1932

Abstract

Quantum spin liquids are unique quantum states of matter predicted to arise in low-dimensional, frustrated, and quantum magnetic systems. Compared with conventional ferromagnetic and antiferromagnetic states, quantum spin liquids are expected to display a variety of novel and exotic properties, making their realization in materials a highly appealing prospect. While an unambiguous realization of this long-sought-after state remains elusive, a growing number of materials candidates show promise in revealing the properties of quantum spin liquids. In this review, we present some of the key challenges and current opportunities in the synthesis, characterization, and understanding of quantum spin liquids from the perspective of the broad and interdisciplinary field of materials research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080819-011453
2021-07-26
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-080819-011453.html?itemId=/content/journals/10.1146/annurev-matsci-080819-011453&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Goodenough JB. 1955. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100:2564–73
    [Google Scholar]
  2. 2. 
    Kanamori J. 1959. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10:287–98
    [Google Scholar]
  3. 3. 
    Momma K, Izumi F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44:61272–76
    [Google Scholar]
  4. 4. 
    Shull CS, Smart JS. 1949. Detection of antiferromagnetism by neutron diffraction. Phys. Rev. 76:81256–57
    [Google Scholar]
  5. 5. 
    Knolle J, Moessner R. 2019. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10:451–72
    [Google Scholar]
  6. 6. 
    Anderson PW. 1973. Resonating valence bonds: a new kind of insulator?. Mater. Res. Bull. 8:2153–60
    [Google Scholar]
  7. 7. 
    Balents L. 2010. Spin liquids in frustrated magnets. Nature 464:7286199–208
    [Google Scholar]
  8. 8. 
    Smaha RW, He W, Jiang JM, Wen J, Jiang Y-F et al. 2020. Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. npj Quantum Mater 5:23
    [Google Scholar]
  9. 9. 
    Basov DN, Averitt RD, Hsieh D. 2017. Towards properties on demand in quantum materials. Nat. Mater. 16:111077–88
    [Google Scholar]
  10. 10. 
    Broholm C, Cava RJ, Kivelson SA, Nocera DG, Norman MR, Senthil T. 2020. Quantum spin liquids. Science 367:6475eaay0668
    [Google Scholar]
  11. 11. 
    Rau JG, Lee EKH, Kee HY. 2016. Spin-orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7:195–221
    [Google Scholar]
  12. 12. 
    Savary L, Balents L. 2016. Quantum spin liquids: a review. Rep. Prog. Phys. 80:116502
    [Google Scholar]
  13. 13. 
    Takagi H, Takayama T, Jackeli G, Khaliullin G, Nagler SE. 2019. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1:4264–80
    [Google Scholar]
  14. 14. 
    de Vries MA, Stewart JR, Deen PP, Piatek JO, Nilsen GJ et al. 2009. Scale-free antiferromagnetic fluctuations in the s = 1/2 kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 103:23237201
    [Google Scholar]
  15. 15. 
    Nilsen GJ, Raja A, Tsirlin AA, Mutka H, Kasinathan D et al. 2015. One-dimensional quantum magnetism in the anhydrous alum KTi(SO4)2. New J. Phys. 17:11113035
    [Google Scholar]
  16. 16. 
    Clark L, Orain JC, Bert F, de Vries MA, Aidoudi FH et al. 2013. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 110:20207208
    [Google Scholar]
  17. 17. 
    Jackeli G, Khaliullin G. 2009. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102:117205
    [Google Scholar]
  18. 18. 
    Chandra P, Doucot B. 1988. Possible spin-liquid state at large S for the frustrated square Heisenberg lattice. Phys. Rev. B 38:139335–38
    [Google Scholar]
  19. 19. 
    Norman MR. 2016. Colloquium: herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88:441002
    [Google Scholar]
  20. 20. 
    Gong SS, Zhu W, Yang K, Starykh OA, Sheng DN, Balents L. 2016. Emergent quasi-one-dimensionality in a kagome magnet: a simple route to complexity. Phys. Rev. B 94:335154
    [Google Scholar]
  21. 21. 
