1932

Abstract

Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080619-012811
2022-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-080619-012811.html?itemId=/content/journals/10.1146/annurev-matsci-080619-012811&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE et al. 2012. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?. J. Am. Chem. Soc. 134:3615016–21
    [Google Scholar]
  2. 2.
    Murray LJ, Dincă M, Long JR. 2009. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38:51294–314
    [Google Scholar]
  3. 3.
    Xie LS, Skorupskii G, Dincă M. 2020. Electrically conductive metal-organic frameworks. Chem. Rev. 120:168536–80
    [Google Scholar]
  4. 4.
    Sun L, Campbell MG, Dincă M. 2016. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55:113566–79
    [Google Scholar]
  5. 5.
    Castells-Gil J, Mañas-Valero S, Vitórica-Yrezábal IJ, Ananias D, Rocha J et al. 2019. Electronic, structural and functional versatility in tetrathiafulvalene-lanthanide metal-organic frameworks. Chemistry 25:5412636–43
    [Google Scholar]
  6. 6.
    Xie LS, Park SS, Chmielewski MJ, Liu H, Kharod RA et al. 2020. Isoreticular linker substitution in conductive metal-organic frameworks with through-space transport pathways. Angew. Chem. 132:4419791–94
    [Google Scholar]
  7. 7.
    Xie LS, Alexandrov EV, Skorupskii G, Proserpio DM, Dincă M. 2019. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem. Sci. 10:378558–65
    [Google Scholar]
  8. 8.
    Dou J-H, Arguilla MQ, Luo Y, Li J, Zhang W et al. 2021. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 20:2222–28
    [Google Scholar]
  9. 9.
    Sun L, Miyakai T, Seki S, Dincă M. 2013. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (−Mn–S−) chains and high intrinsic charge mobility. J. Am. Chem. Soc. 135:228185–88
    [Google Scholar]
  10. 10.
    Sun L, Hendon CH, Minier MA, Walsh A, Dincă M 2015. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc. 137:196164–67
    [Google Scholar]
  11. 11.
    Xie LS, Sun L, Wan R, Park SS, DeGayner JA et al. 2018. Tunable mixed-valence doping toward record electrical conductivity in a three-dimensional metal-organic framework. J. Am. Chem. Soc. 140:247411–14
    [Google Scholar]
  12. 12.
    Clough AJ, Orchanian NM, Skelton JM, Neer AJ, Howard SA et al. 2019. Room temperature metallic conductivity in a metal-organic framework induced by oxidation. J. Am. Chem. Soc. 141:4116323–30
    [Google Scholar]
  13. 13.
    Dou J-H, Sun L, Ge Y, Li W, Hendon CH et al. 2017. Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139:3913608–11
    [Google Scholar]
  14. 14.
    Luo J, Li Y, Zhang H, Wang A, Lo W et al. 2019. A metal-organic framework thin film for selective Mg2+ transport. Angew. Chem. Int. Ed. 58:4315313–17
    [Google Scholar]
  15. 15.
    Skorupskii G, Dincă M. 2020. Electrical conductivity in a porous, cubic rare-earth catecholate. J. Am. Chem. Soc. 142:156920–24
    [Google Scholar]
  16. 16.
    Kung CW, Otake K, Buru CT, Goswami S, Cui Y et al. 2018. Increased electrical conductivity in a mesoporous metal-organic framework featuring metallacarboranes guests. J. Am. Chem. Soc. 140:113871–75
    [Google Scholar]
  17. 17.
    Liu J, Song X, Zhang T, Liu S, Wen H, Chen L 2021. 2D conductive metal-organic frameworks: an emerging platform for electrochemical energy storage. Angew. Chem. Int. Ed. 60:115612–24
    [Google Scholar]
  18. 18.
    Zhang P, Wang M, Liu Y, Yang S, Wang F et al. 2021. Dual-redox-sites enable two-dimensional conjugated metal-organic frameworks with large pseudocapacitance and wide potential window. J. Am. Chem. Soc. 143:2710168–76
    [Google Scholar]
  19. 19.
    Zhao Q, Jiang J, Zhao W, Li S-H, Mi W, Zhang C 2021. Truxone-based conductive metal-organic frameworks for the oxygen reductive reaction. J. Phys. Chem. C 125:2312690–98
    [Google Scholar]
  20. 20.
    Sun L, Campbell MG, Dincǎ M. 2016. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55:113566–79
    [Google Scholar]
  21. 21.
