1932

Abstract

Angstrom-scale fluidic channels are ubiquitous in nature and play an important role in regulating cellular traffic, signaling, and responding to stimuli. Synthetic angstrom channels are now a reality with the emergence of several cutting-edge bottom-up and top-down fabrication methods. In particular, the use of atomically thin 2D materials and nanotubes as components to build fluidic conduits has pushed the limits of fabrication to the angstrom scale. Here, we provide an overview of recent developments in the fabrication methods for nano- and angstrofluidic channels while categorizing them on the basis of dimensionality (0D pores, 1D tubes, 2D slits), along with the latest advances in measurement techniques. We discuss the ion transport governed by various stimuli in these channels and the variation of ionic mobility, streaming power, and osmotic power with pore size across all the dimensionalities. Finally, we highlight unique future opportunities in the development of smart ionic devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081320-032747
2022-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081320-032747.html?itemId=/content/journals/10.1146/annurev-matsci-081320-032747&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Terry SC, Jerman JH, Angell JB. 1979. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26:1880–86
    [Google Scholar]
  2. 2.
    Manz A, Graber N, Widmer HM. 1990. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1:244–48
    [Google Scholar]
  3. 3.
    Baker RW. 2004. Microfiltration. Membrane Technology and Applications275–300 West Sussex, UK: John Wiley & Sons
    [Google Scholar]
  4. 4.
    Shen PC, Su C, Lin Y, Chou AS, Cheng CC et al. 2021. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593:211–17
    [Google Scholar]
  5. 5.
    Iijima S, Ichihashi T. 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–5
    [Google Scholar]
  6. 6.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69
    [Google Scholar]
  7. 7.
    Thiruraman JP, Masih Das P, Drndić M 2020. Ions and water dancing through atom-scale holes: a perspective toward “size zero. .” ACS Nano 14:3736–46
    [Google Scholar]
  8. 8.
    Kavokine N, Netz RR, Bocquet L. 2021. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu. Rev. Fluid Mech. 53:377–410Reviews changes in analytical equations to explain and estimate liquid behavior in nano- and angstrom-scale confinements.
    [Google Scholar]
  9. 9.
    Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. 2017. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12:509–22Elaborate review of atomically thin nanoporous membranes including their synthesis, applications, and associated transport mechanisms.
    [Google Scholar]
  10. 10.
    Dean CR, Young AF, Meric I, Lee C, Wang L et al. 2010. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5:722–26
    [Google Scholar]
  11. 11.
    Daiguji H. 2010. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39:901–11
    [Google Scholar]
  12. 12.
    Tunuguntla RH, Henley RY, Yao YC, Pham TA, Wanunu M, Noy A. 2017. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357:792–96
    [Google Scholar]
  13. 13.
    Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
    [Google Scholar]
  14. 14.
    Sahu S, Zwolak M. 2019. Colloquium: ionic phenomena in nanoscale pores through 2D materials. Rev. Mod. Phys. 91:021004
    [Google Scholar]
  15. 15.
    Majumder M, Chopra N, Andrews R, Hinds BJ. 2005. Enhanced flow in carbon nanotubes. Nature 438:44 Erratum 2005. Nature 438:930
    [Google Scholar]
  16. 16.
    Keerthi A, Geim AK, Janardanan A, Rooney AP, Esfandiar A et al. 2018. Ballistic molecular transport through two-dimensional channels. Nature 558:420–24
    [Google Scholar]
  17. 17.
    Vermesh U, Choi JW, Vermesh O, Fan R, Nagarah J, Heath JR. 2009. Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett 9:1315–19
    [Google Scholar]
  18. 18.
    Xu Y, Xu B. 2015. An integrated glass nanofluidic device enabling in-situ electrokinetic probing of water confined in a single nanochannel under pressure-driven flow conditions. Small 11:6165–71
    [Google Scholar]
  19. 19.
    Chinen H, Mawatari K, Pihosh Y, Morikawa K, Kazoe Y et al. 2012. Enhancement of proton mobility in extended-nanospace channels. Angew. Chem. Int. Ed. 51:3573–77
    [Google Scholar]
  20. 20.
