1932

Abstract

Understanding and predicting materials corrosion under electrochemical environments are of increasing importance to both established and developing industries and technologies, including construction, marine materials, geology, and biomedicine, as well as to energy generation, storage, and conversion. Owing to recent progress in the accuracy and capability of density functional theory (DFT) calculations to describe the thermodynamic stability of materials, this powerful computational tool can be used both to describe materials corrosion and to design materials with the desired corrosion resistance by using first-principles electrochemical phase diagrams. We review the progress in simulating electrochemical phase diagrams of bulk solids, surface systems, and point defects in materials using DFT methods as well as the application of these ab initio phase diagrams in realistic environments. We conclude by summarizing the remaining challenges in the thermodynamic modeling of materials corrosion and promising future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-010105
2019-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-010105.html?itemId=/content/journals/10.1146/annurev-matsci-070218-010105&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Leyens C, Peters M 2003. Titanium and Titanium Alloys: Fundamentals and Applications Weinheim, Ger.: Wiley-VCH
  2. 2.
    Argon AS 2008. Strengthening Mechanisms in Crystal Plasticity New York: Oxford Univ. Press
  3. 3.
    Gupta M, Sharon NML 2011. Magnesium, Magnesium Alloys, and Magnesium Composites Hoboken, NJ: John Wiley & Sons
  4. 4.
    Niinomi M, Nakai M, Hieda J 2012. Development of new metallic alloys for biomedical applications. Acta Biomater. 8:3888–903
    [Google Scholar]
  5. 5.
    Kudo A, Miseki Y 2009. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38:253–78
    [Google Scholar]
  6. 6.
    Wang G, Zhang L, Zhang J 2012. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41:797–828
    [Google Scholar]
  7. 7.
    Trotochaud L, Young SL, Ranney JK, Boettcher SW 2014. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136:6744–53
    [Google Scholar]
  8. 8.
    Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA et al. 2015. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6:3737–42
    [Google Scholar]
  9. 9.
    Hellman A, Wang B 2017. First-principles view on photoelectrochemistry: water-splitting as case study. Inorganics 5:37
    [Google Scholar]
  10. 10.
    Syrett BC, Acharya A 1979. Corrosion and Degradation of Implant Materials Philadelphia: Am. Soc. Test. Mater.
  11. 11.
    Davis JR 2000. Corrosion: Understanding the Basics Materials Park, OH: ASM Int.
  12. 12.
    Grunette DM, Tengval P, Textor M, Thomsen P 2001. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications Berlin: Springer
  13. 13.
    Scully JR 2015. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling. Faraday Discuss. 180:577–93
    [Google Scholar]
  14. 14.
    Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS et al. 2017. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 89:92–193
    [Google Scholar]
  15. 15.
    Beinlich A, Austrheim H, Mavromatis V, Grguric B, Putnis CV, Putnis A 2018. Peridotite weathering is the missing ingredient of Earth's continental crust composition. Nat. Commun. 9:634
    [Google Scholar]
  16. 16.
    Hou B, Li X, Ma X, Du C, Zhang D et al. 2017. The cost of corrosion in China. NPJ Mater. Degrad. 1:4
    [Google Scholar]
  17. 17.
    Clarivate Analytics 2018. Web of knowledge https://clarivate.com/products/web-of-science/
  18. 18.
    United Nations 2017. World population ageing 2017 Rep., United Nations
  19. 19.
    Hoar TP, Mears DC 1966. Corrosion-resistant alloys in chloride solutions: materials for surgical implants. Proc. R. Soc. A Math. Phys. Eng. Sci. 294:486–510
    [Google Scholar]
  20. 20.
    Pourbaix M 1984. Electrochemical corrosion of metallic biomaterials. Biomaterials 5:122–34
    [Google Scholar]
  21. 21.
    Jacobs JJ, Gilbert JL, Urban RM 1998. Current concepts review—corrosion of metal orthopaedic implants. J. Bone Joint Surg. 80:268–82
    [Google Scholar]
  22. 22.
    Han Y, Hong SH, Xu K 2003. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. Coat. Technol. 168:249–58
    [Google Scholar]
  23. 23.
    Liu X, Chu PK, Ding C 2004. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 47:49–121
    [Google Scholar]
  24. 24.
