scholar]
  99. Song L, Liu Z, Reddy ALM, Narayanan NT, Taha-Tijerina J. 99.  et al. 2012. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 24:4878–95 [Google Scholar]
  100. Kumar N, Moses K, Pramoda K, Shirodkar SNS, Mishra AK. 100.  et al. 2013. Borocarbonitrides, BxCyNz. J. Mater. Chem. A 1:5806–21 [Google Scholar]
  101. Osada M, Sasaki T. 101.  2012. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24:210–28 [Google Scholar]
  102. Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T. 102.  et al. 2006. High-κ dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 18:1023–27 [Google Scholar]
  103. Ataca C, Şahin H, Ciraci S. 103.  2012. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116:8983–99 [Google Scholar]
  104. Sasaki T, Watanabe M. 104.  1998. Osmotic swelling to exfoliation. exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120:4682–89 [Google Scholar]
  105. Maeda K, Mallouk TE. 105.  2009. Comparison of two- and three-layer restacked Dion-Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution. J. Mater. Chem. A 19:4813–18 [Google Scholar]
  106. Wang W-S, Wang D-H, Qu W-G, Lu L-Q, Xu A-W. 106.  2012. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116:19893–901 [Google Scholar]
  107. Ma R, Sasaki T. 107.  2010. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22:5082–104 [Google Scholar]
  108. Chen JS, Lou XW. 108.  2012. SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater. Today 15:246–54 [Google Scholar]
  109. Pacchioni G. 109.  2012. Two-dimensional oxides: multifunctional materials for advanced technologies. Chem. Eur. J. 18:10144–58 [Google Scholar]
  110. Sreedhara MB, Matte HSSR, Govindaraj A, Rao CNR. 110.  2013. Synthesis, characterization, and properties of few-layer MoO3. Chem. Asian J. 8:2430–35 [Google Scholar]
  111. Sreedhara MB, Prasad BE, Moirangthem M, Murugavel R, Rao CNR. 111.  2015. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds. J. Solid State Chem. 22421–27
  112. Mohan Ram RA, Ganguly P, Rao CNR. 112.  1987. Magnetic properties of quasi-two-dimensional La1−xSr1+xMnO4 and the evolution of itinerant electron ferromagnetism in the SrO·(La1−xSrxMnO3)n system. J. Solid State Chem. 70:82–87 [Google Scholar]
  113. Rao CNR, Ganguly P, Singh KK, Ram RAM. 113.  1988. A comparative study of the magnetic and electrical properties of perovskite oxides and the corresponding two-dimensional oxides of K2NiF4 structure. J. Solid State Chem. 72:14–23 [Google Scholar]
  114. Cheetham AK, Férey G, Loiseau T. 114.  1999. Open-framework inorganic materials. Angew. Chem. Int. Ed. 38:3268–92 [Google Scholar]
  115. Rao CNR, Natarajan S, Vaidhyanathan R. 115.  2004. Metal carboxylates with open architectures. Angew. Chem. Int. Ed. 43:1466–96 [Google Scholar]
  116. Ferey G. 116.  2008. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37:191–214 [Google Scholar]
  117. Murugavel R, Choudhury A, Walawalkar MG, Pothiraja R, Rao CNR. 117.  2008. Metal complexes of organophosphate esters and open-framework metal phosphates: synthesis, structure, transformations, and applications. Chem. Rev. 108:3549–655 [Google Scholar]
  118. Rao CNR, Behera JN, Dan M. 118.  2006. Organically-templated metal sulfates, selenites and selenates. Chem. Soc. Rev. 35:375–87 [Google Scholar]
  119. Rao CNR, Cheetham AK, Thirumurugan A. 119.  2008. Hybrid inorganic–organic materials: a new family in condensed matter physics. J. Phys. Condens. Matter 20:083202 [Google Scholar]
  120. Li P-Z, Maeda Y, Xu Q. 120.  2011. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 47:8436–38 [Google Scholar]
  121. Tan J-C, Saines PJ, Bithell EG, Cheetham AK. 121.  2012. Hybrid nanosheets of an inorganic-organic framework material: facile synthesis, structure, and elastic properties. ACS Nano 6:615–21 [Google Scholar]