    Sun L, Park SS, Sheberla D, Dincǎ M. 2016. Measuring and reporting electrical conductivity in metal-organic frameworks: Cd2(TTFTB) as a case study. J. Am. Chem. Soc. 138:4414772–82
    [Google Scholar]
  22. 22.
    Baumann AE, Han X, Butala MM, Thoi VS. 2019. Lithium thiophosphate functionalized zirconium MOFs for Li-S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 141:4417891–99
    [Google Scholar]
  23. 23.
    Banda H, Dou J-H, Chen T, Libretto NJ, Chaudhary M et al. 2021. High-capacitance pseudocapacitors from Li+ ion intercalation in nonporous, electrically conductive 2D coordination polymers. J. Am. Chem. Soc. 143:52285–92
    [Google Scholar]
  24. 24.
    Linford RG, Hackwood S. 1981. Physical techniques for the study of solid electrolytes. Chem. Rev. 81:4327–64
    [Google Scholar]
  25. 25.
    Aubrey ML, Ameloot R, Wiers BM, Long JR. 2014. Metal-organic frameworks as solid magnesium electrolytes. Energy Environ. Sci. 7:2667–71
    [Google Scholar]
  26. 26.
    Tuffnell JM, Morzy JK, Kelly ND, Tan R, Song Q et al. 2020. Comparison of the ionic conductivity properties of microporous and mesoporous MOFs infiltrated with a Na-ion containing IL mixture. Dalton Trans. 49:4415914–24
    [Google Scholar]
  27. 27.
    Zettl R, Lunghammer S, Gadermaier B, Boulaoued A, Johansson P et al. 2021. High Li+ and Na+ conductivity in new hybrid solid electrolytes based on the porous MIL-121 metal organic framework. Adv. Energy Mater. 11:162003542
    [Google Scholar]
  28. 28.
    Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. 2019. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18:121278–91
    [Google Scholar]
  29. 29.
    Shewmon P. 2016. Diffusion in Solids Cham, Switz: Springer
  30. 30.
    Miner EM, Dincă M. 2019. Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries. Philos. Trans. R. Soc. A 377:214920180225
    [Google Scholar]
  31. 31.
    Sadakiyo M, Yamada T, Kitagawa H. 2009. Rational designs for highly proton-conductive metal−organic frameworks. J. Am. Chem. Soc. 131:299906–7
    [Google Scholar]
  32. 32.
    Li A-L, Gao Q, Xu J, Bu X-H. 2017. Proton-conductive metal-organic frameworks: recent advances and perspectives. Coord. Chem. Rev. 344:54–82
    [Google Scholar]
  33. 33.
    Kreuer K-D, Rabenau A, Weppner W. 1982. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl. 21:3208–9
    [Google Scholar]
  34. 34.
    Agmon N. 1995. The Grotthuss mechanism. Chem. Phys. Lett. 244:5–6456–62
    [Google Scholar]
  35. 35.
    Kreuer K-D, Paddison SJ, Spohr E, Schuster M. 2004. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104:104637–78
    [Google Scholar]
  36. 36.
    Eigan M, De Maeyer L. 1958. Self-dissociation and protonic charge transport in water. Proc. R. Soc. A. 247: 1251.505–33
    [Google Scholar]
  37. 37.
    Lim D-W, Sadakiyo M, Kitagawa H. 2019. Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci. 10:116–33
    [Google Scholar]
  38. 38.
    Yoshida Y, Fujie K, Lim D, Ikeda R, Kitagawa H. 2019. Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew. Chem. Int. Ed. 58:3210909–13
    [Google Scholar]
  39. 39.
    He X, Zhu Y, Mo Y. 2017. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8:115893
    [Google Scholar]
  40. 40.
    Zhang B, Weng M, Lin Z, Feng Y, Yang L et al. 2020. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16−6xOx solid-state-electrolyte enables extraordinary conductivity and high stability. Small 16:111906374
    [Google Scholar]
  41. 41.
    Choi Y-S, Lee J-C. 2019. Electronic and mechanistic origins of the superionic conductivity of sulfide-based solid electrolytes. J. Power Sourc. 415: Jan 189–96
    [Google Scholar]
  42. 42.
    Thangadurai V, Kaack H, Weppner WJF. 2003. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 86:3437–40
    [Google Scholar]
  43. 43.
    Li Y, Han JT, Wang CA, Xie H, Goodenough JB. 2012. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22:3015357–61
    [Google Scholar]
  44. 44.
    Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ et al. 2020. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120:104257–300
    [Google Scholar]
  45. 45.
    Gao J, Wang C, Han D-W, Shin D-M. 2021. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 12:4013248–72
    [Google Scholar]
  46. 46.
    Hallinan DT, Balsara NP. 2013. Polymer electrolytes. Annu. Rev. Mater. Res. 43:503–25
    [Google Scholar]
  47. 47.
    Pal SC, Das MC. 2021. Superprotonic conductivity of MOFs and other crystalline platforms beyond 10−1 S cm −1. Adv. Funct. Mater. 31:312101584
    [Google Scholar]
  48. 48.
    Goswami S, Ray D, Otake KI, Kung CW, Garibay SJ et al. 2018. A porous, electrically conductive hexa-zirconium(IV) metal-organic framework. Chem. Sci. 9:194477–82
    [Google Scholar]
  49. 49.
    Talin AA, Centrone A, Ford AC, Foster ME, Stavila V et al. 2014. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:616666–69
    [Google Scholar]
  50. 50.
    Yanai N, Uemura T, Horike S, Shimomura S, Kitagawa S. 2011. Inclusion and dynamics of a polymer-Li salt complex in coordination nanochannels. Chem. Commun. 47:61722
    [Google Scholar]
  51. 51.
    Brus J, Czernek J, Urbanova M, Rohlíček J, Plecháček T. 2020. Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution. ACS Appl. Mater. Interfaces 12:4247447–56
    [Google Scholar]
  52. 52.
    Nozari V, Calahoo C, Tuffnell JM, Adelhelm P, Wondraczek K et al. 2020. Sodium ion conductivity in superionic IL-impregnated metal-organic frameworks: enhancing stability through structural disorder. Sci. Rep. 10:13532
    [Google Scholar]
  53. 53.
    Wang Z, Tan R, Wang H, Yang L, Hu J et al. 2018. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 30:21704436
    [Google Scholar]
  54. 54.
    Jeong NC, Samanta B, Lee CY, Farha OK, Hupp JT. 2012. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 134:151–54
    [Google Scholar]
  55. 55.
    Gao H, Lian K. 2014. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:6233091–113
    [Google Scholar]
  56. 56.
    Phang WJ, Jo H, Lee WR, Song JH, Yoo K et al. 2015. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew. Chem. Int. Ed. 54:175142–46
    [Google Scholar]
  57. 57.
    Su J, He W, Li X-M, Sun L, Wang H-Y et al. 2020. High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter 2:3711–22
    [Google Scholar]
  58. 58.
    Taylor JM, Dawson KW, Shimizu GKH. 2013. A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J. Am. Chem. Soc. 135:41193–96
    [Google Scholar]
  59. 59.
    Afrin U, Mian MR, Otake KI, Drout RJ, Redfern LR et al. 2021. Proton conductivity via trapped water in phosphonate-based metal-organic frameworks synthesized in aqueous media. Inorg. Chem. 60:21086–91
    [Google Scholar]
  60. 60.
    Duan X, Ouyang Y, Zeng Q, Ma S, Kong Z et al. 2021. Two carboxyl-decorated anionic metal-organic frameworks as solid-state electrolytes exhibiting high Li+ and Zn2+ conductivity. Inorg. Chem 60:1511032–37
    [Google Scholar]
  61. 61.
    Tian L, Xu X, Liu M, Liu Z, Liu Z. 2021. Significantly enhancing the lithium ionic conductivity of metal-organic frameworks via a postsynthetic modification strategy. Langmuir 37:133922–28
    [Google Scholar]
  62. 62.
    Panda DK, Maity K, Palukoshka A, Ibrahim F, Saha S 2019. Li+ ion-conducting sulfonate-based neutral metal-organic framework. ACS Sustain. Chem. Eng. 7:54619–24
    [Google Scholar]
  63. 63.
    Nath K, Bin Rahaman A, Moi R, Maity K, Biradha K. 2020. Porous Li-MOF as a solid-state electrolyte: exploration of lithium ion conductivity through bio-inspired ionic channels. Chem. Commun. 56:9414873–76
    [Google Scholar]
  64. 64.
    Miner EM, Park SS, Dincă M. 2019. High Li+ and Mg2+ conductivity in a Cu-azolate metal-organic framework. J. Am. Chem. Soc. 141:104422–27
    [Google Scholar]
  65. 65.