    Geetha M, Singh AK, Asokamani R, Gogia AK 2009. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54:397–425
    [Google Scholar]
  25. 25.
    Banerjee D, Williams JC 2013. Perspectives on titanium science and technology. Acta Mater. 61:844–79
    [Google Scholar]
  26. 26.
    Frankel GS 1998. Pitting corrosion of metals: a review of the critical factors. J. Electrochem. Soc. 145:2186–98
    [Google Scholar]
  27. 27.
    Marks L 2018. Competitive chloride chemisorption disrupts hydrogen bonding networks: DFT, crystallography, thermodynamics, and morphological consequences. Corrosion 74:295–311
    [Google Scholar]
  28. 28.
    Taylor CD, Marcus P 2015. Molecular Modeling of Corrosion Processes Hoboken, NJ: John Wiley & Sons
  29. 29.
    Maurice V, Marcus P 2018. Progress in corrosion science at atomic and nanometric scales. Prog. Mater. Sci. 95:132–71
    [Google Scholar]
  30. 30.
    Pourbaix M 1966. Atlas of Electrochemical Equilibria in Aqueous Solutions Oxford, UK: Pergamon Press
  31. 31.
    Beverskog B, Puigdomenech I 1996. Revised Pourbaix diagrams for iron at 25–300. Corros. Sci. 38:2121–35
    [Google Scholar]
  32. 32.
    Beverskog B, Puigdomenech I 1997. Revised Pourbaix diagrams for nickel at 25–300. Corros. Sci. 39:969–80
    [Google Scholar]
  33. 33.
    Beverskog B, Puigdomenech I 1997. Revised Pourbaix diagrams for chromium at 25–300C. Corros. Sci. 39:43–57
    [Google Scholar]
  34. 34.
    Muñoz-Portero MJ, García-Antón J, Guiñón JL, Pérez-Herranz V 2007. Pourbaix diagrams for nickel in concentrated aqueous lithium bromide solutions at 25C. Corrosion 63:625–34
    [Google Scholar]
  35. 35.
    Muñoz Portero MJ, García-Antón J, Guiñón JL, Leiva-García R 2011. Pourbaix diagrams for titanium in concentrated aqueous lithium bromide solutions at 25C. Corros. Sci. 53:1440–50
    [Google Scholar]
  36. 36.
    Cook WG, Olive RP 2012. Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions. Corros. Sci. 58:284–90
    [Google Scholar]
  37. 37.
    Nickchi T, Alfantazi A 2013. Potential-temperature (T) diagrams for iron, nickel, and chromium in sulfate solutions up to 473 K. Electrochim. Acta 104:69–77
    [Google Scholar]
  38. 38.
    Santucci RJ, McMahon ME, Scully JR 2018. Utilization of chemical stability diagrams for improved understanding of electrochemical systems: evolution of solution chemistry towards equilibrium. NPJ Mater. Degrad. 2:1
    [Google Scholar]
  39. 39.
    Morel F, Morgan J 1972. A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Technol. 6:58–67
    [Google Scholar]
  40. 40.
    Bard AJ, Faulkner LR 2000. Electrochemical Methods: Fundamentals and Applications New York: John Wiley & Sons. 2nd ed.
  41. 41.
    Huang LF, Rondinelli JM 2015. Electrochemical phase diagrams for Ti oxides from density functional calculations. Phys. Rev. B 92:245126
    [Google Scholar]
  42. 42.
    Van de Walle CG, Neugebauer J 2003. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423:626–28
    [Google Scholar]
  43. 43.
    Alkauskas A, Broqvist P, Pasquarello A 2008. Defect energy levels in density functional calculations: alignment and band gap problem. Phys. Rev. Lett. 101:046405
    [Google Scholar]
  44. 44.
    Cheng J, Sprik M 2012. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14:11245–67
    [Google Scholar]
  45. 45.
    Chen S, Wang LW 2012. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24:3659–66
    [Google Scholar]
  46. 46.
    Cheng J, VandeVondele J 2016. Calculation of electrochemical energy levels in water using the random phase approximation and a double hybrid functional. Phys. Rev. Lett. 116:086402
    [Google Scholar]
  47. 47.
    Pham TA, Ping Y, Galli G 2017. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16:401–8
    [Google Scholar]
  48. 48.
