1932

Abstract

The iron aluminides discussed here are Fe–Al-based alloys, in which the matrix consists of the disordered bcc (Fe,Al) solid solution (A2) or the ordered intermetallic phases FeAl (B2) and FeAl (D0). These alloys possess outstanding corrosion resistance and high wear resistance and are lightweight materials relative to steels and nickel-based superalloys. These materials are evoking new interest for industrial applications because they are an economic alternative to other materials, and substantial progress in strengthening these alloys at high temperatures has recently been achieved by applying new alloy concepts. Research on iron aluminides started more than a century ago and has led to many fundamental findings. This article summarizes the current knowledge of this field in continuation of previous reviews.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-125911
2019-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070218-125911.html?itemId=/content/journals/10.1146/annurev-matsci-070218-125911&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Keep WJ. 1890. Aluminum in cast iron. Trans. AIME 18:102–22
    [Google Scholar]
  2. 2.
    Hadfield RA. 1890. Aluminium-steel. J. Iron Steel Inst. 2:161–230
    [Google Scholar]
  3. 3.
    Guillet L. 1902. Les alliages d'aluminium [The alloys of aluminum]. Génie Civ 41:377–82
    [Google Scholar]
  4. 4.
    Durnenko HF. 1934. Aluminevy cugun (Cugal) [Aluminum containing cast iron]. Liteiscik No. 7
    [Google Scholar]
  5. 5.
    Smirnov VI, Neroveckaia GI. 1940. Issledovanie svojstvo zaroupornvch aluminie-vych cuganov [Investigation of the properties of aluminum containing cast iron]. Metallurg 3:12–21
    [Google Scholar]
  6. 6.
    BCIRA Bampfylde JW 1938. Improvements in and relating to the manufacture of cast iron alloys UK Patent GB489936
  7. 7.
    Milman BS, Klotchnev NI, Aleksandrov NN, Kovalevich EV, Popova NY 1961. Zharostojkij chugun [Heat-resistant cast iron] Sov. Union Patent SU135500
  8. 8.
    Pluhar J, Vyklicky M. 1954. Úsporné žáruvzdorné slitiny pro teploty nad 800°C [Applicable heat-resistant alloys for temperatures above 800°C]. Slevarenstvi 4:9–16 In Czech )
    [Google Scholar]
  9. 9.
    Pluhar J, Vyklicky M. 1956. Svařitelná žáruvzdorná litina s obsahem hliníku [Weldable heat-resistant aluminum containing cast iron] Czech Patent SPIS c 84598:1–2 In Czech )
  10. 10.
    Pluhar J, Vyklicky M. 1959. Vlastnosti žáruvzdorné slitiny čsn 42 2482 (Pyroferal) a její použití [Properties of the heat-resistant alloy CSN 42 2484 (Pyroferal) and its use] Tech. Rep. 189, Ministry of the Heavy Industry, Prague (In Czech)
  11. 11.
    Kratochvil P. 2008. The history of the search and use of heat resistant Pyroferal alloys based on FeAl. Intermetallics 16:587–91
    [Google Scholar]
  12. 12.
    Eminger Z. 1957. Beitrag zur Frage der Herstellung von Gußstücken aus der Eisen-Aluminium-Legierung “Pyroferal” [Contribution to the question on the production of cast pieces of the iron-aluminum-alloy “Pyroferal”]. Freib. Forsch. B 24-I:121–44 In German )
    [Google Scholar]
  13. 13.
    Nachman JF, Buehler WJ. 1953. The fabrication and properties of 16-ALFENOL—a non-strategic aluminum-iron alloy US Nav. Ord. Lab. (NAVORD) Rep. 2819, Silver Spring, MD
  14. 14.
    Nachman JF, Buehler WJ. 1954. 16 percent aluminum-iron alloy cold rolled in the order-disorder temperature range. J. Appl. Phys. 25:307–13
    [Google Scholar]
  15. 15.
    Nachman JF, Buehler WJ. 1954. Thermenol—a non-strategic aluminum-iron base alloy for high temperature service NAVORD Rep 3700
  16. 16.
    Nachman JF, Buehler WJ. 1956. Fe-Al-Mo alloys for high-temperature use. Met. Prog. 70:107–10
    [Google Scholar]
  17. 17.
    Morgan ER, Zackay VF. 1955. Ductile iron aluminum alloys. Met. Prog. 68:126–28
    [Google Scholar]
  18. 18.
    Morgan ER. 1955. Method of preparation of iron aluminum alloys US Patent US2726952A
  19. 19.
    Justusson W, Zackay VF, Morgan ER 1957. The mechanical properties of iron-aluminum alloys. Trans. ASM 49:905–23
    [Google Scholar]
  20. 20.
    Tate F. 1959. Development of iron-aluminum base alloy for gas cooled reactor components Final Rep. MND-DB-2525, Off. Tech. Serv., US Dep. Commer .
  21. 21.
    Mueller JJ, Tate FG. 1961. Iron-aluminum base alloys US Patent US2987394 A
  22. 22.
    Chubb W, Alfant S, Bauer AA, Jablonowski EJ, Shober FR, Dickerson RF 1958. Constitution, metallurgy, and oxidation resistance of iron-chromium-aluminum alloys Rep. BMI-1298, Batelle Meml. Inst .
  23. 23.
    Buehler WJ, Dalrymple CG. 1958. Coming: better Thermenol alloys. Met. Prog. 73:78–81
    [Google Scholar]
  24. 24.
    Brooks R, Volio A. 1959. Iron-aluminum alloy systems. Part 14: Welding of iron–aluminum alloys. Wright Air Dev. Cent. (WADC) Tech. Rep. 57-298, WADC, Wright Patterson Airforce Base, OH
  25. 25.
    Lepkowski WJ, Holladay JW. 1957. The present state of development of iron-aluminum-base alloys Rep. NP-6509, Batelle Meml. Inst .
  26. 26.
    Holladay JW. 1961. Review of developments in iron-aluminum-base alloys Rep. NTIS (OTS) PB 161232, Batelle Meml. Inst .
  27. 27.
    Nachman JF, Duffy ER. 1974. Effect of alloying additions on sea water corrosion resistance of iron-aluminum base alloys. Corrosion 30:357–65
    [Google Scholar]
  28. 28.
    Bordeau RG. 1987. Development of iron aluminides Rep. AFWAL-TR-87-4009, Air Force Wright Aeronaut. Lab .
  29. 29.
    Culbertson G, Kortovich CS. 1986. Development of iron aluminides Rep. AFWAL-TR-85-4155, Air Force Wright Aeronaut. Lab .
  30. 30.
    Oak Ridge Natl. Lab 1987–2001. Proceedings of the annual conference on fossil energy materials Conf. Ser., Oak Ridge Natl. Lab Oak Ridge, TN:
  31. 31.
    Liu CT, Lee EH, McKamey CG 1989. An environmental effect as the major cause for room-temperature embrittlement in FeAl. Scr. Metall. 23:875–80
    [Google Scholar]
  32. 32.
    McKamey CG. 1996. Iron aluminides. See Ref 302 , pp. 351–91
  33. 33.
    McKamey CG, DeVan JH, Tortorelli PF, Sikka VK 1991. A review of recent developments in Fe3Al-based alloys. J. Mater. Res. 6:1779–805
    [Google Scholar]
  34. 34.
    Deevi SC, Sikka VK. 1996. Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics 4:357–75
    [Google Scholar]
  35. 35.
    Liu CT, George EP, Maziasz PJ, Schneibel JH 1998. Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design. Mater. Sci. Eng. A 258:84–98
    [Google Scholar]
  36. 36.
    Tortorelli PF, Natesan K. 1998. Critical factors affecting the high-temperature corrosion performance of iron aluminides. Mater. Sci. Eng. A 258:115–25
    [Google Scholar]
  37. 37.
    Moret F, Baccino R, Martel P, Guetaz L 1996. Propriétés et applications des alliages intermétalliques B2-FeAl [Properties and applications of intermetallic B2-FeAl alloys]. J. Phys. IV Fr. 6:C2–28189
    [Google Scholar]
  38. 38.
    Revol S, Baccino R, Moret F 2000.Industrial applications of FeAl40Grade3, a high specific properties iron aluminides. In Intermetallics and Superalloys, Vol. 10 DG Morris, S Naka, P Caron 307–11 Weinheim, Ger: Wiley-VCH
  39. 39.