    Iqbal Y, Hu WJ, Thomale R, Poilblanc D, Becca F 2016. Spin liquid nature in the Heisenberg J1J2 triangular antiferromagnet. Phys. Rev. B 93:14144411
    [Google Scholar]
  22. 22. 
    Bethe H. 1931. Zur Theorie der Metalle. Z. Phys. 71:3205–26
    [Google Scholar]
  23. 23. 
    Majumdar CK, Ghosh DK. 1969. On next nearest neighbor interaction in linear chain. J. Math. Phys. 10:81388–98
    [Google Scholar]
  24. 24. 
    Kitaev A. 2006. Anyons in an exactly solved model and beyond. Ann. Phys. 321:12–111
    [Google Scholar]
  25. 25. 
    Regnault LP 2001. Bulk magnetic materials: low-dimensional systems. Encyclopedia of Materials: Science and Technology KHJ Buschow, RW Cahn, MC Flemings, B Ilschner, EJ Kramer, S Mahajan, P Veyssière 856–64 Amsterdam: Elsevier. , 1st ed..
    [Google Scholar]
  26. 26. 
    Birgeneau RJ, Shirane G. 1978. Magnetism in one dimension. Phys. Today 31:1232–43
    [Google Scholar]
  27. 27. 
    Hulthén L. 1938. Über das Austauschproblem eines Kristalles PhD Thesis, Stockh. Coll .
  28. 28. 
    Tennant DA, Perring TG, Cowley RA, Nagler SE. 1993. Unbound spinons in the S = 1/2 antiferromagnetic chain KCuF3. Phys. Rev. Lett. 70:254003–6
    [Google Scholar]
  29. 29. 
    Mourigal M, Enderle M, Klöpperpieper A, Caux JS, Stunault A, Rønnow HM. 2013. Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9:7435–41
    [Google Scholar]
  30. 30. 
    Faddeev LD, Takhtajan LA. 1981. What is the spin of a spin wave?. Phys. Lett. A 85:6375–77
    [Google Scholar]
  31. 31. 
    Bougourzi AH, Couture M, Kacir M. 1996. Exact two-spinon dynamical correlation function of the one-dimensional Heisenberg model. Phys. Rev. B 54:18R12669–72
    [Google Scholar]
  32. 32. 
    Rau JG, Gingras MJP. 2019. Frustrated quantum rare-earth pyrochlores. Annu. Rev. Condens. Matter Phys. 10:357–86
    [Google Scholar]
  33. 33. 
    Mezzacapo F. 2012. Ground-state phase diagram of the quantum J1J2 model on the square lattice. Phys. Rev. B 86:445115
    [Google Scholar]
  34. 34. 
    Savary L, Balents L. 2012. Coulombic quantum liquids in spin-1/2 pyrochlores. Phys. Rev. Lett. 108:337202
    [Google Scholar]
  35. 35. 
    Mendels P, Bert F. 2016. Quantum kagome frustrated antiferromagnets: one route to quantum spin liquids. C. R. Phys. 17:3455–70
    [Google Scholar]
  36. 36. 
    Ramirez AP. 1994. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24:453–80
    [Google Scholar]
  37. 37. 
    Sachdev S. 1992. Kagome- and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45:2112377–96
    [Google Scholar]
  38. 38. 
    Jiang N, Ramanathan A, Bacsa J, La Pierre HS 2020. Synthesis of a d1-titanium fluoride kagome lattice antiferromagnet. Nat. Chem. 12:8691–96
    [Google Scholar]
  39. 39. 
    Tustain K, Ward-O'Brien B, Bert F, Han T-H, Luetkens H et al. 2020. From magnetic order to quantum disorder: a μSR study of the Zn-barlowite series of S = kagomé antiferromagnets. npj Quantum Mater. 5:74
    [Google Scholar]
  40. 40. 
    Han T-H, Helton JS, Chu S, Nocera DG, Rodriguez-Rivera JA et al. 2012. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492:7429406–10
    [Google Scholar]
  41. 41. 
