1932

Abstract

Understanding mesoscale ferroelectric domain structures and their switching behavior under external fields is critical to applications of ferroelectrics. The phase-field method has been established as a powerful tool for probing, predicting, and designing the formation of domain structures under different electromechanical boundary conditions and their switching behavior under electric and/or mechanical stimuli. Here we review the basic framework of the phase-field model of ferroelectrics and its applications to simulating domain formation in bulk crystals, thin films, superlattices, and nanostructured ferroelectrics and to understanding macroscopic and local domain switching under electrical and/or mechanical fields. We discuss the possibility of utilizing the structure-property relationship learned from phase-field simulations to design high-performance relaxor piezoelectrics and electrically tunable thermal conductivity. The review ends with a summary of and an outlook on the potential new applications of the phase-field method of ferroelectrics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-121843
2019-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-121843.html?itemId=/content/journals/10.1146/annurev-matsci-070218-121843&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jin L, Li F, Zhang S 2014. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97:1–27
    [Google Scholar]
  2. 2.
    Scott JF, De Araujo P, Carlos A 1989. Ferroelectric memories. Science 246:1400–5
    [Google Scholar]
  3. 3.
    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review. Progr. Mater. Sci. 68:1–66
    [Google Scholar]
  4. 4.
    Lummen TT, Gu Y, Wang J, Lei S, Xue F et al. 2014. Thermotropic phase boundaries in classic ferroelectrics. Nat. Commun. 5:3172
    [Google Scholar]
  5. 5.
    Gu Y, Xue F, Lei S, Lummen TT, Wang J et al. 2014. Monoclinic phases arising across thermal inter-ferroelectric phase transitions. Phys. Rev. B 90:024104
    [Google Scholar]
  6. 6.
    Baek S, Jang H, Folkman C, Li Y, Winchester B et al. 2010. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9:309–14
    [Google Scholar]
  7. 7.
    Granasy L, Pusztai T, Börzsönyi T, Tóth G, Tegze G et al. 2006. Phase field theory of crystal nucleation and polycrystalline growth: a review. J. Mater. Res. 21:309–19
    [Google Scholar]
  8. 8.
    Hu J-M, Duan C-G, Nan C-W, Chen L-Q 2017. Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. NPJ Comput. Mater. 3:18
    [Google Scholar]
  9. 9.
    Steinbach I. 2009. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17:073001
    [Google Scholar]
  10. 10.
    Chen L-Q. 2002. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32:113–40
    [Google Scholar]
  11. 11.
    Cao W, Cross L. 1991. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B 44:5–12
    [Google Scholar]
  12. 12.
    Nambu S, Sagala DA. 1994. Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50:5838–47
    [Google Scholar]
  13. 13.
    Zhirnov V. 1959. A contribution to the theory of domain walls in ferroelectrics. Sov. Phys. JETP 35:822–27
    [Google Scholar]
  14. 14.
    Chen LQ. 2008. Phase‐field method of phase transitions/domain structures in ferroelectric thin films: a review. J. Am. Ceram. Soc. 91:1835–44
    [Google Scholar]
  15. 15.
    Yang K, Zhang Y, Zheng S, Lin L, Yan Z et al. 2017. Spatial anisotropy of topological domain structure in hexagonal manganites. Phys. Rev. B 95:024114
    [Google Scholar]
  16. 16.
    Morozovska A, Eliseev E, Wang J, Svechnikov G, Vysochanskii YM et al. 2010. Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase. Phys. Rev. B 81:195437
    [Google Scholar]
  17. 17.
    Xue F, Wang X, Gu Y, Chen L-Q, Cheong S-W 2015. Evolution of the statistical distribution in a topological defect network. Sci. Rep. 5:17057
    [Google Scholar]
  18. 18.
    Sheng G, Zhang J, Li Y, Choudhury S, Jia Q et al. 2008. Domain stability of PbTiO3 thin films under anisotropic misfit strains: phase-field simulations. J. Appl. Phys. 104:054105
    [Google Scholar]
  19. 19.
    Sheng G, Zhang J, Li Y, Choudhury S, Jia Q et al. 2008. Misfit strain–misfit strain diagram of epitaxial BaTiO3 thin films: thermodynamic calculations and phase-field simulations. Appl. Phys. Lett. 93:232904
    [Google Scholar]
  20. 20.