    Park SS, Tulchinsky Y, Dincă M. 2017. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework. J. Am. Chem. Soc. 139:3813260–63
    [Google Scholar]
  66. 66.
    Yang H, Liu B, Bright J, Kasani S, Yang J et al. 2020. A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries. ACS Appl. Energy Mater. 3:44007–13
    [Google Scholar]
  67. 67.
    Shen L, Wu HB, Liu F, Brosmer JL, Shen G et al. 2018. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 30:231707476
    [Google Scholar]
  68. 68.
    Ma S, Shen L, Liu Q, Shi W, Zhang C et al. 2020. Class of solid-like electrolytes for rechargeable batteries based on metal-organic frameworks infiltrated with liquid electrolytes. ACS Appl. Mater. Interfaces 12:3943824–32
    [Google Scholar]
  69. 69.
    Sang L, Bassett KL, Castro FC, Young MJ, Chen L et al. 2018. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries. Chem. Mater. 30:248747–56
    [Google Scholar]
  70. 70.
    Ohno S, Bernges T, Buchheim J, Duchardt M, Hatz A-K et al. 2020. How certain are the reported ionic conductivities of thiophosphate-based solid electrolytes? An interlaboratory study. ACS Energy Lett 5:3910–15
    [Google Scholar]
  71. 71.
    Wiers BM, Foo M-L, Balsara NP, Long JR. 2011. A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc. 133:3714522–25
    [Google Scholar]
  72. 72.
    Ameloot R, Aubrey M, Wiers BM, Gómora-Figueroa AP, Patel SN et al. 2013. Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chemistry 19:185533–36
    [Google Scholar]
  73. 73.
    Yu J, Guo T, Wang C, Shen Z, Dong X et al. 2021. Engineering two-dimensional metal–organic framework on molecular basis for fast Li+ conduction. Nano Lett 21:135805–12
    [Google Scholar]
  74. 74.
    Zhan Y, Zhang W, Lei B, Liu H, Li W. 2020. Recent development of Mg ion solid electrolyte. Front. Chem. 8:125
    [Google Scholar]
  75. 75.
    Yoshinari N, Yamashita S, Fukuda Y, Nakazawa Y, Konno T. 2019. Mobility of hydrated alkali metal ions in metallosupramolecular ionic crystals. Chem. Sci. 10:2587–93
    [Google Scholar]
  76. 76.
    Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A et al. 2020. Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. Chem. Soc. Rev. 49:92751–98
    [Google Scholar]
  77. 77.
    Chiochan P, Yu X, Sawangphruk M, Manthiram A. 2020. A metal organic framework derived solid electrolyte for lithium-sulfur batteries. Adv. Energy Mater. 10:272001285
    [Google Scholar]
  78. 78.
    Baumann AE, Burns DA, Díaz JC, Thoi VS. 2019. Lithiated defect sites in Zr metal-organic framework for enhanced sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 11:22159–67
    [Google Scholar]
  79. 79.
    Jiang G, Qu C, Xu F, Zhang E, Lu Q et al. 2021. Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 31:432104300
    [Google Scholar]
  80. 80.
    Long L, Wang S, Xiao M, Meng Y 2016. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4:2610038–39
    [Google Scholar]
  81. 81.
    Sarango-Ramirez M, Park J, Kim J, Yoshida Y, Lim D-W, Kitagawa H. 2021. Void space versus surface functionalization for proton conduction in metal–organic frameworks. Angew. Chemie Int. Ed. 60:3720173–77
    [Google Scholar]
  82. 82.
    Van Humbeck JF, Aubrey ML, Alsbaiee A, Ameloot R, Coates GW et al. 2015. Tetraarylborate polymer networks as single-ion conducting solid electrolytes. Chem. Sci. 6:105499–505
    [Google Scholar]
  83. 83.
    Yoshida Y, Kitagawa H. 2019. Ionic conduction in metal-organic frameworks with incorporated ionic liquids. ACS Sustain. Chem. Eng. 7:170–81
    [Google Scholar]
  84. 84.
    Berggren M, Crispin X, Fabiano S, Jonsson MP, Simon DT et al. 2019. Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater. 31:221805813
    [Google Scholar]
  85. 85.
    Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. 2020. Organic mixed ionic-electronic conductors. Nat. Mater. 19:113–26
    [Google Scholar]
  86. 86.