  122. Murugavel R, Singh MP. 122.  2006. Novel layered copper phosphoramidate, which contains six-membered rings made of five different elements. Inorg. Chem. 45:9154–56 [Google Scholar]
  123. Wilson JA, Yoffe AD. 123.  1969. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18:193–335 [Google Scholar]
  124. Splendiani A, Sun L, Zhang Y, Li T, Kim J. 124.  et al. 2010. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10:1271–75 [Google Scholar]
  125. Mak KF, Lee C, Hone J, Shan J, Heinz TF. 125.  2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105:136805 [Google Scholar]
  126. Korn T, Heydrich S, Hirmer M, Schmutzler J, Schuller C. 126.  2011. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99:102109 [Google Scholar]
  127. Coehoorn R, Haas C, de Groot RA. 127.  1987. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35:6203–6 [Google Scholar]
  128. Coehoorn R, Haas C, Dijkstra J, Flipse CJF, de Groot RA, Wold A. 128.  1987. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35:6195–202 [Google Scholar]
  129. Ramasubramaniam A, Naveh D, Towe E. 129.  2011. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84:205325 [Google Scholar]
  130. Scalise E, Houssa M, Pourtois G, Afanas'ev V, Stesmans A. 130.  2012. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5:43–48 [Google Scholar]
  131. Bhattacharyya S, Singh AK. 131.  2012. Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Phys. Rev. B 86:075454 [Google Scholar]
  132. Yun WS, Han SW, Hong SC, Kim IG, Lee JD. 132.  2012. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85:033305 [Google Scholar]
  133. Dey S, Matte HSSR, Shirodkar S, Waghmare UV, Rao CNR. 133.  2013. Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. Chem. Asian J. 8:1780 [Google Scholar]
  134. Chakraborty B, Bera A, Muthu DVS, Bhowmick S, Waghmare UV, Sood AK. 134.  2012. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85:161403 [Google Scholar]
  135. Moses K, Shirodkar S, Waghmare UV, Rao CNR. 135.  2014. Composition-dependent photoluminescence and electronic structure of 2-dimensional borocarbonitrides. Mater. Res. Exp. 1:025603 [Google Scholar]
  136. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L. 136.  et al. 2011. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7:465–68 [Google Scholar]
  137. Lee HS, Min S-W, Chang Y-G, Park MK, Nam T. 137.  et al. 2012. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12:3695–700 [Google Scholar]
  138. Molina-Sánchez A, Wirtz L. 138.  2011. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84:155413 [Google Scholar]
  139. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. 139.  2010. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–700 [Google Scholar]
  140. Chakraborty B, Matte HSSR, Sood AK, Rao CNR. 140.  2012. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 44:92–96 [Google Scholar]
  141. Livneh T, Sterer E. 141.  2010. Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81:195209 [Google Scholar]
  142. Sekine T, Uchinokura K, Nakashizu T, Matsuura E, Yoshizaki R. 142.  1984. Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 53:811–18 [Google Scholar]
  143. Late DJ, Shirodkar SN, Waghmare UV, Dravid VP, Rao CNR. 143.  2014. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. ChemPhysChem 15:1592–98 [Google Scholar]
  144. Tongay S, Zhou J, Ataca C, Lo K, Matthews TS. 144.  et al. 2012. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12:5576–80 [Google Scholar]
  145. Sahin H, Tongay S, Horzum S, Fan W, Zhou J. 145.  et al. 2013. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 87:165409 [Google Scholar]
  146. Sahoo S, Gaur APS, Ahmadi M, Guinel MJF, Katiyar RS. 146.  2013. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. B 117:9042–47 [Google Scholar]
  147. Lanzillo NA, Birdwell AG, Amani M, Crowne FJ, Shah PB. 147.  et al. 2013. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 103:093102 [Google Scholar]