    Ahluwalia R, Tagantsev AK, Yudin P, Setter N, Ng N, Srolovitz DJ 2014. Influence of flexoelectric coupling on domain patterns in ferroelectrics. Phys. Rev. B 89:174105
    [Google Scholar]
  21. 21.
    Chen H, Soh A, Ni Y 2014. Phase field modeling of flexoelectric effects in ferroelectric epitaxial thin films. Acta Mech 225:1323–33
    [Google Scholar]
  22. 22.
    Gu Y, Li M, Morozovska AN, Wang Y, Eliseev EA et al. 2014. Flexoelectricity and ferroelectric domain wall structures: phase-field modeling and DFT calculations. Phys. Rev. B 89:174111
    [Google Scholar]
  23. 23.
    Kontsos A, Landis CM. 2009. Computational modeling of domain wall interactions with dislocations in ferroelectric crystals. Int. J. Solids Struct. 46:1491–98
    [Google Scholar]
  24. 24.
    Britson J, Nelson C, Pan X, Chen L-Q 2014. First-order morphological transition of ferroelastic domains in ferroelectric thin films. Acta Mater 75:188–97
    [Google Scholar]
  25. 25.
    Wu H, Wang J, Cao S, Chen L, Zhang T 2013. Micro-/macro-responses of a ferroelectric single crystal with domain pinning and depinning by dislocations. J. Appl. Phys. 114:164108
    [Google Scholar]
  26. 26.
    Schrade D, Müller R, Gross D 2016. Interaction of cracks and domain structures in thin ferroelectric films. Recent Trends in Fracture and Damage Mechanics G Hütter, M Kuna 239–55 Cham, Switz: Springer
    [Google Scholar]
  27. 27.
    Pan S, Li Q, Liu Q 2017. Ferroelectric creep associated with domain switching emission in the cracked ferroelectrics. Comput. Mater. Sci. 140:244–52
    [Google Scholar]
  28. 28.
    Abdollahi A, Arias I. 2015. Phase-field modeling of fracture in ferroelectric materials. Arch. Comput. Methods Eng. 22:153–81
    [Google Scholar]
  29. 29.
    Hong Z, Damodaran AR, Xue F, Hsu S-L, Britson J et al. 2017. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett 17:2246–52
    [Google Scholar]
  30. 30.
    Wang J-J, Wang Y, Ihlefeld JF, Hopkins PE, Chen L-Q 2016. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: a phase-field simulation. Acta Mater 111:220–31
    [Google Scholar]
  31. 31.
    Wu H-H, Zhu J, Zhang T-Y 2015. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy 16:419–27
    [Google Scholar]
  32. 32.
    Huang Y, Wang J, Yang T, Wu Y, Chen X, Chen L 2018. A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1−xSrxTiO3 single crystals. Appl. Phys. Lett. 112:102901
    [Google Scholar]
  33. 33.
    Völker B, Marton P, Elsässer C, Kamlah M 2011. Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling. Continuum Mech. Thermodyn. 23:435–51
    [Google Scholar]
  34. 34.
    Li Y, Choudhury S, Haeni J, Biegalski M, Vasudevarao A et al. 2006. Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films. Phys. Rev. B 73:184112
    [Google Scholar]
  35. 35.
    Xiao Y, Shenoy VB, Bhattacharya K 2005. Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys. Rev. Lett. 95:247603
    [Google Scholar]
  36. 36.
    Vanderbilt D, Cohen MH. 2001. Monoclinic and triclinic phases in higher-order Devonshire theory. Phys. Rev. B 63:094108
    [Google Scholar]
  37. 37.
    Haun M, Furman E, Jang S, Cross L 1989. Thermodynamic theory of the lead zirconate-titanate solid solution system. I. Phenomenology. Ferroelectrics 99:13–25
    [Google Scholar]
  38. 38.
    Pohlmann H, Wang J-J, Wang B, Chen L-Q 2017. A thermodynamic potential and the temperature-composition phase diagram for single-crystalline K1−xNaxNbO3 (0 ≤ x ≤ 0.5). Appl. Phys. Lett. 110:102906
    [Google Scholar]
  39. 39.
    Íñiguez J, Ivantchev S, Perez-Mato J, García A 2001. Devonshire-Landau free energy of BaTiO3 from first principles. Phys. Rev. B 63:144103
    [Google Scholar]
  40. 40.