    Morris DG, Morris MA. 1997. Strengthening at intermediate temperatures in iron aluminides. Mater. Sci. Eng. A 239:23–38
    [Google Scholar]
  40. 40.
    Morris DG, Muñoz-Morris MA. 2010. A re-examination of the pinning mechanisms responsible for the stress anomaly in FeAl intermetallics. Intermetallics 18:1279–84
    [Google Scholar]
  41. 41.
    Sauthoff G. 1995. Intermetallics Weinheim, Ger: Wiley-VCH
  42. 42.
    Vedula K. 1995. FeAl and Fe3Al. See Ref 300 , pp. 199–209
  43. 43.
    Stein F, Palm M. 2007. Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int. J. Mater. Res. 98:580–88
    [Google Scholar]
  44. 44.
    Schneibel JH. 1994. Selected properties of iron aluminides. See Ref 303 , pp. 329–42
  45. 45.
    Taylor A, Jones RM. 1958. Constitution and magnetic properties of iron-rich iron-aluminium alloys. J. Phys. Chem. Solids 6:16–37
    [Google Scholar]
  46. 46.
    Köster W, Gödecke T. 1981. Physikalische Messungen an Eisen-Aluminium-Legierungen mit 10 bis 50 At.-% Al. II. Die Ausdehnungskoeffizienten der Legierungen mit 10 bis 35 At.-% Al [Physical measurements of iron-aluminum alloys with 10 to 50 at.-% Al. II. (Thermal) expansion coefficients of alloys with 10 to 35 at.-% Al]. Z. Metallkd. 72:569–74
    [Google Scholar]
  47. 47.
    Köster W, Gödecke T. 1981. Physikalische Messungen an Eisen-Aluminium-Legierungen mit 10 bis 50 At.-% Al. III. Die Ausdehnungskoeffizienten der Legierungen mit 20 bis 50 At.-% Al [Physical measurements of iron-aluminum alloys with 10 to 50 at.-% Al. III. (Thermal) expansion coefficients of alloys with 20 to 50 at.-% Al]. Z. Metallkd. 72:707–11
    [Google Scholar]
  48. 48.
    Ruan Y, Yan N, Zhu HZ, Zhou K, Wei B 2017. Thermal performance determination of binary Fe-Al alloys at elevated temperatures. J. Alloys Compd. 701:676–81
    [Google Scholar]
  49. 49.
    Köster W, Gödecke T. 1982. Physikalische Messungen an Eisen-Aluminium-Legierungen mit 10 bis 50 At.-% Al. IV. Der Elastizitätsmodul der Legierungen [Physical measurements of iron-aluminum alloys with 10 to 50 at.-% Al. IV. Young's modulus of the alloys]. Z. Metallkd. 73:111–14
    [Google Scholar]
  50. 50.
    Mehrer H, Eggersmann M, Gude A, Salamon M, Sepiol B 1997. Diffusion in intermetallic phases of the Fe-Al and Fe-Si systems. Mater. Sci. Eng. A 239–240:889–98
    [Google Scholar]
  51. 51.
    Eggersmann M, Mehrer H. 2000. Diffusion in intermetallic phases of the Fe-Al system. Philos. Mag. A 80:1219–44
    [Google Scholar]
  52. 52.
    Rudajevová A, Buriánek J. 2001. Determination of thermal diffusivity and thermal conductivity of Fe-Al alloys in the concentration range 22 to 50 at.% Al. J. Phase Equilibr. 22:560–63
    [Google Scholar]
  53. 53.
    Lilly AC, Deevi SC, Gibbs ZP 1998. Electrical properties of iron aluminides. Mater. Sci. Eng. A 258:42–49
    [Google Scholar]
  54. 54.
    Reddy BV, Jena C, Deevi SC 2000. Electronic structure and transport properties of Fe–Al alloys. Intermetallics 8:1197–207
    [Google Scholar]
  55. 55.
    Okamoto H, Beck PA. 1971. Phase relationships in the iron-rich Fe-Al alloys. Metall. Trans. 2:569–74
    [Google Scholar]
  56. 56.
    Hernando A, Amils X, Nogués J, Surinach S, Baró MD, Ibarra MR 1998. Influence of magnetization on the reordering of nanostructured ball-milled Fe-40 at.% Al powders. Phys. Rev. B 58:R11864–67
    [Google Scholar]
  57. 57.
    Yang Y, Baker I, Martin P 1999. On the mechanism of the paramagnetic-to-ferromagnetic transition in Fe-Al. Philos. Mag. B 79:449–61
    [Google Scholar]
  58. 58.
    Menéndez E, Liedke MO, Fassbender J, Gemming T, Weber A et al. 2009. Direct magnetic patterning due to the generation of ferromagnetism by selective ion irradiation of paramagnetic FeAl alloys. Small 5:229–34
    [Google Scholar]
  59. 59.
    Varea A, Menéndez E, Montserrat J, Lora-Tamayo E, Weber A et al. 2011. Tuneable magnetic patterning of paramagnetic Fe60Al40 (at. %) by consecutive ion irradiation through pre-lithographed shadow masks. J. Appl. Phys. 109:093918
    [Google Scholar]
  60. 60.
    Polushkin NI, Oliveira V, Vilar R, He M, Shugaev MV, Zhigilei LV 2018. Phase-change magnetic memory: rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys. Rev. Appl. 10:024023
    [Google Scholar]
  61. 61.
    Schaefer H-E, Würschum R, Sob M, Zak T, Yu WZ et al. 1990. Thermal vacancies and positron-lifetime measurements in Fe76.3Al23.7. Phys. Rev. B 41:11869–74
    [Google Scholar]
  62. 62.
    Wolff J, Franz M, Hehenkamp T 1997. Defect analysis with positron annihilation—applications to Fe aluminides. Mikrochim. Acta 125:263–68
    [Google Scholar]
  63. 63.
    Broska A, Wolff J, Franz M, Hehenkamp T 1999. Defect analysis in FeAl and FeSi with positron lifetime spectroscopy and Doppler broadening. Intermetallics 7:259–67
    [Google Scholar]
  64. 64.
    Rieu J, Goux C. 1969. Etude du durcissement par trempe des alliages ordonnés Fe-Al de type L20 [Investigation of the hardness after quenching of ordered Fe-Al alloys of type L20].. Mem. Sci. Rev. Metall. 66:869–80
    [Google Scholar]
  65. 65.
    Würschum R, Grupp C, Schaefer H-E 1995. Simultaneous study of vacancy formation and migration at high temperatures in B2-type Fe aluminides. Phys. Rev. Lett. 75:97–100
    [Google Scholar]
  66. 66.
    Hasemann G, Schneibel JH, George EP 2012. Dependence of the yield stress of Fe3Al on heat treatment. Intermetallics 21:56–61
    [Google Scholar]
  67. 67.
    Yang Y, Baker I. 1998. The influence of vacancy concentration on the mechanical behavior of Fe-40Al. Intermetallics 6:167–75
    [Google Scholar]
  68. 68.
    Dlubek G, Brümmer O, Möser B 1982. The recovery of quenched-in vacancies in Fe-Al (6.3 to 28.3 at.%) alloys studied by positron annihilation. Cryst. Res. Technol. 17:951–61
    [Google Scholar]
  69. 69.
    Cizek J, Lukac F, Melikhova O, Prochazka I, Kuzel R 2011. Thermal vacancies in Fe3Al studied by positron annihilation. Acta Mater 59:4068–78
    [Google Scholar]
  70. 70.
    Stein F, Schneider A, Frommeyer G 2003. Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X = V, Cr, Nb, or Mo. Intermetallics 11:71–82
    [Google Scholar]
  71. 71.
    Davies RG, Stoloff NS. 1963. Work hardening in Fe3Al. Acta Metall 11:1187–89
    [Google Scholar]
  72. 72.
    Morris DG, Muñoz-Morris MA. 2005. The stress anomaly in FeAl-Fe3Al alloys. Intermetallics 13:1269–74
    [Google Scholar]
  73. 73.
    Nishino Y, Ogawa K, Tanaka H 2012. Internal friction study of vacancy hardening in B2 Fe Al alloys. Solid State Phenom 184:81–86
    [Google Scholar]
  74. 74.
    Morris DG, Muñoz-Morris MA. 2014. High-temperature creep of iron aluminide intermetallics. Encyclopedia of Thermal Stresses RB Hetnarski 2226–36 Dordrecht, Neth: Springer
    [Google Scholar]
  75. 75.