    Huang LF, Hutchison MJ, Santucci RJ, Scully JR, Rondinelli JM 2017. Improved electrochemical phase diagrams from theory and experiment: the Ni-water system and its complex compounds. J. Phys. Chem. C 121:9782–89
    [Google Scholar]
  49. 49.
    Chen BR, Sun W, Kitchaev DA, Mangum JS, Thampy V et al. 2018. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 9:2553
    [Google Scholar]
  50. 50.
    Chivot J, Mendoza L, Mansour C, Pauporté T, Cassir M 2008. New insight in the behaviour of Co-HO system at 25–150C, based on revised Pourbaix diagrams. Corros. Sci. 50:62–69
    [Google Scholar]
  51. 51.
    Cook WG, Olive RP 2012. Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions. Corros. Sci. 55:326–31
    [Google Scholar]
  52. 52.
    Cook WG, Olive RP 2012. Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions. Corros. Sci. 58:291–98
    [Google Scholar]
  53. 53.
    Persson KA, Waldwick B, Lazic P, Ceder G 2012. Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys. Rev. B 85:235438
    [Google Scholar]
  54. 54.
    Zinkle SJ, Snead LL 2014. Designing radiation resistance in materials for fusion energy. Annu. Rev. Mater. Res. 44:241–67
    [Google Scholar]
  55. 55.
    Rondinelli JM, Kioupakis E 2015. Predicting and designing optical properties of inorganic materials. Annu. Rev. Mater. Res. 45:491–518
    [Google Scholar]
  56. 56.
    Samsonov GV 1973. The Oxide Handbook New York: IFI/Plenum Press
  57. 57.
    Burgess J 1978. Metal Ions in Solution Chichester, UK: Ellis Horwood
  58. 58.
    Bard AJ, Parsons R, Jordan J 1985. Standard Potentials in Aqueous Solution New York: Marcel Dekker
  59. 59.
    Kubaschewski O, Alcock CB, Spencer PJ 1993. Materials Thermochemistry Oxford, UK: Pergamon Press
  60. 60.
    Chase MW 1998. NIST-JANAF Thermochemical Tables New York: Am. Inst. Phys. 4th ed.
  61. 61.
    Mochizuki S, Saito T 2009. Intrinsic and defect-related luminescence of NiO. Physica B 404:4850–53
    [Google Scholar]
  62. 62.
    Hohenberg P, Kohn W 1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71
    [Google Scholar]
  63. 63.
    Kohn W, Sham LJ 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38
    [Google Scholar]
  64. 64.
    Martin RM 2004. Electronic Structure: Basic Theory and Practical Methods Cambridge, UK: Cambridge Univ. Press
  65. 65.
    Jones RO, Gunnarsson O 1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61:689–746
    [Google Scholar]
  66. 66.
    Jones RO 2015. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87:897–923
    [Google Scholar]
  67. 67.
    Ceperley DM, Alder BJ 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:566–69
    [Google Scholar]
  68. 68.
    Perdew JP, Zunger A 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:5048–79
    [Google Scholar]
  69. 69.
    Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  70. 70.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE et al. 2008. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100:136406
    [Google Scholar]
  71. 71.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE 2003. Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401
    [Google Scholar]
  72. 72.
    Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J 2009. Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 103:026403
    [Google Scholar]
  73. 73.
    Sun J, Haunschild R, Xiao B, Bulik IW, Scuseria GE, Perdew JP 2013. Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J. Chem. Phys. 138:044113
    [Google Scholar]
  74. 74.
    Sun J, Ruzsinszky A, Perdew JP 2015. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115:036402
    [Google Scholar]
  75. 75.
    Becke AD 1993. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98:1372–77
    [Google Scholar]
  76. 76.
    Paier J, Marsman M, Kresse G 2007. Why does the B3LYP hybrid functional fail for metals?. J. Chem. Phys. 127:024103
    [Google Scholar]
  77. 77.
    Perdew JP, Ernzerhof M, Burke K 1996. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105:9982–85
    [Google Scholar]
  78. 78.
    Heyd J, Scuseria GE, Ernzerhof M 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15
    [Google Scholar]
  79. 79.
    Heyd J, Scuseria GE, Ernzerhof M 2006. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124:219906
    [Google Scholar]
  80. 80.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE 2006. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 125:074106
    [Google Scholar]
  81. 81.
    Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG 2006. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124:154709
    [Google Scholar]
  82. 82.
