1932

Abstract

X-ray microscopy has been an indispensable tool to image nanoscale properties for materials research. One of its recent advances is extending microscopic studies to the time domain to visualize the dynamics of nanoscale phenomena. Large-scale X-ray facilities have been the powerhouse of time-resolved X-ray microscopy. Their upgrades, including a significant reduction of the X-ray emittance at storage rings (SRs) and fully coherent ultrashort X-ray pulses at free-electron lasers (FELs), will lead to new developments in instrumentation and will open new scientific opportunities for X-ray imaging of nanoscale dynamics with the simultaneous attainment of unprecedentedly high spatial and temporal resolutions. This review presents recent progress in and the outlook for time-resolved X-ray microscopy in the context of ultrafast nanoscale imaging and its applications to condensed matter physics and materials science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124014
2019-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/49/1/annurev-matsci-070616-124014.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124014&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fleming GR, Ratner MA. 2008. Grand challenges in basic energy sciences. Physics Today 61:728
    [Google Scholar]
  2. 2.
    Anderson PW. 1972. More is different. Science 177:393–96
    [Google Scholar]
  3. 3.
    Imada M, Fujimori A, Tokura Y 1998. Metal-insulator transitions. Rev. Mod. Phys. 70:41039–1263
    [Google Scholar]
  4. 4.
    Foltyn SR, Civale L, MacManus-Driscoll JL, Jia QX, Maiorov B et al. 2007. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6:9631–42
    [Google Scholar]
  5. 5.
    Dagotto E, Hotta T, Moreo A 2001. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344:11–153
    [Google Scholar]
  6. 6.
    Ichikawa H, Nozawa S, Sato T, Tomita A, Ichiyanagi K et al. 2011. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10:2101–5
    [Google Scholar]
  7. 7.
    Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A et al. 2011. Light-induced superconductivity in a stripe-ordered cuprate. Science 331:6014189–91
    [Google Scholar]
  8. 8.
    Yang D-S, Mohammed OF, Zewail AH 2010. Scanning ultrafast electron microscopy. PNAS 107:3414993–98
    [Google Scholar]
  9. 9.
    Holt M, Harder R, Winarski R, Rose V 2013. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 43:183–211
    [Google Scholar]
  10. 10.
    Lider VV. 2017. X-ray microscopy. Phys. Uspekhi 60:2187–203
    [Google Scholar]
  11. 11.
    Pfeiffer F. 2018. X-ray ptychography. Nat. Photonics 12:19–17
    [Google Scholar]
  12. 12.
    Okada Y, Walkup D, Lin H, Dhital C, Chang TR et al. 2013. Imaging the evolution of metallic states in a correlated irridate. Nat. Mater. 12:707–13
    [Google Scholar]
  13. 13.
    Wiesendanger R. 2016. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1:16044
    [Google Scholar]
  14. 14.
    Lummen TTA, Gu Y, Wang J, Lei S, Xue F et al. 2014. Thermotropic phase boundaries in classic ferroelectrics. Nat. Commun. 5:3172
    [Google Scholar]
  15. 15.
    French PMW. 1996. Ultrafast solid-state lasers. Contemp. Phys. 37:283–301
    [Google Scholar]
  16. 16.
    Berera R, van Grondelle R, Kennis JTM 2009. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101:2–3105–18
    [Google Scholar]
  17. 17.
    Averitt RD, Taylor AJ. 2002. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J. Phys. Condens. Matter 14:50R1357–89
    [Google Scholar]
  18. 18.
    Bargheer M, Zhavoronkov N, Woerner M, Elsaesser T 2006. Recent progress in ultrafast X-ray diffraction. ChemPhysChem 7:4783–92
    [Google Scholar]
  19. 19.
    Adhikari A, Eliason JK, Sun J, Bose R, Flannigan DJ, Mohammed OF 2017. Four-dimensional ultrafast electron microscopy: insights into an emerging technique. ACS Appl. Mater. Interfaces 9:13–16
    [Google Scholar]
  20. 20.
    Lobastov VA, Weissenrieder J, Tang J, Zewail AH 2007. Ultrafast electron microscopy (UEM): four-dimensional imaging and diffraction of nanostructures during phase transitions. Nano Lett 7:92552–58
    [Google Scholar]
  21. 21.