  148. Najmaei S, Liu Z, Ajayan PM, Lou J. 148.  2012. Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100:013106 [Google Scholar]
  149. Najmaei S, Ajayan PM, Lou J. 149.  2013. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. Nanoscale 5:9758–63 [Google Scholar]
  150. Vasu K, Matte HSSR, Shirodkar SN, Jayaram V, Reddy KPJ. 150.  et al. 2013. Effect of high-temperature shock-wave compression on few-layer MoS2, WS2 and MoSe2. Chem. Phys. Lett. 582:105–9 [Google Scholar]
  151. Panich AM, Shames AI, Rosentsveig R, Tenne R. 151.  2009. A magnetic resonance study of MoS2 fullerene-like nanoparticles. J. Phys. Condens. Matter 21:395301 [Google Scholar]
  152. Murugan P, Kumar V, Kawazoe Y, Ota N. 152.  2005. Atomic structures and magnetism in small MoS2 and WS2 clusters. Phys. Rev. A 71:063203 [Google Scholar]
  153. Zhang J, Soon JM, Loh KP, Yin J, Ding J. 153.  et al. 2007. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 7:2370–76 [Google Scholar]
  154. Li D, Zhang C, Du G, Zeng R, Wang S. 154.  et al. 2012. Enhanced electrochemical performance of MoS2 for lithium ion batteries by simple chemical lithiation. J. Chin. Chem. Soc. 59:1196–200 [Google Scholar]
  155. Tongay S, Varnoosfaderani SS, Appleton BR, Wu J, Hebard AF. 155.  2012. Magnetic properties of MoS2: existence of ferromagnetism. Appl. Phys. Lett. 101:123105 [Google Scholar]
  156. Mathew S, Gopinadhan K, Chan TK, Yu XJ, Zhan D. 156.  et al. 2012. Magnetism in MoS2 induced by proton irradiation. Appl. Phys. Lett. 101:102103 [Google Scholar]
  157. Vojvodic A, Hinnemann B, Nørskov JK. 157.  2009. Magnetic edge states in MoS2 characterized using density-functional theory. Phys. Rev. B 80:125416 [Google Scholar]
  158. Rao CNR, Matte HSSR, Subrahmanyam KS, Maitra U. 158.  2012. Unusual magnetic properties of graphene and related materials. Chem. Sci. 3:45–52 [Google Scholar]
  159. Li Y, Zhou Z, Zhang S, Chen Z. 159.  2008. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130:16739–44 [Google Scholar]
  160. Sun L, Yan J, Zhan D, Liu L, Hu H. 160.  et al. 2013. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111:126801 [Google Scholar]
  161. Dev P, Xue Y, Zhang P. 161.  2008. Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys. Rev. Lett. 100:117204 [Google Scholar]
  162. Song B, Han JC, Jian JK, Li H, Wang YC. 162.  et al. 2009. Experimental observation of defect-induced intrinsic ferromagnetism in III–V nitrides: the case of BN. Phys. Rev. B 80:153203 [Google Scholar]
  163. Schwierz F. 163.  2012. Graphene transistors. Nat. Nanotechnol. 5:487–96 [Google Scholar]
  164. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV. 164.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:10451–53 [Google Scholar]
  165. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 165.  2011. Single-layer MoS2 transistors. Nat. Nanotechnol. 6:147–50 [Google Scholar]
  166. Late DJ, Liu B, Matte HSSR, Dravid VP, Rao CNR. 166.  2012. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–41 [Google Scholar]
  167. Qiu H, Pan L, Yao Z, Li J, Shi Y, Wang X. 167.  2012. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100:123104 [Google Scholar]
  168. Min S-W, Lee HS, Choi HJ, Park MK, Nam T. 168.  et al. 2013. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance. Nanoscale 5:548–51 [Google Scholar]
  169. Pu J, Yomogida Y, Liu K-K, Li L-J, Iwasa Y, Takenobu T. 169.  2012. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12:4013–17 [Google Scholar]
  170. Zhang Y, Ye J, Matsuhashi Y, Iwasa Y. 170.  2012. Ambipolar MoS2 thin flake transistors. Nano Lett. 12:1136–40 [Google Scholar]
  171. Lee K, Kim H-Y, Lotya M, Coleman JN, Kim G-T, Duesberg GS. 171.  2011. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater. 23:4178–82 [Google Scholar]
  172. Ghatak S, Pal AN, Ghosh A. 172.  2011. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–12 [Google Scholar]