    George EP, Baker I. 1998. Thermal vacancies and the yield strength anomaly of FeAl. Intermetallics 6:759–63
    [Google Scholar]
  76. 76.
    Baker I, Gaydosh DJ. 1987. Flow and fracture of Fe-Al. Mater. Sci. Eng. 96:147–58
    [Google Scholar]
  77. 77.
    Guo JT, Jin O, Yin WM, Wang TM 1993. Discovery and study of anomalous yield strength peak in FeAl alloy. Scr. Metall. Mater. 29:783–85
    [Google Scholar]
  78. 78.
    Yoshimi K, Hanada S, Yoo MH 1995. Yielding and plastic flow behavior of B2-type Fe-39.5 mol.% single crystals in compression. Acta Metall. Mater. 43:4141–51
    [Google Scholar]
  79. 79.
    Umakoshi Y, Yamaguchi M. 1980. Deformation of FeAl single crystals at high temperatures. Philos. Mag. A 41:573–88
    [Google Scholar]
  80. 80.
    Yoshimi K, Yoo MH, Hanada S 1998. Slip band propagation and slip vector transition in B2 FeAl single crystals. Acta Mater 46:5769–76
    [Google Scholar]
  81. 81.
    Schaefer H-E, Frenner K, Würschum R 1999. High-temperature atomic defect properties and diffusion processes in intermetallic compounds. Intermetallics 7:277–87
    [Google Scholar]
  82. 82.
    Morris DG, Zhao P, Muñoz-Morris MA 2001. An examination of the influence of strain rate on the stress anomaly in Fe3Al. Mater. Sci. Eng. A 297:256–65
    [Google Scholar]
  83. 83.
    Schmatz DJ, Bush RH. 1968. Elevated temperature yield effect in iron-aluminum. Acta Metall 16:207–17
    [Google Scholar]
  84. 84.
    Song JH, Ha TK, Chang YW 2000. Anomalous temperature dependence of flow stress in a Fe3Al alloy. Scr. Mater. 42:271–76
    [Google Scholar]
  85. 85.
    Krein R, Palm M. 2007. Two-fold flow stress anomaly in L21-ordered Fe-Al-Ti based alloys. Mater. Sci. Eng. A 460–461:174–79
    [Google Scholar]
  86. 86.
    Hardwick D, Wallwork G. 1978. Iron-aluminium alloys: a review of their feasibility as high-temperature materials. Rev. High Temp. Mater. 4:47–74
    [Google Scholar]
  87. 87.
    Mendiratta MG, Ehlers SK, Dimiduk DM, Kerr WR, Mazdiyasni S, Lipsitt HA 1987. A review of recent developments in iron aluminides. Mater. Res. Soc. Symp. Proc. 81:393–404
    [Google Scholar]
  88. 88.
    Morris DG. 1998. Possibilities for high-temperature strengthening in iron aluminides. Intermetallics 6:753–58
    [Google Scholar]
  89. 89.
    Bahadur A. 2003. Enhancement of high temperature strength and room temperature ductility of iron aluminides by alloying. Mater. Sci. Technol. 19:1627–34
    [Google Scholar]
  90. 90.
    Palm M. 2005. Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys. Intermetallics 13:1286–95
    [Google Scholar]
  91. 91.
    Kayser FX. 1958. Effect of order on the plastic behavior of iron-aluminum alloys. J. Met. 10:573
    [Google Scholar]
  92. 92.
    Morgand P, Mouturat P, Sainfort G 1968. Structure et proprietes mecaniques des alliages fer-aluminium. Acta Metall 16:867–75
    [Google Scholar]
  93. 93.
    Marcinkowski MJ. 1974. The relationship between atomic order and the mechanical properties of alloys. Treatise in Materials Science and Technology, Vol. 5 H Herman 181–287 New York: Academic
    [Google Scholar]
  94. 94.
    Lawley A, Coll JA, Cahn RW 1960. Influence of crystallographic order on creep of iron-aluminum solid solutions. Trans. AIME 218:166–76
    [Google Scholar]
  95. 95.
    Cahn RW. 2002. How does long-range order affect creep of alloys. ? Mater. Sci. Eng. A 324:1–4
    [Google Scholar]
  96. 96.
    Sauthoff G. 1995. Plastic deformation. See Ref 299 , pp. 911–34
  97. 97.
    Whittenberger JD. 1986. The influence of grain size and composition on slow plastic flow in FeAl between 1100 and 1400 K. Mater. Sci. Eng. 77:103–13
    [Google Scholar]
  98. 98.
    Doucakis T, Kumar KS. 1999. Formation and stability of refractory metal diborides in an Fe3Al matrix. Intermetallics 7:765–77
    [Google Scholar]
  99. 99.
    Krein R, Schneider A, Sauthoff G, Frommeyer G 2007. Microstructure and mechanical properties of Fe3Al-based alloys with strengthening boride precipitates. Intermetallics 15:1172–82
    [Google Scholar]
  100. 100.
    Song G, Sun Z, Li L, Xu X, Rawlings M et al. 2015. Ferritic alloys with extreme creep resistance via coherent hierarchical precipitates. Sci. Rep. 5:16327
    [Google Scholar]
  101. 101.
    Dimiduk DM, Mendiratta MG, Banerjee D, Lipsitt HA 1988. A structural study of ordered precipitates in an ordered matrix within the Fe-Al-Nb system. Acta Metall 36:2947–58
    [Google Scholar]
  102. 102.
    Risanti DD, Sauthoff G. 2011. Microstructures and mechanical properties of Fe-Al-Ta alloys with strengthening Laves phase. Intermetallics 19:1727–36
    [Google Scholar]
  103. 103.
    Prokopcakova P, Svec M, Palm M 2016. Microstructural evolution and creep of Fe-Al-Ta alloys. Int. J. Mater. Res. 107:396–405
    [Google Scholar]
  104. 104.
    Azmi SA, Michalcová A, Sencekova L, Palm M 2017. Microstructure and mechanical properties of Fe–Al–Nb–B alloys. MRS Adv 2:1353–59
    [Google Scholar]
  105. 105.
    Tarigan I, Kurata K, Takata N, Matsuo T, Takeyama M 2011. Novel concept for creep strengthening mechanism using grain boundary Fe2Nb Laves phase in austenitic heat resistant steel. Mater. Res. Soc. Symp. Proc. 1295:317–22
    [Google Scholar]
  106. 106.
    Niewolak L, Savenko A, Grüner D, Hattendorf H, Breuer U, Quadakkers WJ 2015. Temperature dependence of Laves phase composition in Nb, W and Si-alloyed high chromium ferritic steels for SOFC interconnect applications. J. Phase Equil. Diffus. 36:471–84
    [Google Scholar]
  107. 107.
    Nishino Y, Asano S, Ogawa T 1997. Phase stability and mechanical properties of Fe3Al with addition of transition elements. Mater. Sci. Eng. A 234–36:271–74
    [Google Scholar]
  108. 108.
    Ohnuma I, Schön CG, Kainuma R, Inden G, Ishida K 1998. Ordering and phase separation in the b.c.c. phase of the Fe-Al-Ti system. Acta Mater 46:2083–94
    [Google Scholar]
  109. 109.
    Krein R, Friak M, Neugebauer J, Palm M, Heilmaier M 2010. L21-ordered Fe-Al-Ti alloys. Intermetallics 18:1360–64
    [Google Scholar]
  110. 110.
    Liu CT, McKamey CG, Lee EH 1990. Environmental effects on room temperature ductility and fracture in Fe3Al. Scr. Metall. Mater. 24:385–90
    [Google Scholar]
  111. 111.
    Stoloff NS, Liu CT. 1994. Environmental embrittlement of iron aluminides. Intermetallics 2:75–84
    [Google Scholar]
  112. 112.
    Zamanzade M, Barnoush A, Motz C 2016. A review on the properties of iron aluminide intermetallics. Crystals 6:10
    [Google Scholar]
  113. 113.
    Schulson EM. 1996. Brittle fracture and toughening. See Ref 302 56–94
  114. 114.
    Kimura Y, Pope DP. 1998. Ductility and toughness in intermetallics. Intermetallics 6:567–71
    [Google Scholar]
  115. 115.
    Risanti D, Deges J, Falat L, Kobayashi S, Konrad J et al. 2005. Dependence of the brittle-to-ductile transition temperature (BDTT) on the Al content of Fe-Al alloys. Intermetallics 13:1337–42
    [Google Scholar]
  116. 116.