    Shorokhov D, Zewail AH. 2016. Perspective: 4D ultrafast electron microscopy—evolutions and revolutions. J. Chem. Phys. 144:8080901
    [Google Scholar]
  22. 22.
    Ortalan V, Zewail AH. 2011. 4D scanning transmission ultrafast electron microscopy: single-particle imaging and spectroscopy. J. Am. Chem. Soc. 133:2810732–35
    [Google Scholar]
  23. 23.
    Cremons DR, Plemmons DA, Flannigan DJ 2016. Femtosecond electron imaging of defect-modulated phonon dynamics. Nat. Commun. 7:11230
    [Google Scholar]
  24. 24.
    Cremons DR, Plemmons DA, Flannigan DJ 2017. Defect-mediated phonon dynamics in TaS2 and WSe2. Struct. Dyn. 4:4044019
    [Google Scholar]
  25. 25.
    Dönges SA, Khatib O, O'Callahan BT, Atkin JM, Park JH et al. 2016. Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO2. Nano Lett 16:3029–35
    [Google Scholar]
  26. 26.
    Eisele M, Cocker TL, Huber MA, Plankl M, Viti L et al. 2014. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photonics 8:841–45
    [Google Scholar]
  27. 27.
    Wagner M, Fei Z, McLeod AS, Rodin AS, Bao W et al. 2014. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. Nano Lett 14:2894–900
    [Google Scholar]
  28. 28.
    Sternbach AJ, Hinton J, Slusar T, McLeod AS, Liu MK et al. 2017. Artifact free time resolved near-field spectroscopy. Opt. Express 25:2328589
    [Google Scholar]
  29. 29.
    Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ et al. 2013. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7:8620–25
    [Google Scholar]
  30. 30.
    Weckert E. 2015. The potential of future light sources to explore the structure and function of matter. IUCrJ 2:2230–45
    [Google Scholar]
  31. 31.
    Argonne Natl. Lab. Adv. Photon Source (APS) 2017. Early science at the upgraded APS Rep., APS
  32. 32.
    Pellegrini C. 2016. X-ray free-electron lasers: from dreams to reality. Phys. Scr. T169:014004
    [Google Scholar]
  33. 33.
    Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ et al. 2017. Short-wavelength free-electron laser sources and science: a review. Rep. Prog. Phys. 80:11115901
    [Google Scholar]
  34. 34.
    Sakdinawat A, Attwood D. 2010. Nanoscale X-ray imaging. Nat. Photonics 4:12840–48
    [Google Scholar]
  35. 35.
    Chahine GA, Richard M-I, Homs-Regojo RA, Tran-Caliste TN, Carbone D et al. 2014. Imaging of strain and lattice orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal space mapping. J. Appl. Crystallogr. 47:2762–69
    [Google Scholar]
  36. 36.
    Cornelius TW, Thomas O. 2018. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales. Prog. Mater. Sci. 94:384–434
    [Google Scholar]
  37. 37.
    Schülli TU, Leake SJ. 2018. X-ray nanobeam diffraction imaging of materials. Curr. Opin. Solid State Mater. Sci. 22:5188–201
    [Google Scholar]
  38. 38.
    de Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K et al. 2010. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. PNAS 107:3615676–80
    [Google Scholar]
  39. 39.
    Schaff F, Bech M, Zaslansky P, Jud C, Liebi M et al. 2015. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography. Nature 527:7578353–56
    [Google Scholar]
  40. 40.
    Donnelly C, Guizar-Sicairos M, Scagnoli V, Gliga S, Holler M et al. 2017. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547:7663328–31
    [Google Scholar]
  41. 41.
    Macrander AT, Huang X. 2017. Synchrotron X-ray optics. Annu. Rev. Mater. Res. 47:135–52
    [Google Scholar]
  42. 42.
    Roth T, Detlefs C, Snigireva I, Snigirev A 2015. X-ray diffraction microscopy based on refractive optics. Opt. Commun. 340:33–38
    [Google Scholar]
  43. 43.
    Liu W, Ice GE, Tischler JZ, Khounsary A, Liu C et al. 2005. Short focal length Kirkpatrick-Baez mirrors for a hard X-ray nanoprobe. Rev. Sci. Instrum. 76:11113701
    [Google Scholar]
  44. 44.
    Mohacsi I, Vartiainen I, Rösner B, Guizar-Sicairos M, Guzenko VA et al. 2017. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range. Sci. Rep. 7:143624
    [Google Scholar]
  45. 45.