    Mardirossian N, Head-Gordon M 2017. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115:2315–72
    [Google Scholar]
  83. 83.
    Su NQ, Xu X 2017. Development of new density functional approximations. Annu. Rev. Phys. Chem. 68:155–82
    [Google Scholar]
  84. 84.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI 1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA method. J. Phys. Condens. Matter 9:767–808
    [Google Scholar]
  85. 85.
    Campo VL Jr., Cococcioni M 2010. Extended +U+V method with on-site and inter-site electronic interactions. J. Phys. Condens. Matter 22:055602
    [Google Scholar]
  86. 86.
    Wang L, Maxisch T, Ceder G 2006. Oxidation energies of transition metal oxides within the framework. Phys. Rev. B 73:195107
    [Google Scholar]
  87. 87.
    Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC et al. 2011. Formation enthalpies by mixing GGA and GGA calculations. Phys. Rev. B 84:045115
    [Google Scholar]
  88. 88.
    Lutfalla S, Shapovalov V, Bell AT 2011. Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 7:2218–23
    [Google Scholar]
  89. 89.
    Aykol M, Wolverton C 2014. Local environment dependent GGA + U method for accurate thermochemistry of transition metal compounds. Phys. Rev. B 90:115105
    [Google Scholar]
  90. 90.
    Lany S 2008. Semiconductor thermochemistry in density functional calculations. Phys. Rev. B 78:245207
    [Google Scholar]
  91. 91.
    Stevanovic V, Lany S, Zhang X, Zunger A 2012. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85:115104
    [Google Scholar]
  92. 92.
    Zeng Z, Chan MKY, Zhao ZJ, Kubal J, Fan D, Greeley J 2015. Towards first principles–based prediction of highly accurate electrochemical Pourbaix diagrams. J. Phys. Chem. C 119:18177–87
    [Google Scholar]
  93. 93.
    Tang L, Li X, Cammarata RC, Friesen C, Sieradzki K 2010. Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 132:11722–26
    [Google Scholar]
  94. 94.
    Tang L, Han B, Persson K, Friesen C, He T et al. 2010. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132:596–600
    [Google Scholar]
  95. 95.
    Huang LF, Rondinelli JM 2017. Electrochemical phase diagrams of Ni from ab initio simulations: role of exchange interactions on accuracy. J. Phys. Condens. Matter 29:475501
    [Google Scholar]
  96. 96.
    Huang LF, Rondinelli JM 2018. Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput. ab-initio calculations. Submitted
    [Google Scholar]
  97. 97.
    Chen C, Qiu S, Cui M, Qin S, Yan G et al. 2017. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114:356–66
    [Google Scholar]
  98. 98.
    Cui M, Ren S, Qin S, Xue Q, Zhao H, Wang L 2018. Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros. Sci. 131:187–98
    [Google Scholar]
  99. 99.
    Kang YS, Risbud S, Rabolt JF, Stroeve P 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8:2209–11
    [Google Scholar]
  100. 100.
    Jolivet JP, Chanéac C, Tronc E 2004. Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 2004:481–83
    [Google Scholar]
  101. 101.
    Petcharoen K, Sirivat A 2012. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177:421–27
    [Google Scholar]
  102. 102.
    Burke LD, Lyons MEG 1986. The formation and stability of hydrous oxide films on iron under potential cycling conditions in aqueous solution at high pH. J. Electroanal. Chem. 198:347–68
    [Google Scholar]
  103. 103.
    Lee J, Isobe T, Senna M 1996. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J. Colloid Interface Sci. 177:490–94
    [Google Scholar]
  104. 104.
    Han R, Li W, Pan W, Zhu M, Zhou D, Li FS 2014. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 4:7493
    [Google Scholar]
  105. 105.
    Wei Y, Ding R, Zhang C, Lv B, Wang Y et al. 2017. Facile synthesis of self-assembled ultrathin α-FeOOH nanorod/graphene oxide composites for supercapacitors. J. Colloid Interface Sci. 504:593–602
    [Google Scholar]
  106. 106.
    Song H, Xia L, Jia X, Yang W 2018. Polyhedral α-Fe2O3 crystals at RGO nanocomposites: synthesis, characterization, and application in gas sensing. J. Alloys Compd. 732:191–200
    [Google Scholar]
  107. 107.