    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P et al. 2018. Anomalously low dielectric constant of confined water. Science 360:1339–42
    [Google Scholar]
  21. 21.
    Gittens GJ, Hitchcock PA, Sammon DC, Wakley GE. 1970. The structure of cellulose acetate membranes for reverse osmosis. Part I. Membranes prepared from a dioxan based dope. Desalination 8:369–91
    [Google Scholar]
  22. 22.
    Jerman JH, Terry SC. 1981. A miniature gas chromatograph for atmospheric monitoring. Environ. Int. 5:77–83
    [Google Scholar]
  23. 23.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. 2001. Ion-beam sculpting at nanometre length scales. Nature 412166–69One of the first reports on the fabrication of solid-state nanopores for DNA detection.
  24. 24.
    Rossi MP, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley JC. 2004. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett 4:989–93
    [Google Scholar]
  25. 25.
    Guo LJ, Cheng X, Chou CF. 2004. Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett 4:69–73
    [Google Scholar]
  26. 26.
    O'Hern SC, Boutilier MSH, Idrobo JC, Song Y, Kong J et al. 2014. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14:1234–41
    [Google Scholar]
  27. 27.
    Tunuguntla RH, Escalada A, Frolov VA, Noy A. 2016. Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat. Protoc. 11:2029–47Reports a versatile biomimetic membrane made by incorporating individual carbon nanotube porins into a liposome bilayer.
    [Google Scholar]
  28. 28.
    Faucher S, Aluru N, Bazant MZ, Blankschtein D, Brozena AH et al. 2019. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123:21309–26Review of the knowledge gaps on counterintuitive fluidic flows in single-digit nanopores.
    [Google Scholar]
  29. 29.
    Macha M, Marion S, Nandigana VVR, Radenovic A. 2019. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4:588–605Reviews recent advances in osmotic energy production using 2D materials–based nanofluidic systems.
    [Google Scholar]
  30. 30.
    Epsztein R, DuChanois RM, Ritt CL, Noy A, Elimelech M. 2020. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15:426–36
    [Google Scholar]
  31. 31.
    Zhang Z, Wen L, Jiang L. 2021. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6:622–39
    [Google Scholar]
  32. 32.
    Nazari M, Davoodabadi A, Huang D, Luo T, Ghasemi H. 2020. Transport phenomena in nano/molecular confinements. ACS Nano 14:16348–91
    [Google Scholar]
  33. 33.
    Graf M, Lihter M, Thakur M, Georgiou V, Topolancik J et al. 2019. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14:1130–68
    [Google Scholar]
  34. 34.
    Storm AJ, Chen JH, Zandbergen HW, Dekker C. 2005. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71:051903
    [Google Scholar]
  35. 35.
    Ho C, Qiao R, Heng JB, Chatterjee A, Timp RJ et al. 2005. Electrolytic transport through a synthetic nanometer-diameter pore. PNAS 102:10445–50
    [Google Scholar]
  36. 36.
    Ma J, Li K, Li Z, Qiu Y, Si W et al. 2019. Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. J. Am. Chem. Soc. 141:4264–72
    [Google Scholar]
  37. 37.
    Danelon C, Santschi C, Brugger J, Vogel H. 2006. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir 22:10711–15
    [Google Scholar]
  38. 38.
    Feng J, Liu K, Graf M, Dumcenco D, Kis A et al. 2016. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15:850–55
    [Google Scholar]
  39. 39.
    Thiruraman JP, Fujisawa K, Danda G, Das PM, Zhang T et al. 2018. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett 18:1651–59
    [Google Scholar]
  40. 40.
    Zhang Z, Kong XY, Xie G, Li P, Xiao K et al. 2016.. “ Uphill” cation transport: a bioinspired photo-driven ion pump. Sci. Adv. 2:e1600689
    [Google Scholar]
  41. 41.
    Siria A, Poncharal P, Biance AL, Fulcrand R, Blase X et al. 2013. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494:455–58
    [Google Scholar]
  42. 42.