    Palm M. 2009. Fe-Al materials for structural applications at high temperatures: current research at MPIE. Int. J. Mater. Res. 100:277–87
    [Google Scholar]
  117. 117.
    Fraczkiewicz A, Gay A-S, Biscondi M 1998. On the boron effect in FeAl (B2) intermetallic alloys. Mater. Sci. Eng. A 258:108–14
    [Google Scholar]
  118. 118.
    Liu CT, George EP. 1991. Effect of aluminum concentration and boron dopant on environmental embrittlement in FeAl aluminides. Mater. Res. Soc. Symp. Proc. 213:527–32
    [Google Scholar]
  119. 119.
    Fraczkiewicz A. 2000. Influence of boron on the mechanical properties of B2-ordered FeAl alloys. Mater. Trans. JIM 41:166–69
    [Google Scholar]
  120. 120.
    Li X, Prokopcakova P, Palm M 2014. Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Mater. Sci. Eng. A 611:234–41
    [Google Scholar]
  121. 121.
    Briant CL. 1995. Intergranular and cleavage fracture. See Ref 299 , pp. 895–910
  122. 122.
    Kanno N, Yoshimura K, Takata N, Tarigan I, Takeyama M 2016. Mechanical properties of austenitic heat-resistant Fe–20Cr–30Ni–2Nb steel at ambient temperature. Mater. Sci. Eng. A 662:551–63
    [Google Scholar]
  123. 123.
    Morris DG, Morris-Muñoz MA. 1999. The influence of microstructure on the ductility of iron aluminides. Intermetallics 7:1121–29
    [Google Scholar]
  124. 124.
    McKamey CG, Liu CT, Cathcart JV, David SA, Lee EH 1986. Evaluation of mechanical and metallurgical properties of Fe3Al-based alloys Rep. ORNL/TM-10125 Oak Ridge Natl. Lab Oak Ridge, TN:
  125. 125.
    Michalcová A, Sencekova L, Rolink G, Weisheit A, Pesicka J et al. 2016. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 116:481–94
    [Google Scholar]
  126. 126.
    Rolink G, Vogt S, Sencekova L, Weisheit A, Poprawe R, Palm M 2014. Laser metal deposition and selective laser melting of Fe–28 at.% Al. J. Mater. Res. 29:2036–43
    [Google Scholar]
  127. 127.
    McKamey CG, Pierce DH. 1993. Effect of recrystallization on room temperature tensile properties of an Fe3Al-based alloy. Scr. Metall. Mater. 28:1173–76
    [Google Scholar]
  128. 128.
    Sanders PG, Sikka VK, Howell CR, Baldwin RH 1991. A processing method to reduce the environmental effect in Fe3Al-based alloys. Scr. Metall. Mater. 25:2365–69
    [Google Scholar]
  129. 129.
    Konrad J, Zaefferer S, Schneider A, Raabe D, Frommeyer G 2005. Hot deformation behavior of a Fe3Al-binary alloy in the A2 and B2-order regimes. Intermetallics 13:1304–12
    [Google Scholar]
  130. 130.
    Hanus P, Bartsch E, Palm M, Krein R, Bauer-Partenheimer K, Janschek P 2010. Mechanical properties of a forged Fe–25Al–2Ta steam turbine blade. Intermetallics 18:1379–84
    [Google Scholar]
  131. 131.
    Gaydosh DJ, Nathal MV. 1990. Influence of testing environment on the room temperature ductility of FeAl alloys. Scr. Metall. Mater. 24:1281–84
    [Google Scholar]
  132. 132.
    Baker I, Nagpal P. 1993. A review of the flow and fracture of FeAl. Structural Intermetallics R Darolia, JJ Lewandowski, CT Liu, PL Martin, DB Miracle, MV Nathal 463–73 Warrendale, PA: TMS
    [Google Scholar]
  133. 133.
    Yoshimi K, Hanada S, Tokuno H 1994. Effect of frozen-in vacancies on hardness and tensile properties of polycrystalline B2 FeAl. Mater. Trans. JIM 35:51–57
    [Google Scholar]
  134. 134.
    Jordan JL, Deevi SC. 2003. Vacancy formation and effects in FeAl. Intermetallics 11:507–28
    [Google Scholar]
  135. 135.
    Stoloff NS, Alven DA, McKamey CG 1997. An overview of Fe3Al alloy development with emphasis on creep and fatigue. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications SC Deevi, PJ Maziasz, VK Sikka, RW Cahn 65–72 Materials Park, OH: ASM Int.
    [Google Scholar]
  136. 136.
    Henaff G, Benoit G, Comyn M, Jouiad M 2010. Fatigue crack growth resistance of a Fe-40Al grade 3 alloy prepared by mechanical alloying and forging. Proc. Eng. 2:1431–40
    [Google Scholar]
  137. 137.
    Stoloff NS. 1997. Fatigue crack growth in intermetallics. Structural Intermetallics 1997 MV Nathal, R Darolia, CT Liu, PL Martin, DB Miracle, et al 33–42 Warrendale, PA: TMS
    [Google Scholar]
  138. 138.
    Tonneau A, Gerland M, Henaff G 2001. Environment-sensitive fracture of iron aluminides during cyclic crack growth. Metall. Mater. Trans. A 32:2345–56
    [Google Scholar]
  139. 139.
    Hanes DB, Gibala R. 1997. Low cycle fatigue of FeAl (42 at. % Al) at room temperature. Mater. Res. Soc. Symp. Proc. 460:361–66
    [Google Scholar]
  140. 140.
    Stoloff NS, Castagna A, Scott J, Duquette DJ 1994. Environmental embrittlement of Fe3Al alloys under monotonic and cyclic loading. See Ref 303 , pp. 271–85
  141. 141.
    Castagna A, Stoloff NS. 1992. The influence of environment on fatigue crack growth of an Fe3Al, Cr alloy. Scr. Metall. Mater. 26:673–78
    [Google Scholar]
  142. 142.
    Tonneau A, Henaff G. 2001. Tensile and fatigue properties as influenced by environment of a FeAl alloy prepared by mechanical alloying. J. Phys. IV Fr. 11:321–28
    [Google Scholar]
  143. 143.
    Henaff G, Tonneau A. 2001. Environmental embrittlement of a FeAl alloy prepared by mechanical alloying under monotonic and cyclic loading. Structural Intermetallics 2001 KJ Hemker, DM Dimiduk, H Clemens, R Darolia, H Inui et al.571–80 Warrendale, PA, USA: TMS
    [Google Scholar]
  144. 144.
    Schneibel JH, Rühe H, Heilmaier M, Saage H, Goncharenko M, Loboda P 2010. Low cycle fatigue of Fe3Al-based iron aluminide with and without Cr. Intermetallics 18:1369–74
    [Google Scholar]
  145. 145.
    Gang F, Krüger M, Laskosky A, Rühe H, Schneibel JH, Heilmaier M 2011. Fatigue resistance of Fe3Al-based alloys. Mater. Res. Soc. Symp. Proc. 1295:59–64
    [Google Scholar]
  146. 146.
    Tonneau A, Henaff G, Gerland M, Petit J 1998. Fatigue crack propagation resistance of a FeAl-based alloy. Mater. Sci. Eng. A 256:256–64
    [Google Scholar]
  147. 147.
    Alven DA, Stoloff NS. 1996. Fatigue crack growth of Fe3Al,Cr alloys. Scr. Mater. 34:1937–42
    [Google Scholar]
  148. 148.
    Stoloff NS, Fuchs GE, Kuruvilla AK, Choe SJ 1987. Fatigue of intermetallic compounds. Mater. Res. Soc. Symp. Proc. 81:247–61
    [Google Scholar]
  149. 149.
    Fuchs GE, Stoloff NS. 1988. Effects of temperature, ordering and composition on high cycle fatigue of polycrystalline Fe3Al. Acta Metall 36:1381–87
    [Google Scholar]
  150. 150.
    Yasuda HY, Behgozin A, Umakoshi Y 1999. Fatigue behavior of Fe–48at.% Al polycrystals with B2 structure at high temperatures. Scr. Mater. 40:203–7
    [Google Scholar]
  151. 151.
    Hausild P, Karlik M, Siegl J, Nedbal I 2005. Fractographic analysis of the crack growth in the Fe3Al based intermetallic alloy. Intermetallics 13:217–25
    [Google Scholar]
  152. 152.