    Ogle J, Powell D, Smilgies D-M, Nordlund D, Whittaker-Brooks L. 2021. Promoting bandlike transport in well-defined and highly conducting polymer thin films upon controlling dopant oxidation levels and polaron effects. ACS Appl. Polym. Mater. 3:62938–49
    [Google Scholar]
  87. 87.
    Ogle J, Lahiri N, Jaye C, Tassone CJ, Fischer DA et al. 2021. Semiconducting to metallic electronic landscapes in defects-controlled 2D π-d conjugated coordination polymer thin films. Adv. Funct. Mater. 31:42006920
    [Google Scholar]
  88. 88.
    Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E et al. 2016. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7:111287
    [Google Scholar]
  89. 89.
    Das KS, Pal B, Saha S, Akhtar S, De A et al. 2020. Utilization of counter anions for charge transportation in the electrical device fabrication of Zn(ii) metal-organic frameworks. Dalt. Trans. 49:4617005–16
    [Google Scholar]
  90. 90.
    Inal S, Malliaras GG, Rivnay J. 2017. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8:11767
    [Google Scholar]
  91. 91.
    Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW et al. 2015. An organic mixed ion-electron conductor for power electronics. Adv. Sci. 3:21500305
    [Google Scholar]
  92. 92.
    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC et al. 2015. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14:101026–31
    [Google Scholar]
  93. 93.
    Chen CC, Fu L, Maier J. 2016. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536:7615159–64
    [Google Scholar]
  94. 94.
    Sheberla D, Bachman JC, Elias JS, Sun C-J, Shao-Horn Y, Dincă M. 2017. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16:2220–24
    [Google Scholar]
  95. 95.
    Yue T, Xia C, Liu X, Wang Z, Qi K, Xia BY. 2021. Design and synthesis of conductive metal-organic frameworks and their composites for supercapacitors. ChemElectroChem 8:61021–34
    [Google Scholar]
  96. 96.
    Marianetti CA, Kotliar G, Ceder G. 2004. A first-order Mott transition in LixCoO2. Nat. Mater. 3:9627–31
    [Google Scholar]
  97. 97.
    Yoon SM, Warren SC, Grzybowski BA. 2014. Storage of electrical information in metal-organic-framework memristors. Angew. Chem. Int. Ed. 53:174437–41
    [Google Scholar]
  98. 98.
    Yao Z, Pan L, Liu L, Zhang J, Lin Q et al. 2019. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 5:8eaaw4515
    [Google Scholar]
  99. 99.
    Sellers DG, Braham EJ, Villarreal R, Zhang B, Parija A et al. 2020. Atomic hourglass and thermometer based on diffusion of a mobile dopant in VO2. J. Am. Chem. Soc. 142:3615513–26
    [Google Scholar]
  100. 100.
    Yi W, Tsang KK, Lam SK, Bai X, Crowell JA, Flores EA. 2018. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9:14661
    [Google Scholar]
  101. 101.
    Nowroozi MA, Mohammad I, Molaiyan P, Wissel K, Munnangi AR, Clemens O. 2021. Fluoride ion batteries—past, present, and future. J. Mater. Chem. A 9:105980–6012
    [Google Scholar]
  102. 102.
    Baukal W. 1974. Über reaktionsmöglichkeiten in elektroden von festkörperbatterien. Electrochim. Acta 19:11687–94
    [Google Scholar]
  103. 103.
    Hartman ST, Mishra R. 2020. Layered electrides as fluoride intercalation anodes. J. Mater. Chem. A 8:4624469–76
    [Google Scholar]
  104. 104.
    Davis VK, Bates CM, Omichi K, Savoie BM, Momčilović N et al. 2018. Room-temperature cycling of metal fluoride electrodes: liquid electrolytes for high-energy fluoride ion cells. Science 362:64191144–48
    [Google Scholar]
  105. 105.
    Zaheer W, Andrews JL, Parija A, Hyler FP, Jaye C et al. 2020. Reversible room-temperature fluoride-ion insertion in a tunnel-structured transition metal oxide host. ACS Energy Lett 5:82520–26
    [Google Scholar]
  106. 106.
    Bashian NH, Zuba M, Irshad A, Becwar SM, Vinckeviciute J et al. 2021. Electrochemical oxidative fluorination of an oxide perovskite. Chem. Mater. 33:145757–68
    [Google Scholar]
  107. 107.
    Davis VK, Bates CM, Omichi K, Savoie BM, Momčilović N et al. 2018. Room-temperature cycling of metal fluoride electrodes: liquid electrolytes for high-energy fluoride ion cells. Science 362:64191144–48
    [Google Scholar]
  108. 108.