    Yan S, Huse DA, White SR. 2011. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332:60341173–76
    [Google Scholar]
  42. 42. 
    Iqbal Y, Becca F, Poilblanc D 2011. Projected wave function study of. spin liquids on the kagome lattice for the spin- quantum Heisenberg antiferromagnet. Phys. Rev. B 84:220407
    [Google Scholar]
  43. 43. 
    Ran Y, Hermele M, Lee PA, Wen XG. 2007. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 98:11117205
    [Google Scholar]
  44. 44. 
    Nakano H, Sakai T. 2017. Quantum spin liquid in the kagome-lattice antiferromagnet and related systems. J. Phys. Conf. Ser. 868:12006
    [Google Scholar]
  45. 45. 
    Schnack J, Schulenburg J, Richter J. 2018. Magnetism of the N = 42 kagome lattice antiferromagnet. Phys. Rev. B 98:994423
    [Google Scholar]
  46. 46. 
    Block MS, D'Emidio J, Ribhu K, Kaul RK 2020. Kagome model for a Z2 quantum spin liquid. Phys. Rev. B 101:220402
    [Google Scholar]
  47. 47. 
    Hiroi Z, Hanawa M, Kobayashi N, Nohara M, Takagi H et al. 2001. Spin-1/2 kagome-like lattice in volborthite Cu3V2O7(OH)2⋅2H2O. J. Phys. Soc. Jpn. 70:113377–84
    [Google Scholar]
  48. 48. 
    Ishikawa H, Yoshida M, Nawa K, Jeong M, Krämer S et al. 2015. One-third magnetization plateau with a preceding novel phase in volborthite. Phys. Rev. Lett. 114:22227202
    [Google Scholar]
  49. 49. 
    Bieri S, Messio L, Bernu B, Lhuillier C. 2015. Gapless chiral spin liquid in a kagome Heisenberg model. Phys. Rev. B 92:660407
    [Google Scholar]
  50. 50. 
    Bernu B, Lhuillier C, Kermarrec E, Bert F, Mendels P et al. 2013. Exchange energies of kapellasite from high-temperature series analysis of the kagome lattice J1J2-Heisenberg model. Phys. Rev. B 87:15155107
    [Google Scholar]
  51. 51. 
    Gomilšek M, Klanjšek M, Žitko R, Pregelj M, Bert F et al. 2017. Field-induced instability of a gapless spin liquid with a spinon Fermi surface. Phys. Rev. Lett. 119:13137205
    [Google Scholar]
  52. 52. 
    Kozlenko DP, Kusmartseva AF, Lukin EV, Keen DA, Marshall WG et al. 2012. From quantum disorder to magnetic order in an s = 1/2 kagome lattice: a structural and magnetic study of herbertsmithite at high pressure. Phys. Rev. Lett. 108:18187207
    [Google Scholar]
  53. 53. 
    Anderson PW. 1956. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102:41008–13
    [Google Scholar]
  54. 54. 
    Gardner JS, Gingras MJP, Greedan JE. 2010. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82:153–107
    [Google Scholar]
  55. 55. 
    Bramwell ST, Gingras MJP. 2001. Spin ice state in frustrated magnetic pyrochlore materials. Science 294:55461495–501
    [Google Scholar]
  56. 56. 
    Castelnovo C, Moessner R, Sondhi SL. 2012. Spin ice, fractionalization, and topological order. Annu. Rev. Condens. Matter Phys. 3:35–55
    [Google Scholar]
  57. 57. 
    Huse DA, Krauth W, Moessner R, Sondhi SL. 2003. Coulomb and liquid dimer models in three dimensions. Phys. Rev. Lett. 91:16167004
    [Google Scholar]
  58. 58. 
    Moessner R, Sondhi SL. 2003. Three-dimensional resonating-valence-bond liquids and their excitations. Phys. Rev. B 68:18184512
    [Google Scholar]
  59. 59. 
    Molavian HR, Gingras MJP, Canals B. 2007. Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects. Phys. Rev. Lett. 98:15157204
    [Google Scholar]
  60. 60. 