    Jaske CE, Deevi SC, Shademan SS 1988. Fatigue and cyclic deformation behavior of iron aluminide. Mater. Sci. Eng. A 258:211–18
    [Google Scholar]
  153. 153.
    Karlik M, Nedbal I, Siegl J, Prahl J 2004. Behaviour of an Fe-28Al-3Cr-Ce alloy under cyclic loading. J. Alloys Compd. 378:263–67
    [Google Scholar]
  154. 154.
    Castagna A, Maziasz PJ, Stoloff NS 1993. Influence of environment on crack growth resistance of an Fe3Al,Cr alloy. Mater. Res. Soc. Symp. Proc. 288:1043–48
    [Google Scholar]
  155. 155.
    Johnson M, Mikkola DE, March PA, Wright RN 1990. The resistance of nickel and iron aluminides to cavitation erosion and abrasive wear. Wear 140:279–89
    [Google Scholar]
  156. 156.
    Magnee A. 1995. Generalized law of erosion: application to various alloys and intermetallics. Wear 181–183:500–10
    [Google Scholar]
  157. 157.
    Maupin HE, Wilson RD, Hawk JA 1992. An abrasive wear study of ordered Fe3Al. Wear 159:241–47
    [Google Scholar]
  158. 158.
    Chen Y, Wang HM. 2003. Microstructure and wear resistance of laser clad TiC reinforced FeAl intermetallic matrix composite coatings. Surf. Coat. Technol. 168:30–36
    [Google Scholar]
  159. 159.
    Xu B, Zhu Z, Ma S, Zhang W, Liu W 2004. Sliding wear behavior of Fe–Al and Fe–Al/WC coatings prepared by high velocity arc spraying. Wear 257:1089–95
    [Google Scholar]
  160. 160.
    Guilemany JM, Cinca N, Fernandez J, Sampath S 2008. Erosion, abrasive, and friction wear behavior of iron aluminide coatings sprayed by HVOF. J. Therm. Spray Technol. 17:762–73
    [Google Scholar]
  161. 161.
    Amiriyan M, Alamdari HD, Blais C, Savoie S, Schulz R, Gariépy M 2015. Dry sliding wear behavior of Fe3Al and Fe3Al/TiC coatings prepared by HVOF. Wear 342–343:154–62
    [Google Scholar]
  162. 162.
    Zhou Y, Wang SQ, Zhang BG, Zhang QY, Zhou DQ 2017. Relation between tribolayers and wear behavior during dry sliding of Fe-Al hot-dipped coating. Tribol. Trans. 60:1078–87
    [Google Scholar]
  163. 163.
    Subramanian R, Schneibel JH. 1997. Processing iron-aluminide composites containing carbides or borides. JOM 49:50–54
    [Google Scholar]
  164. 164.
    Mosbah AY, Wexler D, Calka A 2005. Abrasive wear of WC–FeAl composites. Wear 258:1337–41
    [Google Scholar]
  165. 165.
    Tu JP, Meng L, Liu MS 1998. Friction and wear behavior of Cu-Fe3Al powder metallurgical composites in dry sliding. Wear 220:72–79
    [Google Scholar]
  166. 166.
    Velasco F, da Costa CE, Torralba JM 2013. Mechanical properties and wear behaviour of PM aluminium composite reinforced with (Fe3Al) particles. Powder Metall 45:247–50
    [Google Scholar]
  167. 167.
    Hawk JA, Alman DE. 1997. Abrasive wear of intermetallic-based alloys and composites. Mater. Sci. Eng. A 239–240:899–906
    [Google Scholar]
  168. 168.
    Alman DE, Hawk JA, Tylcak JH, Dogan CP, Wilson RD 2001. Wear of iron–aluminide intermetallic-based alloys and composites by hard particles. Wear 251:875–84
    [Google Scholar]
  169. 169.
    Xia J, Li CX, Dong H 2005. Thermal oxidation treatment of B2 iron aluminide for improved wear resistance. Wear 258:1804–12
    [Google Scholar]
  170. 170.
    Nowak K, Kupka M, Maszybrocka J, Barylski A 2015. Effect of thermal oxidation process on wear resistance of B2 iron aluminide. Vacuum 114:221–25
    [Google Scholar]
  171. 171.
    Sharma G, Sundararaman M, Prabhu N, Goswami GL 2003. Sliding wear resistance of iron aluminides. Bull. Mater. Sci. 26:311–14
    [Google Scholar]
  172. 172.
    Zhang X, Ma J, Fu L, Zhu S, Li F et al. 2013. High temperature wear resistance of Fe–28Al–5Cr alloy and its composites reinforced by TiC. Tribol. Int. 61:48–55
    [Google Scholar]
  173. 173.
    Itoi T, Mineta S, Kinmura H, Yoshimi K, Hirohashi M 2010. Fabrication and wear properties of Fe3Al-based composites. Intermetallics 18:2169–77
    [Google Scholar]
  174. 174.
    Tu JP, Liu MS. 1997. Wet abrasive wear of ordered Fe3Al alloys. Wear 209:31–36
    [Google Scholar]
  175. 175.
    Kim YS, Song JH, Chang YW 1997. Erosion behavior of Fe-Al intermetallic alloys. Scr. Mater. 36:829–34
    [Google Scholar]
  176. 176.
    Tamann G, Siebel G. 1925. Die Anlauffarben auf Eisen-Kohlenstofflegierungen und auf Eisen-mischkristallen: Fe-Ni; Fe-V; Fe-Al [Tarnish colors on iron-carbon alloys and iron solid solutions: Fe-Ni; Fe-V; Fe-Al]. Z. Anorg. Allg. Chem. 148:297–312
    [Google Scholar]
  177. 177.
    Hauttmann A. 1931. Hitzebeständigkeit von Aluminiumstählen und von Aluminiumüberzügen auf Eisen [Heat resistance of aluminum steels and aluminum coatings on iron]. Stahl Eisen 51:65–67
    [Google Scholar]
  178. 178.
    Sykes C, Bampfylde JW. 1934. The physical properties of iron-aluminium alloys. J. Iron Steel Inst. 130:389–418
    [Google Scholar]
  179. 179.
    Tomaszewicz P, Wallwork G. 1978. Iron-aluminium alloys: a review of their oxidation behaviour. Rev. High Temp. Mater. 4:75–104
    [Google Scholar]
  180. 180.
    Marx V, Palm M. 2017. Oxidation of Fe-Al alloys (5–40 at.% Al) at 700 and 900°C. Mater. Sci. Forum 879:1245–50
    [Google Scholar]
  181. 181.
    Prescott R, Graham MJ. 1992. The oxidation of iron-aluminum alloys. Oxid. Met. 38:73–87
    [Google Scholar]
  182. 182.
    Stumpf HC, Russell AS, Newsome JW, Tucker CM 1950. Thermal transformations of aluminas and alumina hydrates. Ind. Eng. Chem. 42:1398–403
    [Google Scholar]
  183. 183.
    Wefers K, Misra C. 1987. Oxides and Hydroxides of Aluminum Pittsburgh, PA: Alum. Co. Am.
  184. 184.
    Grabke HJ. 1999. Oxidation of NiAl and FeAl. Intermetallics 7:1153–58
    [Google Scholar]
  185. 185.
    Rommerskirchen I. 1996.Oxidationsverhalten von β-NiAl und β-FeAl sowie Fe-Al-Legierungen [Oxidation behavior of β-NiAl, β-FeAl and Fe-Al alloys] Düsseldorf, Ger: Fortschritt-Berichte VDI Verlag93 pp.
  186. 186.
    Das D, Balasubramaniam R, Mungole MN 2002. Hot corrosion of Fe3Al. J. Mater. Sci. 37:1135–42
    [Google Scholar]
  187. 187.
    Lang F, Yu Z, Gedevanishvili S, Deevi SC, Narita T 2003. Isothermal oxidation behavior of a sheet alloy of Fe–40at.% Al at temperatures between 1073 and 1473 K. Intermetallics 11:697–705
    [Google Scholar]
  188. 188.
    Lee DB, Kim GY, Kim JG 2003. The oxidation of Fe3Al-(0, 2, 4, 6%)Cr alloys at 1000°C. Mater. Sci. Eng. A 339:109–14
    [Google Scholar]
  189. 189.
    Godlewska E. 2006. Efect of molybdenum on high-temperature corrosion of Fe-Al intermetallics. Intermetallics 14:280–86
    [Google Scholar]
  190. 190.