  173. Radisavljevic B, Whitwick MB, Kis A. 173.  2012. Small-signal amplifier based on single-layer MoS2. Appl. Phys. Lett. 101:043103 [Google Scholar]
  174. Yu WJ, Li Z, Zhou H, Chen Y, Wang Y. 174.  et al. 2013. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12:246–52 [Google Scholar]
  175. Li H, Wu J, Yin Z, Zhang H. 175.  2014. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47:1067–75 [Google Scholar]
  176. He Q, Zeng Z, Yin Z, Li H, Wu S. 176.  et al. 2012. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8:2994–99 [Google Scholar]
  177. Wu S, Zeng Z, He Q, Wang Z, Wang SJ. 177.  et al. 2012. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8:2264–70 [Google Scholar]
  178. Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN. 178.  et al. 2013. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–91 [Google Scholar]
  179. Choi W, Cho MY, Konar A, Lee JH, Cha G-B. 179.  et al. 2012. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24:5832–36 [Google Scholar]
  180. Xu H, Wu J, Chen Y, Zhang H, Zhang J. 180.  2013. Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene pn junctions. Chem. Asian J. 8:2446–52 [Google Scholar]
  181. Lee G-H, Yu Y-J, Cui X, Petrone N, Lee C-H. 181.  et al. 2013. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7:7931–36 [Google Scholar]
  182. Hwang WS, Remskar M, Yan R, Protasenko V, Tahy K. 182.  et al. 2012. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101:013107 [Google Scholar]
  183. Larentis S, Fallahazad B, Tutuc E. 183.  2012. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101:223104 [Google Scholar]
  184. Podzorov V, Gershenson ME, Kloc C, Zeis R, Bucher E. 184.  2004. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84:3301–3 [Google Scholar]
  185. Fang H, Chuang S, Chang TC, Takei K, Takahashi T, Javey A. 185.  2012. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12:3788–92 [Google Scholar]
  186. Soon JM, Loh KP. 186.  2007. Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid State Lett. 10:A250–54 [Google Scholar]
  187. Ramadoss A, Kim T, Kim G-S, Kim SJ. 187.  2014. Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New J. Chem. 38:2379–85 [Google Scholar]
  188. Huang K-J, Wang L, Liu Y-J, Liu Y-M, Wang H-B. 188.  et al. 2013. Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int. J. Hydrog. Energy 38:14027–34 [Google Scholar]
  189. da Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC. 189.  et al. 2014. Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv. Energy Mater. 4:1301380 [Google Scholar]
  190. Cao L, Yang S, Gao W, Liu Z, Gong Y. 190.  et al. 2013. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9:2905–10 [Google Scholar]
  191. Gopalakrishnan K, Moses K, Govindaraj A, Rao CNR. 191.  2013. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides. Solid State Commun. 175–176:43–50 [Google Scholar]
  192. Haering RR, Stiles JAR, Brandt K. 192.  1980. Lithium molybdenum disulphide battery cathode US Patent 4224390
  193. Du G, Guo Z, Wang S, Zeng R, Chen Z, Liu H. 193.  2010. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46:1106–8 [Google Scholar]
  194. Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H. 194.  2009. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 44:1811–15 [Google Scholar]
  195. Hwang H, Kim H, Cho J. 195.  2011. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11:4826–30 [Google Scholar]
  196. Julien CM. 196.  2003. Lithium intercalated compounds: charge transfer and related properties. Mater. Sci. Eng. R 40:47–102 [Google Scholar]
  197. Yebka B, Julien C. 197.  1996. Studies of lithium intercalation in 3R-WS2. Solid State Ionics 90:141–49 [Google Scholar]
  198. Feng C, Huang L, Guo Z, Liu H. 198.  2007. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem. Commun. 9:119–22 [Google Scholar]