    Padture NP, Gell M, Jordan EH 2002. Thermal barrier coatings for gas-turbine engine applications. Science 296:280–84
    [Google Scholar]
  108. 108.
    Clarke DR, Levi CG 2003. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33:383–417
    [Google Scholar]
  109. 109.
    Zeng Z, Chang KC, Kubal J, Markovic NM, Greeley J 2017. Stabilization of ultrathin (hydroxy) oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2:17070
    [Google Scholar]
  110. 110.
    Marcus P, Protopopoff E 1990. Potential pH diagrams for adsorbed species: application to sulfur adsorbed on iron in water at 25 and 300C. J. Electrochem. Soc. 137:2709–12
    [Google Scholar]
  111. 111.
    Marcus P, Protopopoff E 1993. Potential pH diagrams for sulfur and oxygen adsorbed on nickel in water at 25 and 300C. J. Electrochem. Soc. 140:1571–75
    [Google Scholar]
  112. 112.
    Marcus P, Protopopoff E 1997. Potential pH diagrams for sulfur and oxygen adsorbed on chromium in water. J. Electrochem. Soc. 144:1586–90
    [Google Scholar]
  113. 113.
    Taylor CD, Neurock M, Scully JR 2008. First-principles investigation of the fundamental corrosion properties of a model Cu nanoparticle and the (111), (113) surfaces. J. Electrochem. Soc. 155:C407–14
    [Google Scholar]
  114. 114.
    Hansen HA, Rossmeisl J, Nørskov JK 2008. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni (111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10:3722–30
    [Google Scholar]
  115. 115.
    Yoo SH, Todorova M, Neugebauer J 2018. Selective solvent-induced stabilization of polar oxide surfaces in an electrochemical environment. Phys. Rev. Lett. 120:066101
    [Google Scholar]
  116. 116.
    Surendralal S, Todorova M, Finnis MW, Neugebauer J 2018. First-principles approach to model electrochemical reactions: understanding the fundamental mechanisms behind Mg corrosion. Phys. Rev. Lett. 120:246801
    [Google Scholar]
  117. 117.
    Cabrera N, Mott NF 1949. Theory of the oxidation of metals. Rep. Prog. Phys. 12:163–84
    [Google Scholar]
  118. 118.
    Fehlner FP, Mott NF 1970. Low-temperature oxidation. Oxid. Met. 2:59–99
    [Google Scholar]
  119. 119.
    Lawless KR 1974. The oxidation of metals. Rep. Prog. Phys. 37:231–316
    [Google Scholar]
  120. 120.
    Chao CY, Lin LF, Macdonald DD 1981. A point defect model for anodic passive films. I. Film growth kinetics. J. Electrochem. Soc. 128:1187–94
    [Google Scholar]
  121. 121.
    Atkinson A 1985. Transport processes during the growth of oxide films at elevated temperature. Rev. Mod. Phys. 57:437–70
    [Google Scholar]
  122. 122.
    Macdonald DD 1992. The point defect model for the passive state. J. Electrochem. Soc. 139:3434–49
    [Google Scholar]
  123. 123.
    Seyeux A, Maurice V, Marcus P 2013. Oxide film growth kinetics on metals and alloys. I. Physical model. J. Electrochem. Soc. 160:C189–96
    [Google Scholar]
  124. 124.
    Leistner K, Toulemonde C, Diawara B, Seyeux A, Marcus P 2013. Oxide film growth kinetics on metals and alloys. II. Numerical simulation of transient behavior. J. Electrochem. Soc. 160:C197–205
    [Google Scholar]
  125. 125.
    Yu X-x, Gulec A, Sherman Q, Cwalina KL, Scully JR et al. 2018. Nonequilibrium solute capture in passivating oxide films. Phys. Rev. Lett. 121:145701
    [Google Scholar]
  126. 126.
    Heuer AH, Nakagawa T, Azar MZ, Hovis DB, Smialek JL et al. 2013. On the growth of Al2O3 scales. Acta Mater. 61:6670–83
    [Google Scholar]
  127. 127.
    Todorova M, Neugebauer J 2015. Identification of bulk oxide defects in an electrochemical environment. Faraday Discuss. 180:97–112
    [Google Scholar]
  128. 128.
    Laks DB, Van de Walle CG, Neumark GF, Pantelides ST 1991. Role of native defects in wide-band-gap semiconductors. Phys. Rev. Lett. 66:648–51
    [Google Scholar]
  129. 129.