    Marton P, Klíč A, Paściak M, Hlinka J 2017. First-principles-based Landau-Devonshire potential for BiFeO3. Phys. Rev. B 96:174110
    [Google Scholar]
  41. 41.
    Chen L-Q. 2007. Landau free-energy coefficients. In Physics of Ferroelectrics, pp. 363–72. Berlin/Heidelberg: Springer
    [Google Scholar]
  42. 42.
    Karpinsky DV, Eliseev EA, Xue F, Silibin MV, Franz A et al. 2017. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3). NPJ Comput. Mater. 3:20
    [Google Scholar]
  43. 43.
    Zhang J, Li Y, Wang Y, Liu Z, Chen L et al. 2007. Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films. J. Appl. Phys. 101:114105
    [Google Scholar]
  44. 44.
    Zhou C, Ke X, Yao Y, Yang S, Ji Y et al. 2018. Evolution from successive phase transitions to “morphotropic phase boundary” in BaTiO3-based ferroelectrics. Appl. Phys. Lett 112:182903
    [Google Scholar]
  45. 45.
    Lv P, Wang L, Lynch CS 2017. A phenomenological thermodynamic energy function for PIN-PMN-PT relaxor ferroelectric single crystals. Acta Mater 137:93–102
    [Google Scholar]
  46. 46.
    Hlinka J, Márton P 2006. Phenomenological model of a 90° domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74:104104
    [Google Scholar]
  47. 47.
    Tagantsev AK. 2008. Landau expansion for ferroelectrics: which variable to use?. Ferroelectrics 375:19–27
    [Google Scholar]
  48. 48.
    Woo C, Zheng Y. 2008. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A 91:59–63
    [Google Scholar]
  49. 49.
    Su Y, Landis CM. 2007. Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55:280–305
    [Google Scholar]
  50. 50.
    Dayal K, Bhattacharya K. 2007. A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater 55:1907–17
    [Google Scholar]
  51. 51.
    Hu S, Li Y, Chen L 2003. Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film—a phase-field model. J. Appl. Phys. 94:2542–47
    [Google Scholar]
  52. 52.
    Cao Y, Morozovska A, Kalinin SV 2017. Pressure-induced switching in ferroelectrics: phase-field modeling, electrochemistry, flexoelectric effect, and bulk vacancy dynamics. Phys. Rev. B 96:184109
    [Google Scholar]
  53. 53.
    Schrade D, Müller R, Gross D 2013. On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch. Appl. Mech. 83:1393–413
    [Google Scholar]
  54. 54.
    Zhang W, Bhattacharya K. 2005. A computational model of ferroelectric domains. I. Model formulation and domain switching. Acta Mater 53:185–98
    [Google Scholar]
  55. 55.
    Li Y, Hu S, Liu Z, Chen L 2002. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater 50:395–411
    [Google Scholar]
  56. 56.
    Schrade D, Mueller R, Xu B, Gross D 2007. Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196:4365–74
    [Google Scholar]
  57. 57.
    Krauß M, Münch I. 2016. A selective enhanced FE-method for phase field modeling of ferroelectric materials. Comput. Mech. 57:105–22
    [Google Scholar]
  58. 58.
    Wang J, Ma X, Li Q, Britson J, Chen L-Q 2013. Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater 61:7591–603
    [Google Scholar]
  59. 59.
    Cao Y, Shen J, Randall C, Chen LQ 2014. Effect of ferroelectric polarization on ionic transport and resistance degradation in BaTiO3 by phase‐field approach. J. Am. Ceram. Soc. 97:3568–75
    [Google Scholar]
  60. 60.
    Feng W, Yu P, Hu S, Liu Z-K, Du Q, Chen L-Q 2006. Spectral implementation of an adaptive moving mesh method for phase-field equations. J. Comput. Phys. 220:498–510
    [Google Scholar]
  61. 61.
    Vidyasagar A, Tan W, Kochmann DM 2017. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods. J. Mech. Phys. Solids 106:133–51
    [Google Scholar]
  62. 62.
    Hu HL, Chen LQ. 1998. Three‐dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81:492–500
    [Google Scholar]
  63. 63.
    Su Y, Liu N, Weng GJ 2015. A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta Mater 87:293–308
    [Google Scholar]
  64. 64.