  199. Seo J-W, Jun Y-W, Park S-W, Nah H, Moon T. 199.  et al. 2007. Two-dimensional nanosheet crystals. Angew. Chem. Int. Ed. 46:8828–31 [Google Scholar]
  200. Bhandavat R, David L, Singh G. 200.  2012. Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3:1523–30 [Google Scholar]
  201. Liu H, Su D, Wang G, Qiao SZ. 201.  2012. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 22:17437–40 [Google Scholar]
  202. Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A. 202.  et al. 2008. Uptake of H2 and CO2 by graphene. J. Phys. Chem. C 112:15704–7 [Google Scholar]
  203. Chang K, Chen W. 203.  2011. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47:4252–54 [Google Scholar]
  204. Das SK, Mallavajula R, Jayaprakash N, Archer LA. 204.  2012. Self-assembled MoS2-carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance. J. Mater. Chem. 22:12988–92 [Google Scholar]
  205. Feng J, Sun X, Wu C, Peng L, Lin C. 205.  et al. 2011. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133:17832–38 [Google Scholar]
  206. Chang K, Chen W, Ma L, Li H, Li H. 206.  et al. 2011. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 21:6251–57 [Google Scholar]
  207. Chang K, Chen W. 207.  2011. l-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–28 [Google Scholar]
  208. Shiva K, Matte HSSR, Rajendra HB, Bhattacharyya AJ, Rao CNR. 208.  2013. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy 2:787–93 [Google Scholar]
  209. Chang K, Geng D, Li X, Yang J, Tang Y. 209.  et al. 2013. Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater. 3:839–44 [Google Scholar]
  210. David L, Bhandavat R, Singh G. 210.  2014. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–70 [Google Scholar]
  211. Sen S, Moses K, Bhattacharyya AJ, Rao CNR. 211.  2014. Excellent performance of few-layer borocarbonitrides as anode materials in lithium-ion batteries. Chem. Asian J. 9:100–3 [Google Scholar]
  212. Prins R. 212.  2001. Catalytic hydrodenitrogenation. Adv. Catal. 46:399–464 [Google Scholar]
  213. Lauritsen JV, Nyberg M, Nørskov JK, Clausen BS, Topsøe H. 213.  et al. 2004. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J. Catal. 224:94–106 [Google Scholar]
  214. Tsverin Y, Popovitz-Biro R, Feldman Y, Tenne R, Komarneni MR. 214.  et al. 2012. Synthesis and characterization of WS2 nanotube supported cobalt catalyst for hydrodesulfurization. Mater. Res. Bull. 47:1653–60 [Google Scholar]
  215. Rao BG, Matte HSSR, Chaturbedy P, Rao CNR. 215.  2013. Hydrodesulfurization of thiophene over few-layer MoS2 covered with Co and Ni nanoparticles. ChemPlusChem 78:419–22 [Google Scholar]
  216. Zhong X, Yang H, Guo S, Li S, Gou G. 216.  et al. 2012. In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. J. Mater. Chem. 22:13925–27 [Google Scholar]
  217. Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB. 217.  et al. 2013. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12:850–55 [Google Scholar]
  218. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH. 218.  et al. 2005. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127:5308–9 [Google Scholar]
  219. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. 219.  2007. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–2 [Google Scholar]
  220. Ataca C, Ciraci S. 220.  2012. Dissociation of H2O at the vacancies of single-layer MoS2. Phys. Rev. B 85:195410 [Google Scholar]
  221. Merki D, Hu X. 221.  2011. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4:3878–88 [Google Scholar]
  222. Laursen AB, Kegnaes S, Dahl S, Chorkendorff I. 222.  2012. Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5:5577–91 [Google Scholar]
  223. Merki D, Fierro S, Vrubel H, Hu X. 223.  2011. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2:1262–67 [Google Scholar]
  224. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. 224.  2012. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11:963–69 [Google Scholar]