    Klöwer J, Li J-G. 1996. Effects of yttrium on the oxidation behaviour of iron-chromium-aluminium alloys. Mater. Corros. 47:545–51
    [Google Scholar]
  191. 191.
    Kim I, Cho WD, Kim HJ 2000. High-temperature oxidation of Fe3Al containing yttrium. J. Mater. Sci. 35:4695–703
    [Google Scholar]
  192. 192.
    Natesan K. 1998. Corrosion performance of iron aluminides in mixed-oxidant environments. Mater. Sci. Eng. A 258:126–34
    [Google Scholar]
  193. 193.
    Pint BA, Schneibel JH. 2005. The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. Scr. Mater. 52:1199–204
    [Google Scholar]
  194. 194.
    Pint BA, Wright IG. 2004. The oxidation behavior of Fe-Al alloys. Mater. Sci. Forum 461–464:799–806
    [Google Scholar]
  195. 195.
    Vogel D, Hotař A, Vogel A, Palm M, Renner FU 2010. Corrosion behaviour of Fe-Al(-Ti) alloys in steam. Intermetallics 18:1375–78
    [Google Scholar]
  196. 196.
    Chevalier S, Juzon P, Przybylski K, Larpin JP 2009. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics. Sci. Technol. Adv. Mater. 10:045006
    [Google Scholar]
  197. 197.
    Zhang Y, Pint BA, Haynes JA, Tortorelli PE 2004. The effect of water vapor on the oxidation behavior of CVD iron-aluminide coatings. Oxid. Met. 62:103–20
    [Google Scholar]
  198. 198.
    Agüero A, Muelas R, Pastor A, Osgerby S 2005. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components. Surf. Coat. Technol. 200:1219–24
    [Google Scholar]
  199. 199.
    Sánchez L, Bolívar FJ, Hierro MP, Pérez FJ 2008. Effect of Ce and La additions in low temperature aluminization process by CVD–FBR on 12%Cr ferritic/martensitic steel and behaviour in steam oxidation. Corros. Sci. 50:2318–26
    [Google Scholar]
  200. 200.
    Judkins RR, Rao US. 2000. Fossil energy applications of intermetallic alloys. Intermetallics 8:1347–54
    [Google Scholar]
  201. 201.
    DeVan JH, Tortorelli PF. 1993. The oxidation-sulfidation behavior of iron alloys containing 16–40 at.% aluminum. Corros. Sci. 35:1065–71
    [Google Scholar]
  202. 202.
    Kai W, Douglass DL. 1993. The high-temperature corrosion behavior of Fe-Mo-Al alloys in H2/H2O/H2S mixed-gas environments. Oxid. Met. 39:281–316
    [Google Scholar]
  203. 203.
    Klöwer J. 1996. High-temperature corrosion behavior of iron aluminides and iron-aluminum-chromium alloys. Mater. Corros. 47:685–94
    [Google Scholar]
  204. 204.
    Tortorelli PF, DeVan JH. 1992. Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments. Mater. Sci. Eng. A 153:573–77
    [Google Scholar]
  205. 205.
    Stott FH, Chuah KT, Bradley LB 1996. Oxidation-sulphidation of iron aluminides at high temperature. Mater. Corros. 47:695–700
    [Google Scholar]
  206. 206.
    Ilyushechkin AY, Dolan MD, McLennan KG, Sharma SD 2011. Effect of pre-oxidation of Fe3Al on its corrosion resistance in sulfur and chlorine contaminated syngas. Asia Pac. J. Chem. Eng. 7:716–25
    [Google Scholar]
  207. 207.
    Strauß S, Krajak R, Palm M, Grabke HJ 1996. Metal dusting of Fe3Al and (Fe,Ni)3Al. Mater. Corros. 47:701–2
    [Google Scholar]
  208. 208.
    Bernst R, Schneider A, Spiegel M 2006. Metal dusting of binary iron aluminium alloys at 600°C. Mater. Corros. 57:724–28
    [Google Scholar]
  209. 209.
    Schneider A, Zhang J. 2003. Metal dusting of ferritic Fe-Al-M-C (M = Ti, V, Nb, Ta) alloys in CO-H2-H2O gas mixtures at 650°C. Mater. Corros. 54:778–84
    [Google Scholar]
  210. 210.
    Schneider A, Zhang J, Inden G 2004. Metal dusting of binary Fe-Al alloys in CO-H2-H2O gas mixtures. J. Corros. Sci. Eng. 6:87
    [Google Scholar]
  211. 211.
    Duquette DJ. 1995. Corrosion of intermetallic compounds. See Ref 299 965–75
  212. 212.
    Morris DG, Muñoz-Morris MA. 2011. Recent developments toward the application of iron aluminides in fossil fuel technologies. Adv. Eng. Mater. 13:43–47
    [Google Scholar]
  213. 213.
    Rao VS. 2004. A review of the electrochemical corrosion behaviour of iron aluminides. Electrochim. Acta 49:4533–42
    [Google Scholar]
  214. 214.
    Madsen BW, Adler TA. 1994. Passivation and repassivation kinetics of iron-aluminum alloys in 1 N H2SO4 using potential step and scratch tests. Wear 171:215–25
    [Google Scholar]
  215. 215.
    Kim JG, Buchanan RA. 1994. Pitting and crevice corrosion of iron aluminides in a mild acid-chloride solution. Corrosion 50:658–68
    [Google Scholar]
  216. 216.
    Choe HC, Kim HS, Choi DC, Kim KH 1997. Effects of alloying elements on the electrochemical characteristics of iron aluminides. J. Mater. Sci. 32:1221–27
    [Google Scholar]
  217. 217.
    Peng J, Moszner F, Rechmann J, Vogel D, Palm M, Rohwerder M 2019. Influence of Al content and pre-oxidation on the aqueous corrosion resistance of binary Fe-Al alloys in sulphuric acid. Corros. Sci. 149:123–32
    [Google Scholar]
  218. 218.
    Buchanan RA, Perrin RL. 1997. Effects of 1000°C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides. 11th Annual Conference on Fossil Energy Materials RR Judkins 159–68 Oak Ridge, TN: Oak Ridge Natl. Lab.
    [Google Scholar]
  219. 219.
    Lopez MF, Escudero ML. 1998. Corrosion behaviour of FeAl-type intermetallic compounds. Electrochim. Acta 43:671–78
    [Google Scholar]
  220. 220.
    Escudero ML, García-Alonso MC, González-Carrasco JL, Muñoz-Morris MA, Montealegre MA et al. 2003. Possibilities for improving the corrosion resistance of Fe-40Al intermetallic strip by prior oxide protection. Scr. Mater. 48:1549–54
    [Google Scholar]
  221. 221.
    Masahashi N, Kimura G, Oku M, Konmatsu K, Watanabe S, Hanada S 2006. Corrosion behavior of iron-aluminium alloys and its composite steel in sulfuric acid. Corros. Sci. 48:829–39
    [Google Scholar]
  222. 222.
    Palm M, Krieg R. 2012. Neutral salt spray tests on Fe–Al and Fe–Al–X. Corros. Sci. 64:74–81
    [Google Scholar]
  223. 223.
    Maziasz PJ, Goodwin GM, Alexander DJ, Viswanathan S 1997. Alloy development and processing effects for FeAl iron aluminides: an overview. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications SC Deevi, PJ Maziasz, VK Sikka, RW Cahn 157–76 Materials Park, OH: ASM Int.
    [Google Scholar]
  224. 224.
    Tortorelli PE, Bishop PS. 1991. Influence of compositional modifications on the corrosion of iron aluminides by molten nitrate salts Rep. ORNL/TM-11598, Oak Ridge Natl. Lab Oak Ridge, TN:
  225. 225.
    Frangini S. 2000. Corrosion behavior of AISI 316L stainless steel and ODS FeAl aluminide in eutectic Li2CO3–K2CO3 molten carbonates under flowing CO2–O2 gas mixtures. Oxid. Met. 53:139–56
    [Google Scholar]
  226. 226.
    Amaya M, Espinosa-Medina MA, Porcayo-Calderon J, Martinez L, Gonzalez-Rodriguez JG 2003. High temperature corrosion performance of FeAl intermetallic alloys in molten salts. Mater. Sci. Eng. A 349:12–19
    [Google Scholar]
  227. 227.
    Huang YD, Yang WY, Sun ZQ, Froyen L 2004. Preparation and mechanical properties of large-ingot Fe3Al-based alloys. J. Mater. Proc. Technol. 146:175–80
    [Google Scholar]
  228. 228.