    Shu W, Wang J, Zhang T-Y 2012. Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J. Appl. Phys. 112:064108
    [Google Scholar]
  65. 65.
    Abdollahi A, Arias I. 2012. Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J. Mech. Phys. Solids 60:2100–26
    [Google Scholar]
  66. 66.
    Sluka T, Webber KG, Colla E, Damjanovic D 2012. Phase field simulations of ferroelastic toughening: the influence of phase boundaries and domain structures. Acta Mater 60:5172–81
    [Google Scholar]
  67. 67.
    Zhang Y, Li J, Fang D 2013. Fracture analysis of ferroelectric single crystals: domain switching near crack tip and electric field induced crack propagation. J. Mech. Phys. Solids 61:114–30
    [Google Scholar]
  68. 68.
    Xue F, Wang X, Shi Y, Cheong S-W, Chen L-Q 2017. Strain-induced incommensurate phases in hexagonal manganites. Phys. Rev. B 96:104109
    [Google Scholar]
  69. 69.
    Xue F, Wang N, Wang X, Ji Y, Cheong S-W, Chen L-Q 2018. Topological dynamics of vortex-line networks in hexagonal manganites. Phys. Rev. B 97:020101
    [Google Scholar]
  70. 70.
    Lin S-Z, Wang X, Kamiya Y, Chern G-W, Fan F et al. 2014. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 10:970
    [Google Scholar]
  71. 71.
    Schlom DG, Chen L-Q, Eom C-B, Rabe KM, Streiffer SK, Triscone J-M 2007. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37:589–626
    [Google Scholar]
  72. 72.
    Winchester B, Wu P, Chen L 2011. Phase-field simulation of domain structures in epitaxial BiFeO3 films on vicinal substrates. Appl. Phys. Lett. 99:052903
    [Google Scholar]
  73. 73.
    People R, Bean J. 1985. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures. Appl. Phys. Lett. 47:322–24
    [Google Scholar]
  74. 74.
    Yadav A, Nelson C, Hsu S, Hong Z, Clarkson J et al. 2016. Observation of polar vortices in oxide superlattices. Nature 530:198–201
    [Google Scholar]
  75. 75.
    Damodaran A, Clarkson J, Hong Z, Liu H, Yadav A et al. 2017. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16:1003–9
    [Google Scholar]
  76. 76.
    Hong Z, Chen L-Q. 2018. Blowing polar skyrmion bubbles in oxide superlattices. Acta Mater 152:155–61
    [Google Scholar]
  77. 77.
    Li Q, Nelson C, Hsu S-L, Damodaran A, Li L-L et al. 2017. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. Nat. Commun. 8:1468
    [Google Scholar]
  78. 78.
    Li Y, Hu SY, Tenne D, Soukiassian A, Schlom D et al. 2007. Interfacial coherency and ferroelectricity of BaTiO3/ SrTiO3 superlattice films. Appl. Phys. Lett. 91:252904
    [Google Scholar]
  79. 79.
    Wu P, Ma X, Li Y, Eom C-B, Schlom DG et al. 2015. Influence of interfacial coherency on ferroelectric switching of superlattice BaTiO3/SrTiO3. Appl. Phys. Lett. 107:122906
    [Google Scholar]
  80. 80.
    Slutsker J, Artemev A, Roytburd A 2008. Phase-field modeling of domain structure of confined nanoferroelectrics. Phys. Rev. Lett. 100:087602
    [Google Scholar]
  81. 81.
    Wang J, Kamlah M. 2008. Domain structures of ferroelectric nanotubes controlled by surface charge compensation. Appl. Phys. Lett. 93:042906
    [Google Scholar]
  82. 82.
    Balakrishna AR, Huber JE, Münch I 2016. Nanoscale periodic domain patterns in tetragonal ferroelectrics: a phase-field study. Phys. Rev. B 93:174120
    [Google Scholar]
  83. 83.
    Ng N, Ahluwalia R, Srolovitz DJ 2012. Domain patterns in free-standing nanoferroelectrics. Acta Mater 60:3632–42
    [Google Scholar]
  84. 84.
    Van Lich L, Shimada T, Sepideh S, Wang J, Kitamura T 2017. Multilevel hysteresis loop engineered with ferroelectric nano-metamaterials. Acta Mater 125:202–9
    [Google Scholar]
  85. 85.