    Ross KA, Savary L, Gaulin BD, Balents L. 2011. Quantum excitations in quantum spin ice. Phys. Rev. X 1:2021002
    [Google Scholar]
  61. 61. 
    Gaudet J, Smith EM, Dudemaine J, Beare J, Buhariwalla CRC et al. 2019. Quantum spin ice dynamics in the dipole-octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122:18187201
    [Google Scholar]
  62. 62. 
    Canals B, Lacroix C. 1998. Pyrochlore antiferromagnet: a three-dimensional quantum spin liquid. Phys. Rev. Lett. 80:132933–36
    [Google Scholar]
  63. 63. 
    Berg E, Altman E, Auerbach A. 2003. Singlet excitations in pyrochlore: a study of quantum frustration. Phys. Rev. Lett. 90:14147204
    [Google Scholar]
  64. 64. 
    Burnell FJ, Chakravarty S, Sondhi SL. 2009. Monopole flux state on the pyrochlore lattice. Phys. Rev. B 79:14144432
    [Google Scholar]
  65. 65. 
    Winter SM, Tsirlin AA, Daghofer M, van den Brink J, Singh Y et al. 2017. Models and materials for generalized Kitaev magnetism. J. Phys. Condens. Matter 29:49493002
    [Google Scholar]
  66. 66. 
    Khaliullin G. 2005. Orbital order and fluctuations in Mott insulators. Prog. Theor. Phys. 160:155–202
    [Google Scholar]
  67. 67. 
    Moriya T. 1960. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120:191–98
    [Google Scholar]
  68. 68. 
    Liu H, Chaloupka J, Khaliullin G. 2020. Kitaev spin liquid in 3d transition metal compounds. Phys. Rev. Lett. 125:447201
    [Google Scholar]
  69. 69. 
    Liu H, Khaliullin G. 2018. Pseudospin exchange interactions in d7 cobalt compounds: possible realization of the Kitaev model. Phys. Rev. B 97:114407
    [Google Scholar]
  70. 70. 
    Motome Y, Sano R, Jang S, Sugita Y, Kato Y. 2020. Materials design of Kitaev spin liquids beyond the Jackeli-Khaliullin mechanism. J. Phys. Condens. Matter 32:40404001
    [Google Scholar]
  71. 71. 
    Jang SH, Sano R, Kato Y, Motome Y. 2019. Antiferromagnetic Kitaev interaction in f-electron based honeycomb magnets. Phys. Rev. B 99:24241106
    [Google Scholar]
  72. 72. 
    Harris MJ, Bramwell ST, McMorrow DF, Zeiske T, Godfrey KW. 1997. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79:132554–57
    [Google Scholar]
  73. 73. 
    Castelnovo C, Moessner R, Sondhi SL. 2008. Magnetic monopoles in spin ice. Nature 451:717442–45
    [Google Scholar]
  74. 74. 
    Hermele M, Fisher MPA, Balents L. 2004. Pyrochlore photons: the U(1) spin liquid in a S = three-dimensional frustrated magnet. Phys. Rev. B 69:664404
    [Google Scholar]
  75. 75. 
    Onoda S, Tanaka Y. 2010. Quantum melting of spin ice: emergent cooperative quadrupole and chirality. Phys. Rev. Lett. 105:447201
    [Google Scholar]
  76. 76. 
    Lee S, Onoda S, Balents L. 2012. Generic quantum spin ice. Phys. Rev. B 86:10104412
    [Google Scholar]
  77. 77. 
    Gingras MJP, McClarty PA. 2014. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77:556501
    [Google Scholar]
  78. 78. 
    Jin F, Liu C, Chang Y, Zhang A, Wang Y et al. 2020. Experimental identification of electric dipoles induced by magnetic monopoles in Tb2Ti2O7. Phys. Rev. Lett. 124:887601
    [Google Scholar]
  79. 79. 
    Gao B, Chen T, Tam DW, Huang CL, Sasmal K et al. 2019. Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore. Nat. Phys. 15:101052–57
    [Google Scholar]
  80. 80. 