    Sikka VK, Wilkening D, Liebetrau J, Mackey B 1998. Melting and casting of FeAl-based alloy. Mater. Sci. Eng. A 258:229–35
    [Google Scholar]
  229. 229.
    Kettner U, Rehfeld H, Engelke C, Neuhäuser H 1999. A comparison of the plastic behaviour of Fe3Al and Fe3Si in the temperature range of 300–973 K. Intermetallics 7:405–14
    [Google Scholar]
  230. 230.
    Yasuda HY, Nakano K, Nakajima T, Ueda M, Umakoshi Y 2003. Effect of ordering process on giant pseudoelasticity in Fe3Al single crystals. Acta Mater 51:5101–12
    [Google Scholar]
  231. 231.
    Radhakrishna A, Baligidad RG, Sarma DS 2001. Effect of carbon on structure and properties of FeAl based intermetallic alloy. Scr. Mater. 45:1077–82
    [Google Scholar]
  232. 232.
    Itoi T, Watanabe Y, Nishikawa Y, Kimura H, Yoshimi K, Hirohashi M 2010. Preparation of recycle-typed Fe3Al alloy and its application for cutting tool materials. Intermetallics 18:1396–400
    [Google Scholar]
  233. 233.
    Borges DFL, Espinosa DCR, Schön CG 2014. Making iron aluminides out of scrap. J. Mater. Res. Technol. 3:101–6
    [Google Scholar]
  234. 234.
    Rabin BH, Wright RN. 1991. Synthesis of iron aluminides from elemental powders: reaction mechanisms and densification behavior. Metal. Trans. 22A:277–86
    [Google Scholar]
  235. 235.
    Wright RN, Rabin BH, Wright JK 1993. Processing, properties, and wear resistance of aluminides Rep. EGG-MS-10441, Idaho Natl. Eng. Lab Idaho Falls, ID:
  236. 236.
    Godlewska E, Szczepanik S, Mania R, Krawiarz J, Kozinski S 2003. FeAl materials from intermetallic powders. Intermetallics 11:307–12
    [Google Scholar]
  237. 237.
    Novák P, Knotek V, Serák J, Michalcová A, Vojtech D 2011. Synthesis of Fe–Al–Si intermediary phases by reactive sintering. Powder Metall 54:167–71
    [Google Scholar]
  238. 238.
    Matsumoto A, Kobayashi K, Nishio T, Ozaki K, Sugiyama A 2000. Microstructure and mechanical properties of FeAl compacts prepared by pulse current sintering of mechanically alloyed powders. J. Jpn. Soc. Powder Powder Metall. 47:1253–57
    [Google Scholar]
  239. 239.
    Paris S, Gaffet E, Bernard F, Munir ZA 2004. Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr. Mater. 50:691–96
    [Google Scholar]
  240. 240.
    Deevi SC, Sikka VK. 1997. Reaction synthesis and processing of nickel and iron aluminides. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications SC Deevi, PJ Maziasz, VK Sikka, RW Cahn 283–99 Materials Park, OH: ASM Int.
    [Google Scholar]
  241. 241.
    Liu CT, Sikka VK, McKamey CG 1993. Alloy development of FeAl aluminide alloys for structural use in corrosive environments Rep. ORNL/TM-12199, Oak Ridge Natl. Lab Oak Ridge, TN:
  242. 242.
    Testani C, Di Gianfrancesco A, Tassa O, Pocci D 1997. FeAl intermetallics and applications: an overview. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications SC Deevi, PJ Maziasz, VK Sikka, RW Cahn 213–22 Materials Park, OH: ASM Int.
    [Google Scholar]
  243. 243.
    McQuay PA, Sikka VK. 2002. Casting. See Ref 301 , pp. 591–616
  244. 244.
    Blackford JR, Buckley RA, Jones H, Sellars CM 1996. Production of iron aluminides by strip casting followed by cold rolling at room temperature. Scr. Mater. 34:1595–600
    [Google Scholar]
  245. 245.
    Flores O, Juarez J, Campillo B, Martinez L, Schneibel JH 1994. Forging of FeAl intermetallic compounds. See Ref 303 , pp. 31–38
  246. 246.
    Rodriguez J, Moussa SO, Wall J, Morsi K 2003. Low-energy forging of aluminide intermetallics. Scr. Mater. 48:707–12
    [Google Scholar]
  247. 247.
    Yu XQ, Sun YS. 2004. Hot working of Fe3Al based alloy. Mater. Sci. Technol. 20:339–42
    [Google Scholar]
  248. 248.
    Morris DG, Muñoz-Morris MA. 2010. High creep strength, dispersion-strengthened iron aluminide prepared by multidirectional high-strain forging. Acta Mater 58:6080–89
    [Google Scholar]
  249. 249.
    Zhang ZH, Sun YS, Shen GJ 1998. Improvements of tensile strength and creep resistance of Fe-28Al alloy with tungsten addition. Scr. Mater. 38:21–25
    [Google Scholar]
  250. 250.
    Huang YD, Yang WY, Sun ZQ 1999. Improvement of room temperature tensile properties for Fe3Al-based alloys by thermomechanical and annealing processes. Mater. Sci. Eng. A 263:75–84
    [Google Scholar]
  251. 251.
    Janschek P, Bauer-Partenheimer K, Krein R, Hanus P, Palm M 2009. Forging of steam turbine blades with an Fe3Al-based alloy. Mater. Res. Soc. Symp. Proc. 1128:47–52
    [Google Scholar]
  252. 252.
    Palm M, Stein F, Dehm G 2017. Entwicklung intermetallischer Eisenaluminid-Legierungen [De-velopment of intermetallic iron aluminide alloys]. Stahl Eisen 137:76
    [Google Scholar]
  253. 253.
    Blackford JR, Buckley RA, Jones H, Sellars CM, Briguet C, Morris DG 1998. Effect of process variables on tensile properties of ingot processed versus strip cast iron aluminides. Mater. Sci. Technol. 14:1132–38
    [Google Scholar]
  254. 254.
    Deevi SC, Sastry DH, Sikka VK 2001. Alloy development and industrial processing of iron aluminide sheets. Structural Intermetallics 2001 KJ Hemker, DM Dimiduk, H Clemens, R Darolia, H Inui et al.111–19 Warrendale, PA: TMS
    [Google Scholar]
  255. 255.
    Baligidad RG, Radhakrishna A. 2004. Effect of zirconium on structure and properties of high carbon Fe–10.5 wt-% Al alloy. Mater. Sci. Technol. 20:111–16
    [Google Scholar]
  256. 256.
    Kratochvil P, Schindler I, Hanus P 2006. Conditions for the hot rolling of Fe3Al-type iron aluminide. Kovove Mater 44:321–26
    [Google Scholar]
  257. 257.
    Kuc D, Niewielski G, Bednarczyk I 2008. The influence of thermomechanical treatment on structure of FeAl intermetallic phase-based alloys. JAMME 29:123–30
    [Google Scholar]
  258. 258.
    Schindler I, Kratochvil P, Prokopcakova P, Kozelsky P 2010. Forming of cast Fe–45 at.% Al alloy with high content of carbon. Intermetallics 18:745–47
    [Google Scholar]
  259. 259.
    Huang YD, Yang WY, Chen GL, Sun ZQ 2001. On the effect of the B2 thermomechanical treatment in improving the room temperature ductility of Fe3Al-based alloys. Intermetallics 9:331–40
    [Google Scholar]
  260. 260.
    Deevi SC, Hajaligol MR, Sikka VK, McKernon J, Scorey CR 1999. Processing and properties of FeAl sheets obtained by roll compaction and sintering of water atomized powders. Mater. Res. Soc. Symp. Proc. 552:KK4.6.1
    [Google Scholar]
  261. 261.
    Seetharaman V, Semiatin SL. 2002. Powder metallurgy. See Ref 301 , pp. 643–62
  262. 262.
    Strothers S, Vedula K. 1987. Hot extrusion of B2 iron aluminide powders. Prog. Powder Metall. 43:597–610
    [Google Scholar]
  263. 263.
    Sikka VK, Viswanathan S, McKamey CG 1993. Development and commercialization status of Fe3Al-based intermetallic alloys. Structural Intermetallics R Darolia, JJ Lewandowski, CT Liu, PL Martin, DB Miracle, MV Nathal 483–91 Warrendale, PA: TMS
    [Google Scholar]
  264. 264.