    Yan H, Bouet N, Zhou J, Huang X, Nazaretski E et al. 2018. Multimodal hard X-ray imaging with resolution approaching 10 nm for studies in material science. Nano Futures 2:1011001
    [Google Scholar]
  46. 46.
    Hruszkewycz SO, Allain M, Holt MV, Murray CE, Holt JR et al. 2017. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nat. Mater. 16:2244–51
    [Google Scholar]
  47. 47.
    Deng J, Vine DJ, Chen S, Jin Q, Nashed YSG et al. 2017. X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning. Sci. Rep. 7:1445
    [Google Scholar]
  48. 48.
    Hofmann F, Nguyen-Manh D, Gilbert MR, Beck CE, Eliason JK et al. 2015. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling. Acta Mater 89:352–63
    [Google Scholar]
  49. 49.
    May BM, Yu Y-S, Holt MV, Strobridge FC, Boesenberg U et al. 2017. Nanoscale detection of intermediate solid solutions in equilibrated Lix FePO4 microcrystals. Nano Lett 17:127364–71
    [Google Scholar]
  50. 50.
    Matsuyama S, Yasuda S, Yamada J, Okada H, Kohmura Y et al. 2017. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors. Sci. Rep. 7:146358
    [Google Scholar]
  51. 51.
    Wessels P, Ewald J, Wieland M, Nisius T, Abbati G et al. 2014. Time-resolved soft X-ray microscopy of magnetic nanostructures at the P04 beamline at PETRA III. J. Phys. Conf. Ser. 499:012009
    [Google Scholar]
  52. 52.
    Laanait N, Zhang Z, Schlepütz CM, Vila-Comamala J, Highland MJ, Fenter P 2014. Full-field X-ray reflection microscopy of epitaxial thin-films. J. Synchrotron Radiat. 21:61252–61
    [Google Scholar]
  53. 53.
    Miao J, Sayre D, Chapman HN 1998. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15:61662–69
    [Google Scholar]
  54. 54.
    Fienup JR. 1982. Phase retrieval algorithms: a comparison. Appl. Opt. 21:152758–69
    [Google Scholar]
  55. 55.
    Deng J, Vine DJ, Chen S, Nashed YSG, Jin Q et al. 2015. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. PNAS 112:82314–19
    [Google Scholar]
  56. 56.
    Cherukara MJ, Schulmann DS, Sasikumar K, Arnold AJ, Chan H et al. 2018. Three-dimensional integrated X-ray diffraction imaging of a native strain in multi-layered WSe2. Nano Lett 18:31993–2000
    [Google Scholar]
  57. 57.
    Sadasivam S, Chan MKY, Darancet P 2017. Theory of thermal relaxation of electrons in semiconductors. Phys. Rev. Lett. 119:13136602
    [Google Scholar]
  58. 58.
    Zhang Q, Dufresne EM, Narayanan S, Maj P, Koziol A et al. 2018. Sub-microsecond-resolved multi-speckle X-ray photon correlation spectroscopy with a pixel array detector. J. Synchrotron Radiat. 25:51408–16
    [Google Scholar]
  59. 59.
    Wittenberg JS, Miller TA, Szilagyi E, Lutker K, Quirin F et al. 2014. Real-time visualization of nanocrystal solid-solid transformation pathways. Nano Lett 14:1995–99
    [Google Scholar]
  60. 60.
    Szilagyi E, Wittenberg JS, Miller TA, Lutker K, Quirin F et al. 2015. Visualization of nanocrystal breathing modes at extreme strains. Nat. Commun. 6:6577
    [Google Scholar]
  61. 61.
    Xiaobiao H, Safranek J, Corbett J, Nosochkov Y, Sebek J, Terebilo A 2007. Low alpha mode for SPEAR3. 2007 IEEE Particle Accelerator Conference1308–10 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62.
    Schoenlein RW. 2000. Generation of femtosecond pulses of synchrotron radiation. Science 287:54612237–40
    [Google Scholar]
  63. 63.
    Feng J, Shin HJ, Nasiatka JR, Wan W, Young AT et al. 2007. An X-ray streak camera with high spatio-temporal resolution. Appl. Phys. Lett. 91:13134102
    [Google Scholar]
  64. 64.