    Bramwell ST, Keimer B. 2014. Neutron scattering from quantum condensed matter. Nat. Mater. 13:8763–67
    [Google Scholar]
  81. 81. 
    Koohpayeh SM, Fort D, Abell JS. 2008. The optical floating zone technique: a review of experimental procedures with special reference to oxides. Prog. Cryst. Growth Charact. Mater. 54:3121–37
    [Google Scholar]
  82. 82. 
    D'Ortenzio RM, Dabkowska HA, Dunsiger SR, Gaulin BD, Gingras MJP et al. 2013. Unconventional magnetic ground state in Yb2Ti2O7. Phys. Rev. B 88:13134428
    [Google Scholar]
  83. 83. 
    Chang L-J, Onoda S, Su Y, Kao Y-J, Tsuei K-D et al. 2012. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7. Nat. Commun. 3:1992
    [Google Scholar]
  84. 84. 
    Arpino KE, Trump BA, Scheie AO, McQueen TM, Koohpayeh SM. 2017. Impact of stoichiometry of Yb2Ti2O7 on its physical properties. Phys. Rev. B 95:9094407
    [Google Scholar]
  85. 85. 
    Koohpayeh SM. 2016. Single crystal growth by the traveling solvent technique: a review. Prog. Cryst. Growth Charact. Mater. 62:422–34
    [Google Scholar]
  86. 86. 
    Shores MP, Nytko EA, Bartlett BM, Nocera DG. 2005. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127:3913462–63
    [Google Scholar]
  87. 87. 
    Helton JS, Matan K, Shores MP, Nytko EA, Bartlett BM et al. 2007. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98:10107204
    [Google Scholar]
  88. 88. 
    Mendels P, Bert F, de Vries MA, Olariu A, Harrison A et al. 2007. Quantum magnetism in the paratacamite family: towards an ideal kagomé lattice. Phys. Rev. Lett. 98:7077204
    [Google Scholar]
  89. 89. 
    Chu S, Müller P, Nocera DG, Lee YS. 2011. Hydrothermal growth of single crystals of the quantum magnets: clinoatacamite, paratacamite, and herbertsmithite. Appl. Phys. Lett. 98:9092508
    [Google Scholar]
  90. 90. 
    Fu M, Imai T, Han T-H, Lee YS. 2015. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350:6261655–58
    [Google Scholar]
  91. 91. 
    Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E et al. 2020. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16:4469–74
    [Google Scholar]
  92. 92. 
    de Vries MA, Kamenev KV, Kockelmann WA, Sanchez-Benitez J, Harrison A 2008. Magnetic ground state of an experimental S = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 100:15157205
    [Google Scholar]
  93. 93. 
    Elliott P, Cooper MA, Pring A. 2014. Barlowite, Cu4FBr(OH)6, a new mineral isotructural with claringbullite: description and crystal structure. Mineral. Mag. 78:1755–62
    [Google Scholar]
  94. 94. 
    Tustain K, Nilsen GJ, Ritter C, da Silva I, Clark L 2018. Nuclear and magnetic structures of the frustrated quantum antiferromagnet barlowite Cu4(OH)6FBr. Phys. Rev. Mater. 2:11111405
    [Google Scholar]
  95. 95. 
    Han T-H, Singleton J, Schlueter JA. 2014. Barlowite: a spin-1/2 antiferromagnet with a geometrically perfect kagome motif. Phys. Rev. Lett. 113:22227203
    [Google Scholar]
  96. 96. 
    Guterding D, Valentí R, Jeschke HO. 2016. Reduction of magnetic interlayer coupling in barlowite through isoelectronic substitution. Phys. Rev. B 94:12125136
    [Google Scholar]
  97. 97. 
    Liu Z, Zou X, Mei JW, Liu F. 2015. Selectively doping barlowite for quantum spin liquid: a first-principles study. Phys. Rev. B 92:22220102(R)
    [Google Scholar]
  98. 98. 