    Zhang SB, Northrup JE 1991. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67:2339–42
    [Google Scholar]
  130. 130.
    Foster AS, Sulimov VB, Lopez Gejo F, Shluger AL, Nieminen RM 2001. Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64:224108
    [Google Scholar]
  131. 131.
    Foster AS, Lopez Gejo F, Shluger AL, Nieminen RM 2002. Vacancy and interstitial defects in hafnia. Phys. Rev. B 65:174117
    [Google Scholar]
  132. 132.
    Van de Walle CG, Neugebauer J 2004. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95:3851–79
    [Google Scholar]
  133. 133.
    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G et al. 2014. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86:253–305
    [Google Scholar]
  134. 134.
    Wu YN, Zhang XG, Pantelides ST 2017. Fundamental resolution of difficulties in the theory of charged point defects in semiconductors. Phys. Rev. Lett. 119:105501
    [Google Scholar]
  135. 135.
    Dreyer CE, Alkauskas A, Lyons JL, Janotti A, Van de Walle CG 2018. First-principles calculations of point defects for quantum technologies. Annu. Rev. Mater. Res. 48:1–26
    [Google Scholar]
  136. 136.
    Todorova M, Neugebauer J 2014. Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Phys. Rev. Appl. 1:014001
    [Google Scholar]
  137. 137.
    Todorova M, Neugebauer J 2015. Connecting semiconductor defect chemistry with electrochemistry: impact of the electrolyte on the formation and concentration of point defects in ZnO. Surf. Sci. 631:190–95
    [Google Scholar]
  138. 138.
    Gritsenko VA, Perevalov TV, Islamov DR 2016. Electronic properties of hafnium oxide: a contribution from defects and traps. Phys. Rep. 613:1–20
    [Google Scholar]
  139. 139.
    Gregori G, Merkle R, Maier J 2017. Ion conduction and redistribution at grain boundaries in oxide systems. Prog. Mater. Sci. 89:252–305
    [Google Scholar]
  140. 140.
    Lu Q, Yildiz B 2016. Voltage-controlled topotactic phase transition in thin-film SrCoO monitored by in situ X-ray diffraction. Nano Lett. 16:1186–93
    [Google Scholar]
  141. 141.
    Lu N, Zhang P, Zhang Q, Qiao R, He Q et al. 2017. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546:124–28
    [Google Scholar]
  142. 142.
    Al-Hinai AT, Al-Hinai MH, Dutta J 2014. Application of –pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media. Mater. Res. Bull. 49:645–50
    [Google Scholar]
  143. 143.
    Castelli IE, Thygesen KS, Jacobsen KW 2014. Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top. Catal. 57:265–72
    [Google Scholar]
  144. 144.
    Van der Ven A, Thomas JC, Puchala B, Natarajan AR 2018. First-principles statistical mechanics of multicomponent crystals. Annu. Rev. Mater. Res. 48:27–55
    [Google Scholar]
  145. 145.
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6:299–303
    [Google Scholar]
  146. 146.
    Zhang Y, Zuo TT, Tang T, Gao MC, Dahmen KA et al. 2014. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61:1–93
    [Google Scholar]
  147. 147.
    Qiu Y, Thomas S, Gibson MA, Fraser HL, Birbilis N 2017. Corrosion of high entropy alloys. NPJ Mater. Degrad. 1:15
    [Google Scholar]
  148. 148.
    Frankel GS, Vienna JD, Lian J, Scully JR, Gin S et al. 2018. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. NPJ Mater. Degrad. 2:15
    [Google Scholar]
  149. 149.
    Huang LF, Lu XZ, Tennessen E, Rondinelli JM 2016. An efficient ab-initio quasiharmonic approach for the thermodynamics of solids. Comput. Mater. Sci. 120:84–93
    [Google Scholar]
  150. 150.
    Moore KT, van der Laan G 2009. Nature of the states in actinide metals. Rev. Mod. Phys. 81:235–98
    [Google Scholar]
  151. 151.
    Wen XD, Martin RL, Henderson TM, Scuseria GE 2013. Density functional theory studies of the electronic structure of solid state actinide oxides. Chem. Rev. 113:1063–96
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-010105
Loading
/content/journals/10.1146/annurev-matsci-070218-010105
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error