    Harmand M, Coffee R, Bionta MR, Chollet M, French D et al. 2013. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 7:3215–18
    [Google Scholar]
  65. 65.
    Freeman MR, Smyth JF. 1996. Picosecond time-resolved magnetization dynamics of thin-film heads. J. Appl. Phys. 79:85898–900
    [Google Scholar]
  66. 66.
    Cherukara MJ, Cha W, Harder RJ 2018. Anisotropic nano-scale resolution in 3D Bragg coherent diffraction imaging. Appl. Phys. Lett. 113:203101
    [Google Scholar]
  67. 67.
    Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM et al. 2013. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341:614156–59
    [Google Scholar]
  68. 68.
    Cherukara MJ, Sasikumar K, Cha W, Narayanan B, Leake SJ et al. 2017. Ultrafast three-dimensional X-ray imaging of deformation modes in ZnO nanocrystals. Nano Lett 17:21102–8
    [Google Scholar]
  69. 69.
    Cherukara MJ, Sasikumar K, DiChiara A, Leake SJ, Cha W et al. 2017. Ultrafast three-dimensional integrated imaging of strain in core/shell semiconductor/metal nanostructures. Nano Lett 17:127696–701
    [Google Scholar]
  70. 70.
    Zhu G, Yang R, Wang S, Wang ZL 2010. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10:83151–55
    [Google Scholar]
  71. 71.
    Martin LW, Rappe AM. 2017. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2:216087
    [Google Scholar]
  72. 72.
    Grigoriev A, Do D-H, Kim DM, Eom C-B, Adams B et al. 2006. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 96:18187601
    [Google Scholar]
  73. 73.
    Kreisel J, Alexe M, Thomas PA 2012. A photoferroelectric material is more than the sum of its parts. Nat. Mater. 11:4260
    [Google Scholar]
  74. 74.
    Kundys B. 2015. Photostrictive materials. Appl. Phys. Rev. 2:1011301
    [Google Scholar]
  75. 75.
    Wen H, Chen P, Cosgriff MP, Walko DA, Lee JH et al. 2013. Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110:3037601
    [Google Scholar]
  76. 76.
    Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong S-W 2009. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:592363–66
    [Google Scholar]
  77. 77.
    Daranciang D, Highland MJ, Wen H, Young SM, Brandt NC et al. 2012. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108:8087601
    [Google Scholar]
  78. 78.
    Akamatsu H, Yuan Y, Stoica VA, Stone G, Yang T et al. 2018. Light-activated gigahertz ferroelectric domain dynamics. Phys. Rev. Lett. 120:9096101
    [Google Scholar]
  79. 79.
    Zhu Y, Chen F, Park J, Sasikumar K, Hu B et al. 2017. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields. Phys. Rev. Mater. 1:6060601
    [Google Scholar]
  80. 80.
    Mathiesen RH, Arnberg L, Mo F, Weitkamp T, Snigirev A 1999. Time resolved X-ray imaging of dendritic growth in binary alloys. Phys. Rev. Lett. 83:245062–65
    [Google Scholar]
  81. 81.
    Olbinado MP, Cantelli V, Mathon O, Pascarelli S, Grenzer J et al. 2018. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light. J. Phys. D Appl. Phys. 51:5055601
    [Google Scholar]
  82. 82.
    Fan D, Lu L, Li B, Qi ML, E JC et al. 2014. Transient X-ray diffraction with simultaneous imaging under high strain-rate loading. Rev. Sci. Instrum. 85:11113902
    [Google Scholar]
  83. 83.
    Sullivan KT, Piekiel NW, Wu C, Chowdhury S, Kelly ST et al. 2012. Reactive sintering: an important component in the combustion of nanocomposite thermites. Combust. Flame 159:12–15
    [Google Scholar]
  84. 84.
    Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F et al. 2017. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci. Rep. 7:13602
    [Google Scholar]
  85. 85.
    Clark JN, Beitra L, Xiong G, Fritz DM, Lemke HT et al. 2015. Imaging transient melting of a nanocrystal using an X-ray laser. PNAS 112:247444–48
    [Google Scholar]
  86. 86.
    Zhu Y, Cai Z, Chen P, Zhang Q, Highland MJ et al. 2016. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved X-ray diffraction microscopy. Sci. Rep. 6:21999
    [Google Scholar]
  87. 87.
    Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, Von Der Linde D 1998. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58:18R11805
    [Google Scholar]
  88. 88.
    Lindenberg AM. 2005. Atomic-scale visualization of inertial dynamics. Science 308:5720392–95
    [Google Scholar]
  89. 89.
    Cavalleri A, Tóth C, Siders C, Squier J, Ráksi F et al. 2001. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87:23237401
    [Google Scholar]
  90. 90.
    Kübler C, Ehrke H, Huber R, Lopez R, Halabica A et al. 2007. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys. Rev. Lett. 99:11116401
    [Google Scholar]
  91. 91.
    Morrison VR, Chatelain RP, Tiwari KL, Hendaoui A, Bruhacs A et al. 2014. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346:6208445–48
    [Google Scholar]
  92. 92.
    Wen H, Guo L, Barnes E, Lee JH, Walko DA et al. 2013. Structural and electronic recovery pathways of a photoexcited ultrathin VO2 film. Phys. Rev. B 88:16165424
    [Google Scholar]
  93. 93.
    Stöhr J, Padmore HA, Anders S, Stammler T, Scheinfein MR 1998. Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 5:61297–308
    [Google Scholar]
  94. 94.
    Fischer P. 2015. X-ray imaging of magnetic structures. IEEE Trans. Magn. 51:21–31
    [Google Scholar]
  95. 95.
    Bukin N, McKeever C, Burgos-Parra E, Keatley PS, Hicken RJ et al. 2016. Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator. Sci. Rep. 6:136307
    [Google Scholar]
  96. 96.
    Wang T, Zhu D, Wu B, Graves C, Schaffert S et al. 2012. Femtosecond single-shot imaging of nanoscale ferromagnetic order in Co/Pd multilayers using resonant X-ray holography. Phys. Rev. Lett. 108:26267403
    [Google Scholar]
  97. 97.
    Büttner F, Moutafis C, Schneider M, Krüger B, Günther CM et al. 2015. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11:3225–28
    [Google Scholar]
  98. 98.
    Cheng XM, Keavney DJ. 2012. Studies of nanomagnetism using synchrotron-based X-ray photoemission electron microscopy (X-PEEM). Rep. Prog. Phys. 75:2026501
    [Google Scholar]
  99. 99.
    Acremann Y, Strachan JP, Chembrolu V, Andrews SD, Tyliszczak T et al. 2006. Time-resolved imaging of spin transfer switching: beyond the macrospin concept. Phys. Rev. Lett. 96:21217202
    [Google Scholar]
  100. 100.
    Kukreja R, Bonetti S, Chen Z, Backes D, Acremann Y et al. 2015. X-ray detection of transient magnetic moments induced by a spin current in Cu. Phys. Rev. Lett. 115:9096601
    [Google Scholar]
  101. 101.
    Wessels P, Ewald J, Wieland M, Nisius T, Vogel A et al. 2014. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states. Phys. Rev. B 90:18184417
    [Google Scholar]
  102. 102.
    Wessels P, Schlie M, Wieland M, Ewald J, Abbati G et al. 2013. XMCD microscopy with synchronized soft X-ray and laser pulses at PETRA III for time-resolved studies. J. Phys. Conf. Ser. 463:012023
    [Google Scholar]
  103. 103.
    Choe S-B, Acremann Y, Scholl A, Bauer A, Doran A et al. 2004. Vortex core-driven magnetization dynamics. Science 304:5669420–22
    [Google Scholar]
  104. 104.
    Bolte M, Meier G, Krüger B, Drews A, Eiselt R et al. 2008. Time-resolved X-ray microscopy of spin-torque-induced magnetic vortex gyration. Phys. Rev. Lett. 100:17176601
    [Google Scholar]
  105. 105.
    Raabe J, Quitmann C, Back CH, Nolting F, Johnson S, Buehler C 2005. Quantitative analysis of magnetic excitations in Landau flux-closure structures using synchrotron-radiation microscopy. Phys. Rev. Lett. 94:21217204
    [Google Scholar]
  106. 106.
    Guslienko KY, Han XF, Keavney DJ, Divan R, Bader SD 2006. Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys. Rev. Lett. 96:6067205
    [Google Scholar]
  107. 107.
    Cheng XM, Buchanan KS, Divan R, Guslienko KY, Keavney DJ 2009. Nonlinear vortex dynamics and transient domains in ferromagnetic disks. Phys. Rev. B 79:17172411
    [Google Scholar]
  108. 108.