    Feng Z, Wei Y, Liu R, Yan D, Wang Y-C et al. 2018. Effect of Zn doping on the antiferromagnetism in kagome Cu4(OH)6FBr. Phys. Rev. B 98:15155127
    [Google Scholar]
  99. 99. 
    Pasco CM, Trump BA, Tran TT, Kelly ZA, Hoffmann C et al. 2018. Single-crystal growth of Cu4(OH)6BrF and universal behavior in quantum spin liquid candidates synthetic barlowite and herbertsmithite. Phys. Rev. Mater. 2:4044406
    [Google Scholar]
  100. 100. 
    Smaha RW, He W, Sheckelton JP, Wen J, Lee YS 2018. Synthesis-dependent properties of barlowite and Zn-substituted barlowite. J. Solid State Chem. 268:123–29
    [Google Scholar]
  101. 101. 
    Pollard AM, Thomas RG, Williams PA. 1989. Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineral. Mag. 53:373557–63
    [Google Scholar]
  102. 102. 
    Frost RL. 2003. Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochim. Acta A 59:61195–204
    [Google Scholar]
  103. 103. 
    Aidoudi FH, Aldous DW, Goff RJ, Slawin AMZ, Attfield JP et al. 2011. An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice. Nat. Chem. 3:10801–6
    [Google Scholar]
  104. 104. 
    Clark L, Nilsen GJ, Kermarrec E, Ehlers G, Knight KS et al. 2014. From spin glass to quantum spin liquid ground states in molybdate pyrochlores. Phys. Rev. Lett. 113:11117201
    [Google Scholar]
  105. 105. 
    Kitagawa K, Takayama T, Matsumoto Y, Kato A, Takano R et al. 2018. A spin-orbital-entangled quantum liquid on a honeycomb lattice. Nature 554:7692341–45
    [Google Scholar]
  106. 106. 
    Schaffer R, Huh Y, Hwang K, Kim YB. 2017. Quantum spin liquid in a breathing kagome lattice. Phys. Rev. B 95:5054410
    [Google Scholar]
  107. 107. 
    Iqbal Y, Müller T, Riedl K, Reuther J, Rachel S et al. 2017. Signatures of a gearwheel quantum spin liquid in a spin- pyrochlore molybdate Heisenberg antiferromagnet. Phys. Rev. Mater. 1:7071201
    [Google Scholar]
  108. 108. 
    Paddison JAM, Goodwin AL. 2012. Empirical magnetic structure solution of frustrated spin systems. Phys. Rev. Lett. 1081:017204
    [Google Scholar]
  109. 109. 
    Grajczyk R, Subramanian MA. 2015. Structure–property relationships of YbFe2O4– and Yb2Fe3O7–type layered oxides: a bird's eye view. Prog. Solid State Chem. 43:137–46
    [Google Scholar]
  110. 110. 
    Clark L, Sala G, Maharajm DD, Stone MB, Knight KS et al. 2019. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 15:3262–68
    [Google Scholar]
  111. 111. 
    Li Y, Liao H, Zhang Z, Li S, Jin F et al. 2015. Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4. Sci. Rep. 5:116419
    [Google Scholar]
  112. 112. 
    Xu Y, Zhang J, Li YS, Yu YJ, Hong XC et al. 2016. Absence of magnetic thermal conductivity in the quantum spin-liquid candidate YbMgGaO4. Phys. Rev. Lett. 117:26267202
    [Google Scholar]
  113. 113. 
    Abdeldaim AH, Li T, Farrar L, Tsirlin AA, Yao W et al. 2020. Realizing square and diamond lattice S = 1/2 Heisenberg antiferromagnet models in the α and β phases of the coordination framework, KTi(C2O4)2xH2O. Phys. Rev. Mater. 4:10104414
    [Google Scholar]
  114. 114. 
    Pei S, Huang L-L, Li G, Chen X, Xi B et al. 2020. Magnetic Raman continuum in single-crystalline H3LiIr2O6. Phys. Rev. B 101:20201101
    [Google Scholar]
  115. 115. 
    Kim BH, Khaliullin G, Min BI. 2014. Electronic excitations in the edge-shared relativistic Mott insulator: Na2IrO3. Phys. Rev. B 89:881109
    [Google Scholar]
  116. 116. 