    Mohammad I, Chable J, Witter R, Fichtner M, Reddy MA. 2018. Synthesis of fast fluoride-ion-conductive fluorite-type Ba1-xSbxF2+x (0.1 ≤ x ≤0.4): a potential solid electrolyte for fluoride-ion batteries. ACS Appl. Mater. Interfaces 10:2017249–56
    [Google Scholar]
  109. 109.
    Murray E, Brougham DF, Stankovic J, Abrahams I. 2008. Conductivity and fluoride ion dynamics in α-PbSnF4 ; 19F field-cycling NMR and diffraction studies. J. Phys. Chem. C 112:145672–78
    [Google Scholar]
  110. 110.
    Li X, Zhang H, Wang P, Hou J, Lu J et al. 2019. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 10:12490
    [Google Scholar]
  111. 111.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M et al. 2016. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1:416030
    [Google Scholar]
  112. 112.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H et al. 2000. Prototype systems for rechargeable magnesium batteries. Nature 407:6805724–27
    [Google Scholar]
  113. 113.
    Sun X, Bonnick P, Duffort V, Liu M, Rong Z et al. 2016. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9:72273–77
    [Google Scholar]
  114. 114.
    Crampton MR 1974. Acidity and hydrogen-bonding. The Chemistry of the Thiol Group S Patai 379–415 Hoboken, NJ: John Wiley & Sons Ltd.
    [Google Scholar]
  115. 115.
    Ren Y, Hortance N, McBride J, Hatzell KB. 2021. Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett 6:2345–53
    [Google Scholar]
  116. 116.
    Wang H, Wang Q, Cao X, He Y, Wu K et al. 2020. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries. Adv. Mater. 32:372001259
    [Google Scholar]
  117. 117.
    Yubuchi S, Ito A, Masuzawa N, Sakuda A, Hayashi A, Tatsumisago M. 2020. Aqueous solution synthesis of Na3SbS4-Na2WS4 superionic conductors. J. Mater. Chem. A 8:41947–54
    [Google Scholar]
  118. 118.
    Miura A, Rosero-Navarro NC, Sakuda A, Tadanaga K, Phuc NHH et al. 2019. Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3:3189–98
    [Google Scholar]
  119. 119.
    Doux J-M, Yang Y, Tan DHS, Nguyen H, Wu EA et al. 2020. Pressure effects on sulfide electrolytes for all solid-state batteries. J. Mater. Chem. A 8:105049–55
    [Google Scholar]
  120. 120.
    Gorai P, Famprikis T, Singh Gill B, Stevanović V, Canepa P 2020. The devil is in the defects: electronic conductivity in solid electrolytes. chemRxiv 13167197. http://doi.org/10.26434/chemrxiv.13167197.v1
    [Crossref]
  121. 121.
    Canepa P, Bo S-H, Sai Gautam G, Key B, Richards WD et al. 2017. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8:11759
    [Google Scholar]
  122. 122.
    Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M et al. 2015. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27:176016–21
    [Google Scholar]
  123. 123.
    Chen S, Xie D, Liu G, Mwizerwa JP, Zhang Q et al. 2018. Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater 14:58–74
    [Google Scholar]
  124. 124.
    Martinolich AJ, Lee C, Lu I, Bevilacqua SC, Preefer MB et al. 2019. Solid-state divalent ion conduction in ZnPS3. Chem. Mater. 31:103652–61
    [Google Scholar]
  125. 125.
    Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M et al. 2017. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117:54287–341
    [Google Scholar]
  126. 126.
    Imanaka N. 1999. Divalent magnesium ionic conduction in Mg1–2x(Zr1 -xNbx)4P6O24 (x = 0–0.4) solid solutions. Electrochem. Solid-State Lett. 3:7327–29
    [Google Scholar]
  127. 127.
    Leisegang T, Meutzner F, Zschornak M, Münchgesang W, Schmid R et al. 2019. The aluminum-ion battery: a sustainable and seminal concept?. Front. Chem. 7:268
    [Google Scholar]
  128. 128.
    Nestler T, Fedotov S, Leisegang T, Meyer DC. 2019. Towards Al3+ mobility in crystalline solids: critical review and analysis. Crit. Rev. Solid State Mater. Sci. 44:4298–323
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080619-012811
Loading
/content/journals/10.1146/annurev-matsci-080619-012811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error