  225. Lau VW-H, Masters AF, Bond AM, Maschmeyer T. 225.  2012. Ionic-liquid-mediated active-site control of MoS2 for the electrocatalytic hydrogen evolution reaction. Chem. Eur. J. 18:8230–39 [Google Scholar]
  226. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. 226.  2011. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133:7296–99 [Google Scholar]
  227. Firmiano EGS, Cordeiro MAL, Rabelo AC, Dalmaschio CJ, Pinheiro AN. 227.  et al. 2012. Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem. Commun. 48:7687–89 [Google Scholar]
  228. Zong X, Yan H, Wu G, Ma G, Wen F. 228.  et al. 2008. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130:7176–77 [Google Scholar]
  229. Zong X, Wu G, Yan H, Ma G, Shi J. 229.  et al. 2010. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114:1963–68 [Google Scholar]
  230. Frame FA, Osterloh FE. 230.  2010. CdSe-MoS2: a quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 114:10628–33 [Google Scholar]
  231. Zhou W, Yin Z, Du Y, Huang X, Zeng Z. 231.  et al. 2013. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–47 [Google Scholar]
  232. Min S, Lu G. 232.  2012. Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets—the role of graphene. J. Phys. Chem. C 116:25415–24 [Google Scholar]
  233. Xiang Q, Yu J, Jaroniec M. 233.  2012. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134:6575–78 [Google Scholar]
  234. Meng F, Li J, Cushing SK, Zhi M, Wu N. 234.  2013. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135:10286–89 [Google Scholar]
  235. Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A. 235.  et al. 2014. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7:2608–13 [Google Scholar]
  236. Voiry D, Salehi M, Silva R, Fujita T, Chen M. 236.  et al. 2013. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13:6222–27 [Google Scholar]
  237. Moses K, Kiran V, Sampath S, Rao CNR. 237.  2014. Few-layer borocarbonitride nanosheets: platinum-free catalyst for the oxygen reduction reaction. Chem. Asian J. 9:838–43 [Google Scholar]
  238. Kumar N, Subrahmanyam KS, Chaturbedy P, Raidongia K, Govindaraj A. 238.  et al. 2011. Remarkable uptake of CO2 and CH4 by graphene-like borocarbonitrides, BxCyNz. ChemSusChem 4:1662–70 [Google Scholar]
  239. Zeng H, Dai J, Yao W, Xiao D, Cui X. 239.  2012. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7:490–93 [Google Scholar]
  240. Mak KF, He K, Shan J, Heinz TF. 240.  2012. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7:494–98 [Google Scholar]
  241. Mak KF, He K, Lee C, Lee GH, Hone J. 241.  et al. 2013. Tightly bound trions in monolayer MoS2. Nat. Mater. 12:207–11 [Google Scholar]
  242. Roldán R, Cappelluti E, Guinea F. 242.  2013. Interactions and superconductivity in heavily doped MoS2. Phys. Rev. B 88:054515 [Google Scholar]
  243. Taniguchi K, Matsumoto A, Shimotani H, Takagi H. 243.  2012. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. 101:042603 [Google Scholar]
  244. Shirodkar SN, Waghmare UV. 244.  2014. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112:157601 [Google Scholar]
  245. Kashid RV, Late DJ, Chou SS, Huang Y-K, De M. 245.  et al. 2013. Enhanced field-emission behavior of layered MoS2 sheets. Small 9:2730–34 [Google Scholar]
  246. Bertolazzi S, Brivio J, Kis A. 246.  2011. Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9 [Google Scholar]
  247. Castellanos-Gomez A, Poot M, Steele GA, van der Zant HSJ, Agraït N, Rubio-Bollinger G. 247.  2012. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24:772–75 [Google Scholar]
  248. Castellanos-Gomez A, van Leeuwen R, Buscema M, van der Zant HSJ, Steele GA, Venstra WJ. 248.  2013. Mechanical resonators: single-layer MoS2 mechanical resonators. Adv. Mater. 25:6719–23 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070214-021141
Loading
/content/journals/10.1146/annurev-matsci-070214-021141
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error