    Blundell SJ. 1999. Spin-polarized muons in condensed matter physics. Contemp. Phys. 40:3175–92
    [Google Scholar]
  117. 117. 
    Biesner T, Uykur E. 2020. Pressure-tuned interactions in frustrated magnets: pathway to quantum spin liquids?. Crystals 10:14
    [Google Scholar]
  118. 118. 
    Banerjee A, Bridges CA, Yan J-Q, Aczel AA, Li L et al. 2016. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15:7733–40
    [Google Scholar]
  119. 119. 
    Wang Z, Guo J, Tafti FF, Hegg A, Sen S et al. 2018. Pressure-induced melting of magnetic order and emergence of a new quantum state in α-RuCl3. Phys. Rev. B 97:24245149
    [Google Scholar]
  120. 120. 
    Cui Y, Zheng J, Ran K, Wen J, Liu Z-X et al. 2017. High-pressure magnetization and NMR studies of α-RuCl3. Phys. Rev. B 96:20205147
    [Google Scholar]
  121. 121. 
    Biesner T, Biswas S, Li W, Saito Y, Pustogow A et al. 2018. Detuning the honeycomb of α-RuCl3: pressure-dependent optical studies reveal broken symmetry. Phys. Rev. B 97:22220401
    [Google Scholar]
  122. 122. 
    Bastien G, Garbarino G, Yadav R, Martinez-Casado FJ, Rodríguez RB et al. 2018. Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3. Phys. Rev. B 97:24241108
    [Google Scholar]
  123. 123. 
    Yadav R, Rachel S, Hozoi L, van den Brink J, Jackeli G. 2018. Strain- and pressure-tuned magnetic interactions in honeycomb Kitaev materials. Phys. Rev. B 98:12121107
    [Google Scholar]
  124. 124. 
    Yadav R, Bogdanov NA, Katukuri VM, Nishimoto S, van den Brink J, Hozoi L. 2016. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep 6:137925
    [Google Scholar]
  125. 125. 
    Sears JA, Songvilay M, Plumb KW, Clancy JP, Qiu Y et al. 2015. Magnetic order in α-RuCl3: a honeycomb-lattice quantum magnet with strong spin-orbit coupling. Phys. Rev. B 91:14144420
    [Google Scholar]
  126. 126. 
    Sears JA, Zhao Y, Xu Z, Lynn JW, Kim Y-J. 2017. Phase diagram of α-RuCl3 in an in-plane magnetic field. Phys. Rev. B 95:18180411
    [Google Scholar]
  127. 127. 
    Wolter AUB, Corredor LT, Janssen L, Nenkov K, Schönecker S et al. 2017. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96:4041405
    [Google Scholar]
  128. 128. 
    Baek S-H, Do S-H, Choi K-Y, Kwon YS, Wolter AUB et al. 2017. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett 119:3037201
    [Google Scholar]
  129. 129. 
    Zheng J, Ran K, Li T, Wang J, Wang P et al. 2017. Gapless spin excitations in the field-induced quantum spin liquid phase of α-RuCl3. Phys. Rev. Lett 119:22227208
    [Google Scholar]
  130. 130. 
    Anderson PW. 1987. The resonating valence bond state in La2CuO4 and superconductivity. Science 235:47931196–98
    [Google Scholar]
  131. 131. 
    Mazin II, Jeschke HO, Lechermann F, Lee H, Fink M et al. 2014. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5:14261
    [Google Scholar]
  132. 132. 
    Guterding D, Jeschke HO, Valentí R. 2016. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators. Sci. Rep. 6:125988
    [Google Scholar]
  133. 133. 
    Kelly ZA, Gallagher MJ, McQueen TM. 2016. Electron doping a kagome spin liquid. Phys. Rev. X 6:4041007
    [Google Scholar]
  134. 134. 
    Liu Q, Yao Q, Kelly ZA, Pasco CM, McQueen TM et al. 2018. Electron doping of proposed kagome quantum spin liquid produces localized states in the band gap. Phys. Rev. Lett. 121:18186402
    [Google Scholar]
  135. 135. 