    Kad B, Heatherington H, McKamey CG, Wright IG, Sikka VK, Judkins RR 2003. Optimization of high temperature hoop creep response in ODS-Fe3Al tubes. 17th Annual Conference on Fossil Energy Materials RR Judkins 1–10 Baltimore, MD: US Dep. Energy Off. Sci. Tech. Inf.
    [Google Scholar]
  265. 265.
    Durejko T, Lipinski S, Bojar Z, Bystrzycki J 2011. Processing and characterization of graded metal/intermetallic materials: the example of Fe/FeAl intermetallics. Mater. Des. 32:2827–34
    [Google Scholar]
  266. 266.
    Song B, Dong S, Coddet P, Liao H, Coddet C 2012. Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts. Surf. Coat. Technol. 206:4704–9
    [Google Scholar]
  267. 267.
    Durejko T, Zietala M, Polkowski W, Czujko T 2014. Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Mater. Des. 63:766–74
    [Google Scholar]
  268. 268.
    Cinca N, Guilemany JM. 2012. Thermal spraying of transition metal aluminides: an overview. Intermetallics 24:60–72
    [Google Scholar]
  269. 269.
    Cinca N, Lima CRC, Guilemany JM 2013. An overview of intermetallics research and application: status of thermal spray coatings. J. Mater. Res. Technol. 2:75–86
    [Google Scholar]
  270. 270.
    Datta PK, Burnell-Gray JS, Natesan K 2002. Coating technology. See Ref 301 , pp. 561–88
  271. 271.
    Sikka VK, Swindeman RW, Wright IG, Judkins RR, Johnson R 1999. Fabrication of test tubes for coal ash corrosion testing. 13th Conference on Fossil Energy Materials1–17 Oak Ridge, TN: Oak Ridge Natl. Lab.
    [Google Scholar]
  272. 272.
    Sasaki T, Yakou T. 2006. Machinability of intermetallic compound Fe3Al from the view point of tool wear. JSME Int. J. C 49:334–39
    [Google Scholar]
  273. 273.
    Liu L, Shao H, Huang LX 2009. Studies on drilling processes of intermetallic compounds. J. Mater. Proc. Technol. 209:4509–14
    [Google Scholar]
  274. 274.
    Köhler J, Moral A, Denkena B 2013. Grinding of iron-aluminides. Proc. CIRP 9:2–7
    [Google Scholar]
  275. 275.
    Deneka B, Reichenstein M, Meyer R, Deges J 2005. Machining of iron-aluminium-based alloys: wear behaviour of uncoated cemented carbide tools while turning an Fe3Al-based alloy. wt-online 11/12-2005 910–14
    [Google Scholar]
  276. 276.
    David SA, Horton JA, McKamey CG, Zacharia T, Reed RW 1989. Welding of iron aluminides. Welding J 68:s372–81
    [Google Scholar]
  277. 277.
    Santella ML. 1997. An overview of the welding of Ni3Al and Fe3Al alloys. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications SC Deevi, PJ Maziasz, VK Sikka, RW Cahn 321–27 Materials Park, OH: ASM Int.
    [Google Scholar]
  278. 278.
    McKamey CG, Maziasz PJ, Goodwin GM, Zacharia T 1994. Effects of alloying additions on the microstructures, mechanical properties and weldability of Fe3Al-based alloys. Mater. Sci. Eng. A 174:59–70
    [Google Scholar]
  279. 279.
    Sketchley PD, Threadgill PL, Wright IG 2002. Rotary friction welding of an Fe3Al based ODS alloy. Mater. Sci. Eng. A 329–331:756–62
    [Google Scholar]
  280. 280.
    Chiang CC, Wang SH, Chen JS, Chu JP, Hsu YF 2007. Bending embrittlement of as-welded FeAl alloys. Intermetallics 15:564–70
    [Google Scholar]
  281. 281.
    Neumann H, Moravec J, Bradac J 2010. TIG welding process effect on the iron aluminide Fe3Al. METAL 20101–6 Ostrava, Czech Rep: Tanger
    [Google Scholar]
  282. 282.
    Cebulski J. 2015. Application of FeAl intermetallic phase matrix based alloys in the turbine components of a turbo charger. Metalurgija 54:154–56
    [Google Scholar]
  283. 283.
    Blau PJ, Meyer HM III 2003. Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear 255:1261–69
    [Google Scholar]
  284. 284.
    Tyszko Z. 1969. Fontes a haute teneur en aluminium [Cast iron with high content in aluminum]. Fonderie 278:221–33
    [Google Scholar]
  285. 285.
    Xiang X, Wang X, Zhang G, Tang T, Lai X 2015. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: a review. Int. J. Hydrogen Energ. 40:3697–707
    [Google Scholar]
  286. 286.
    Sikka VK, Blue CA, Sklad SP, Deevi SC, Shih H-R 1998. Fabric cutting application of FeAl-based alloys. Mater. Sci. Eng. A 256:325–30
    [Google Scholar]
  287. 287.
    Landis GA. 2007. Materials refining on the moon. Acta Astronaut 60:906–15
    [Google Scholar]
  288. 288.
    McKamey CG, McCleary D, Tortorelli PF, Sawyer J, Lara-Curzio E, Judkins RR 2002. Characterization of field-exposed iron aluminide hot gas filters. Proceedings of the 5th International Symposium on Gas Cleaning at High Temperature1–15 Morgantown, WV: Natl. Energy Technol. Lab.
    [Google Scholar]
  289. 290.
    Zhang H, Liu X, Jiang Y, Gao L, Yu L et al. 2017. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic. J. Hazard. Mater. 338:364–71
    [Google Scholar]
  290. 291.
    Schulz R, Savoie S. 2009. A new family of high performance nanostructured catalysts for the electrosynthesis of sodium chlorate. J. Alloys Compd. 483:510–13
    [Google Scholar]
  291. 292.
    Armbrüster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G et al. 2012. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nature Mater 11:690–93
    [Google Scholar]
  292. 293.
    Herrmann J. 2000.Untersuchungen zur Struktur und zum mechanischen Verhalten von Fe-reichen Fe-Al-Legierungen [Investigations concerning the structure and mechanical behavior of Fe-rich Fe-Al alloys] Doctoral Thesis, RWTH Aachen 167 pp.
  293. 294.
    Herrmann J, Inden G, Sauthoff G 2003. Deformation behaviour of iron-rich iron-aluminium alloys at low temperatures. Acta Mater 51:2847–57
    [Google Scholar]
  294. 295.
    Eumann M, Palm M, Sauthoff G 2004. Alloys based on Fe3Al or FeAl with strengthening Mo3Al precipitates. Intermetallics 12:625–33
    [Google Scholar]
  295. 296.
    Sundar RS, Kutty TRG, Sastry DH 2000. Hot hardness and creep of Fe3Al-based alloys. Intermetallics 8:427–37
    [Google Scholar]
  296. 297.
    Knezevic V, Sauthoff G, Vilk J, Inden G, Schneider A et al. 2002. Martensitic/ferritic super heat-resistant 650°C steels: design and testing of model alloys. ISIJ Int 42:1505–14
    [Google Scholar]
  297. 298.
    Palm M, Krein R, Milenkovic S, Sauthoff G, Risanti D et al. 2007. Strengthening mechanisms for Fe-Al-based alloys with increased creep resistance at high temperatures. Mater. Res. Soc. Symp. Proc. 980:II01
    [Google Scholar]
  298. 299.
    Westbrook JH, Fleischer RL 1995. Intermetallic Compounds: Principles and Practice. Vol. 1: Principles Chichester, UK: John Wiley & Sons
  299. 300.
    Westbrook JH, Fleischer RL 1995. Intermetallic Compounds: Principles and Practice. Vol. 2: Practice Chichester, UK: John Wiley & Sons
  300. 301.
    Westbrook JH, Fleischer RL 2002. Intermetallic Compounds: Principles and Practice. Vol. 3: Progress Chichester, UK: John Wiley & Sons
  301. 302.
    Stoloff NS, Sikka VK, ed. 1996. Physical Metallurgy and Processing of Intermetallic Compounds Boston, MA: Springer US
  302. 303.
    Schneibel JH, Crimp MA 1994. Processing, Properties, and Applications of Iron Aluminides Warrendale, PA: TMS
/content/journals/10.1146/annurev-matsci-070218-125911
Loading
/content/journals/10.1146/annurev-matsci-070218-125911
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error