    Zhang J, Wu R, Choudhury S, Li Y, Hu SY, Chen L 2008. Three-dimensional phase-field simulation of domain structures in ferroelectric islands. Appl. Phys. Lett. 92:122906
    [Google Scholar]
  86. 86.
    Mangeri J, Espinal Y, Jokisaari A, Alpay SP, Nakhmanson S, Heinonen O 2017. Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616–24
    [Google Scholar]
  87. 87.
    Chen W, Zheng Y. 2015. Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: effects of substrate, dislocations and local clamping force. Acta Mater 88:41–54
    [Google Scholar]
  88. 88.
    Wang J, Shi S-Q, Chen L-Q, Li Y, Zhang T-Y 2004. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater 52:749–64
    [Google Scholar]
  89. 89.
    Choudhury S, Li Y, Chen L, Jia Q 2008. Strain effect on coercive field of epitaxial barium titanate thin films. Appl. Phys. Lett. 92:142907
    [Google Scholar]
  90. 90.
    Choudhury S, Zhang J, Li Y, Chen L, Jia Q, Kalinin S 2008. Effect of ferroelastic twin walls on local polarization switching: phase-field modeling. Appl. Phys. Lett. 93:162901
    [Google Scholar]
  91. 91.
    Choudhury S, Li Y, Odagawa N, Vasudevarao A, Tian L et al. 2008. The influence of 180° ferroelectric domain wall width on the threshold field for wall motion. J. Appl. Phys. 104:084107
    [Google Scholar]
  92. 92.
    Hong Z, Britson J, Hu J-M, Chen L-Q 2014. Local 90° switching in Pb(Zr0.2Ti0.8)O3 thin film: phase-field modeling. Acta Mater 73:75–82
    [Google Scholar]
  93. 93.
    Britson J, Gao P, Pan X, Chen L-Q 2016. Phase field simulation of charged interface formation during ferroelectric switching. Acta Mater 112:285–94
    [Google Scholar]
  94. 94.
    Morozovska AN, Eliseev EA, Li Y, Svechnikov SV, Maksymovych P et al. 2009. Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. Phys. Rev. B 80:214110
    [Google Scholar]
  95. 95.
    Li Y, Hu SY, Choudhury S, Baskes MI, Saxena A et al. 2008. Influence of interfacial dislocations on hysteresis loops of ferroelectric films. J. Appl. Phys. 104:104110
    [Google Scholar]
  96. 96.
    Aravind VR, Morozovska AN, Bhattacharyya S, Lee D, Jesse S et al. 2010. Correlated polarization switching in the proximity of a 180o domain wall. Phys. Rev. B 82:024111
    [Google Scholar]
  97. 97.
    Choudhury S, Chen L, Li Y 2007. Correlation between number of ferroelectric variants and coercive field of lead ziconate titanate single crystals. Appl. Phys. Lett. 91:032902
    [Google Scholar]
  98. 98.
    Wang S, Yi M, Xu B-X 2016. A phase-field model of relaxor ferroelectrics based on random field theory. Int. J. Solids Struct. 83:142–53
    [Google Scholar]
  99. 99.
    Choudhury S, Li Y, Krill C III, Chen L-Q 2005. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta Mater 53:5313–21
    [Google Scholar]
  100. 100.
    Su Y, Kang H, Wang Y, Li J, Weng GJ 2017. Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics. Phys. Rev. B 95:054121
    [Google Scholar]
  101. 101.
    Wang J, Li Y, Chen L-Q, Zhang T-Y 2005. The effect of mechanical strains on the ferroelectric and dielectric properties of a model single crystal—phase field simulation. Acta Mater 53:2495–507
    [Google Scholar]
  102. 102.
    Soh A, Song Y, Ni Y 2006. Phase field simulations of hysteresis and butterfly loops in ferroelectrics subjected to electro‐mechanical coupled loading. J. Am. Ceram. Soc. 89:652–61
    [Google Scholar]
  103. 103.
    Wu H, Wang J, Cao S, Zhang T 2013. Effect of dislocation walls on the polarization switching of a ferroelectric single crystal. Appl. Phys. Lett. 102:232904
    [Google Scholar]
  104. 104.
    Wang J, Shu W, Shimada T, Kitamura T, Zhang T-Y 2013. Role of grain orientation distribution in the ferroelectric and ferroelastic domain switching of ferroelectric polycrystals. Acta Mater 61:6037–49
    [Google Scholar]
  105. 105.