    Mydosh JA. 2015. Spin glasses: redux: an updated experimental/materials survey. Rep. Prog. Phys. 78:5052501
    [Google Scholar]
  136. 136. 
    Thygesen PMM, Paddison JAM, Zhang R, Beyer KA, Chapman KW et al. 2017. Orbital dimer model for the spin-glass state in Y2Mo2O7. Phys. Rev. Lett. 118:6067201
    [Google Scholar]
  137. 137. 
    Simonov A, Goodwin AL. 2019. Designing disorder into crystalline materials. Nat. Rev. Chem. 4:12657–73
    [Google Scholar]
  138. 138. 
    Shen Y, Li Y-D, Wo H, Li Y, Shen S et al. 2016. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540:7634559–62
    [Google Scholar]
  139. 139. 
    Paddison JAM, Daum M, Dun Z, Ehlers G, Liu Y et al. 2017. Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO4. Nat. Phys. 13:2117–22
    [Google Scholar]
  140. 140. 
    Zhu Z, Maksimov PA, White SR, Chernyshev AL. 2018. Disorder-induced mimicry of a spin liquid in YbMgGaO4. Phys. Rev. Lett. 119:15157201
    [Google Scholar]
  141. 141. 
    Ma Z, Wang J, Dong Z-Y, Zhang J, Li S et al. 2018. Spin-glass ground state in a triangular-lattice compound YbZnGaO4. Phys. Rev. Lett. 120:8087201
    [Google Scholar]
  142. 142. 
    Orita M, Tanji H, Mizuno M, Adachi H, Tanaka I. 2000. Mechanism of electrical conductivity of transparent InGaZnO4. Phys. Rev. B 61:31811–16
    [Google Scholar]
  143. 143. 
    Stewart JR, Deen PP, Andersen KH, Schober H, Barthélémy JF et al. 2009. Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7. J. Appl. Crystallogr. 42:169–84
    [Google Scholar]
  144. 144. 
    Bowman DF, Cemal E, Lehner T, Wildes AR, Mangin-Thro L et al. 2019. Role of defects in determining the magnetic ground state of ytterbium titanate. Nat. Commun. 10:1637
    [Google Scholar]
  145. 145. 
    Takabayashi Y, Menelaou M, Tamura H, Takemori N, Koretsune T et al. 2017. π-Electron S = 1/2 quantum spin-liquid state in an ionic polyaromatic hydrocarbon. Nat. Chem 9:11635–43
    [Google Scholar]
  146. 146. 
    Yamada MG, Fujita H, Oshikawa M. 2017. Designing Kitaev spin liquids in metal-organic frameworks. Phys. Rev. Lett. 119:5057202
    [Google Scholar]
  147. 147. 
    Weber D, Schoop LM, Duppel V, Lippmann JM, Nuss J, Lotsch BV. 2016. Magnetic properties of restacked 2D spin 1/2 honeycomb RuCl3 nanosheets. Nano Lett. 16:63578–84
    [Google Scholar]
  148. 148. 
    Cairns AB, Cliffe MJ, Paddison JAM, Daisenberger D, Tucker MG et al. 2016. Encoding complexity within supramolecular analogues of frustrated magnets. Nat. Chem. 8:5442–47
    [Google Scholar]
  149. 149. 
    Jo G-B, Guzman J, Thomas CK, Hosur P, Vishwanath A, Stamper-Kurn DM. 2012. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108:4045305
    [Google Scholar]
  150. 150. 
    Law KT, Lee PA 2017. 1T-TaS2 as a quantum spin liquid. PNAS 114:276996–7000
    [Google Scholar]
  151. 151. 
    Paddison JAM, Stewart JR, Manuel P, Courtois P, McIntyre GJ et al. 2013. Emergent frustration in Co-doped β-Mn. Phys. Rev. Lett 110:26267207
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080819-011453
Loading
/content/journals/10.1146/annurev-matsci-080819-011453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error