    Jung H, Yu Y-S, Lee K-S, Im M-Y, Fischer P et al. 2010. Observation of coupled vortex gyrations by 70-ps-time- and 20-nm-space-resolved full-field magnetic transmission soft X-ray microscopy. Appl. Phys. Lett. 97:22222502
    [Google Scholar]
  109. 109.
    Kammerer M, Weigand M, Curcic M, Noske M, Sproll M et al. 2011. Magnetic vortex core reversal by excitation of spin waves. Nat. Commun. 2:1279
    [Google Scholar]
  110. 110.
    Van Waeyenberge B, Puzic A, Stoll H, Chou KW, Tyliszczak T et al. 2006. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444:7118461–64
    [Google Scholar]
  111. 111.
    Weigand M, Van Waeyenberge B, Vansteenkiste A, Curcic M, Sackmann V et al. 2009. Vortex core switching by coherent excitation with single in-plane magnetic field pulses. Phys. Rev. Lett. 102:7077201
    [Google Scholar]
  112. 112.
    Nagaosa N, Tokura Y. 2013. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8:12899–911
    [Google Scholar]
  113. 113.
    Woo S, Song KM, Han H-S, Jung M-S, Im M-Y et al. 2017. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy. Nat. Commun. 8:15573
    [Google Scholar]
  114. 114.
    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L et al. 2017. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13:2170–75
    [Google Scholar]
  115. 115.
    SLAC Natl. Accel. Lab 2015. New science opportunities enabled by LCLS-II X-ray lasers SLAC-R-1053, SLAC Natl. Accel. Lab. https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLS-IIScienceOpportunities_final.pdf
  116. 116.
    SLAC Natl. Accel. Lab 2016. LCLS data analysis strategy Rep., SLAC Natl. Accel. Lab. https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLSDataAnalysisStrategy.pdf
  117. 117.
    Wang C, Steiner U, Sepe A 2018. Synchrotron big data science. Small 14:461802291
    [Google Scholar]
  118. 118.
    Cherukara MJ, Nashed YSG, Harder RJ 2018. Real-time coherent diffraction inversion using deep generative networks. Sci. Rep. 8:16520
    [Google Scholar]
  119. 119.
    Ghosh S, Nashed YSG, Cossairt O, Katsaggelos A 2018. ADP: automatic differentiation ptychography. 2018 IEEE International Conference on Computational Photography (ICCP)1–10 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120.
    Duan X, Yang F, Antono E, Yang W, Pianetta P et al. 2016. Unsupervised data mining in nanoscale X-ray spectro-microscopic study of NdFeB magnet. Sci. Rep. 6:134406
    [Google Scholar]
  121. 121.
    Howells MR, Beetz T, Chapman HN, Cui C, Holton JM et al. 2009. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectrosc. Relat. Phenom. 170:1–34–12
    [Google Scholar]
  122. 122.
    Egerton RF. 2013. Control of radiation damage in the TEM. Ultramicroscopy 127:100–8
    [Google Scholar]
  123. 123.
    Coffey T, Urquhart S, Ade H 2002. Characterization of the effects of soft X-ray irradiation on polymers. J. Electron Spectrosc. Relat. Phenom. 122:165–78
    [Google Scholar]
  124. 124.
    Dierolf M, Menzel A, Thibault P, Schneider P, Kewish CM et al. 2010. Ptychographic X-ray computed tomography at the nanoscale. Nature 467:7314436–39
    [Google Scholar]
  125. 125.
    Shapiro D, Thibault P, Beetz T, Elser V, Howells M et al. 2005. Biological imaging by soft X-ray diffraction microscopy. PNAS 102:4315343–46
    [Google Scholar]
  126. 126.
    Lima E, Wiegart L, Pernot P, Howells M, Timmins J et al. 2009. Cryogenic X-ray diffraction microscopy for biological samples. Phys. Rev. Lett. 103:19198102
    [Google Scholar]
  127. 127.
    Polvino SM, Murray CE, Kalenci Ö, Noyan IC, Lai B, Cai Z 2008. Synchrotron microbeam X-ray radiation damage in semiconductor layers. Appl. Phys. Lett. 92:22224105
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124014
Loading
/content/journals/10.1146/annurev-matsci-070616-124014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error