    Wang J, Shu W, Fang H, Kamlah M 2014. Phase field simulations of the poling process and nonlinear behavior of ferroelectric polycrystals with semiconducting grain boundaries. Smart Mater. Struct. 23:095016
    [Google Scholar]
  106. 106.
    Liu N, Su Y, Weng GJ 2013. A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. J. Appl. Phys. 113:204106
    [Google Scholar]
  107. 107.
    Wang J, Xia Y, Chen L-Q, Shi S-Q 2011. Effect of strain and deadlayer on the polarization switching of ferroelectric thin film. J. Appl. Phys. 110:114111
    [Google Scholar]
  108. 108.
    Zhang Q, Xia X, Wang J, Su Y 2018. Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films. Int. J. Solids Struct. 144:32–45
    [Google Scholar]
  109. 109.
    Yang L, Dayal K. 2012. Free surface domain nucleation in a ferroelectric under an electrically charged tip. J. Appl. Phys. 111:014106
    [Google Scholar]
  110. 110.
    Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ 2010. Local polarization dynamics in ferroelectric materials. Rep. Progr. Phys. 73:056502
    [Google Scholar]
  111. 111.
    Jesse S, Rodriguez BJ, Choudhury S, Baddorf AP, Vrejoiu I et al. 2008. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7:209–15
    [Google Scholar]
  112. 112.
    Rodriguez BJ, Choudhury S, Chu YH, Bhattacharyya A, Jesse S et al. 2009. Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite. Adv. Funct. Mater. 19:2053–63
    [Google Scholar]
  113. 113.
    Balke N, Choudhury S, Jesse S, Huijben M, Chu YH et al. 2009. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4:868–75
    [Google Scholar]
  114. 114.
    Maksymovych P, Jesse S, Huijben M, Ramesh R, Morozovska A et al. 2009. Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces. Phys. Rev. Lett. 102:017601
    [Google Scholar]
  115. 115.
    Gao P, Britson J, Jokisaari JR, Nelson CT, Baek SH et al. 2013. Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching. Nat. Commun. 4:2791
    [Google Scholar]
  116. 116.
    Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T et al. 2003. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2:43–47
    [Google Scholar]
  117. 117.
    Kalinin SV, Rodriguez BJ, Jesse S, Chu YH, Zhao T et al. 2007. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. PNAS 104:20204–9
    [Google Scholar]
  118. 118.
    Gao P, Britson J, Nelson CT, Jokisaari JR, Duan C et al. 2014. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 5:3801
    [Google Scholar]
  119. 119.
    Chen W, Liu J, Ma L, Liu L, Jiang G, Zheng Y 2018. Mechanical switching of ferroelectric domains beyond flexoelectricity. J. Mech. Phys. Solids 111:43–66
    [Google Scholar]
  120. 120.
    Gu Y, Hong Z, Britson J, Chen L-Q 2015. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity. Appl. Phys. Lett. 106:022904
    [Google Scholar]
  121. 121.
    Park SM, Wang B, Das S, Chae SC, Chung J-S et al. 2018. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat. Nanotechnol. 13:366–70
    [Google Scholar]
  122. 122.
    Zubko P, Catalan G, Tagantsev AK 2013. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43:387–421
    [Google Scholar]
  123. 123.
    Lu H, Bark C-W, De Los Ojos DE, Alcala J, Eom C-B et al. 2012. Mechanical writing of ferroelectric polarization. Science 336:59–61
    [Google Scholar]
  124. 124.
    Vasudevan RK, Balke N, Maksymovych P, Jesse S, Kalinin SV 2017. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 4:021302
    [Google Scholar]
  125. 125.
    Kalinin SV, Jesse S, Tselev A, Baddorf AP, Balke N 2011. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 5:5683–91
    [Google Scholar]
  126. 126.
    Lu H, Wang B, Li T, Lipatov A, Lee H et al. 2016. Nanodomain engineering in ferroelectric capacitors with graphene electrodes. Nano Lett 16:6460–66
    [Google Scholar]
  127. 127.
    Chen W, Yuan S, Ma L, Ji Y, Wang B, Zheng Y 2018. Mechanical switching in ferroelectrics by shear stress and its implications on charged domain wall generation and vortex memory devices. RSC Adv 8:4434–44
    [Google Scholar]
  128. 128.
    Li F, Zhang S, Yang T, Xu Z, Zhang N et al. 2016. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7:13807
    [Google Scholar]
  129. 129.
    Li F, Lin D, Chen Z, Cheng Z, Wang J et al. 2018. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17:349–54
    [Google Scholar]
  130. 130.
    Ke XQ, Wang D, Wang Y 2016. Origin of ultrahigh piezoelectric activity of [001]-oriented ferroelectric single crystals at the morphotropic phase boundary. Appl. Phys. Lett 108:012904
    [Google Scholar]
  131. 131.
    Ihlefeld JF, Foley BM, Scrymgeour DA, Michael JR, McKenzie BB et al. 2015. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett 15:1791–95
    [Google Scholar]
  132. 132.
    Xue F, Li L, Britson J, Hong Z, Heikes CA et al. 2016. Switching the curl of polarization vectors by an irrotational electric field. Phys. Rev. B 94:100103
    [Google Scholar]
  133. 133.
    Nelson CT, Winchester B, Zhang Y, Kim S-J, Melville A et al. 2011. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett 11:828–34
    [Google Scholar]
  134. 134.
    Li L, Cheng X, Jokisaari JR, Gao P, Britson J et al. 2018. Defect-induced hedgehog polarization states in multiferroics. Phys. Rev. Lett. 120:137602
    [Google Scholar]
  135. 135.
    Ishibashi Y, Takagi Y. 1971. Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31:506–10
    [Google Scholar]
  136. 136.
    Kim Y, Han H, Lee W, Baik S, Hesse D, Alexe M 2010. Non-Kolmogorov−Avrami−Ishibashi switching dynamics in nanoscale ferroelectric capacitors. Nano Lett 10:1266–70
    [Google Scholar]
  137. 137.
    Jo JY, Yang SM, Kim T, Lee HN, Yoon J-G et al. 2009. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films. Phys. Rev. Lett. 102:045701
    [Google Scholar]
  138. 138.
    Landauer R. 1957. Electrostatic considerations in BaTiO3 domain formation during polarization reversal. J. Appl. Phys. 28:227–34
    [Google Scholar]
  139. 139.
    Kittel C. 1949. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21:541–83
    [Google Scholar]
  140. 140.
    Dawber M, Rabe K, Scott J 2005. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77:1083–130
    [Google Scholar]
  141. 141.
    Junquera J, Ghosez P. 2003. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422:506–9
    [Google Scholar]
  142. 142.
    Kalinin SV, Kim Y, Fong DD, Morozovska AN 2018. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Progr. Phys. 81:036502
    [Google Scholar]
  143. 143.
    Wang J, Hu J, Yang T, Feng M, Zhang J et al. 2014. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures. Sci. Rep. 4:4553
    [Google Scholar]
  144. 144.
    Ma FD, Jin YM, Wang YU, Kampe S, Dong S 2014. Phase field modeling and simulation of particulate magnetoelectric composites: effects of connectivity, conductivity, poling and bias field. Acta Mater 70:45–55
    [Google Scholar]
  145. 145.
    Agar J, Damodaran A, Okatan M, Kacher J, Gammer C et al. 2016. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat. Mater. 15:549–56
    [Google Scholar]
  146. 146.
    Wang J-J, Huang H-B, Bayer TJ, Moballegh A, Cao Y et al. 2016. Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal. Acta Mater 108:229–40
    [Google Scholar]
  147. 147.
    Akamatsu H, Yuan Y, Stoica VA, Stone G, Yang T et al. 2018. Light-activated gigahertz ferroelectric domain dynamics. Phys. Rev. Lett. 120:096101
    [Google Scholar]
  148. 148.
    Yang S, Seidel J, Byrnes S, Shafer P, Yang C-H et al. 2010. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5:143–47
    [Google Scholar]
  149. 149.
    Shen ZH, Wang JJ, Lin Y, Nan CW, Chen LQ, Shen Y 2018. High‐throughput phase‐field design of high‐energy‐density polymer nanocomposites. Adv. Mater. 30:1704380
    [Google Scholar]
  150. 150.
    Shi X, Huang H, Cao G, Ma X 2017. Accelerating large-scale phase-field simulations with GPU. AIP Adv 7:105216
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-121843
Loading
/content/journals/10.1146/annurev-matsci-070218-121843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error