    Marcotte A, Mouterde T, Niguès A, Siria A, Bocquet L. 2020. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19:1057–61
    [Google Scholar]
  43. 43.
    Xia Q, Morton KJ, Austin RH, Chou SY. 2008. Sub-10 nm self-enclosed self-limited nanofluidic channel arrays. Nano Lett 8:3830–33
    [Google Scholar]
  44. 44.
    Duan C, Majumdar A. 2010. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5:848–52
    [Google Scholar]
  45. 45.
    Mao P, Han J. 2005. Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–44
    [Google Scholar]
  46. 46.
    Radha B, Esfandiar A, Wang FC, Rooney AP, Gopinadhan K et al. 2016. Molecular transport through capillaries made with atomic-scale precision. Nature 538:222–25First report on the fabrication of well-controlled 2D angstrom-slits using van der Waals assembly of graphene.
    [Google Scholar]
  47. 47.
    Geim AK. 2021. Exploring two-dimensional empty space. Nano Lett 21:6356–58
    [Google Scholar]
  48. 48.
    Bae S, Kim H, Lee Y, Xu X, Park JS et al. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5:574–78
    [Google Scholar]
  49. 49.
    Kidambi PR, Nguyen GD, Zhang S, Chen Q, Kong J et al. 2018. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Adv. Mater. 30:1804977
    [Google Scholar]
  50. 50.
    Griffin E, Mogg L, Hao GP, Kalon G, Bacaksiz C et al. 2020. Proton and Li-ion permeation through graphene with eight-atom-ring defects. ACS Nano 14:7280–86
    [Google Scholar]
  51. 51.
    Yang Y, Dementyev P, Biere N, Emmrich D, Stohmann P et al. 2018. Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano 12:4695–701
    [Google Scholar]
  52. 52.
    Shen YX, Song W, Barden DR, Ren T, Lang C et al. 2018. Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9:2294
    [Google Scholar]
  53. 53.
    Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–37
    [Google Scholar]
  54. 54.
    Liu L, Yang C, Zhao K, Li J, Wu HC. 2013. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4:2989
    [Google Scholar]
  55. 55.
    Li Y, Li Z, Aydin F, Quan J, Chen X et al. 2020. Water-ion permselectivity of narrow-diameter carbon nanotubes. Sci. Adv. 6:eaba9966
    [Google Scholar]
  56. 56.
    Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. 2012. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335:442–44
    [Google Scholar]
  57. 57.
    Cheng L, Liu G, Zhao J, Jin W 2021. Two-dimensional-material membranes: manipulating the transport pathway for molecular separation. Acc. Mater. Res. 2:114–28
    [Google Scholar]
  58. 58.
    Liu J, Zhang HB, Sun R, Liu Y, Liu Z et al. 2017. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29:1702367
    [Google Scholar]
  59. 59.
    VahidMohammadi A, Rosen J, Gogotsi Y. 2021. The world of two-dimensional carbides and nitrides (MXenes). Science 372:eabf1581
    [Google Scholar]
  60. 60.
    Roth WJ, Nachtigall P, Morris RE, Čejka J. 2014. Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114:4807–37
    [Google Scholar]
  61. 61.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. 2009. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–49
    [Google Scholar]
  62. 62.
    Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N et al. 2017. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543:690–94
    [Google Scholar]
  63. 63.
    Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. 2018. Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47:6267–95
    [Google Scholar]
  64. 64.
    Přech J, Pizarro P, Serrano DP, Čejka J. 2018. From 3D to 2D zeolite catalytic materials. Chem. Soc. Rev. 47:8263–306
    [Google Scholar]
  65. 65.
    Li H, Zhong J, Pang Y, Zandavi SH, Persad AH et al. 2017. Direct visualization of fluid dynamics in sub-10 nm nanochannels. Nanoscale 9:9556–61
    [Google Scholar]
  66. 66.
    Alibakhshi MA, Xie Q, Li Y, Duan C. 2016. Accurate measurement of liquid transport through nanoscale conduits. Sci. Rep. 6:24936
    [Google Scholar]
  67. 67.
    Xie Q, Alibakhshi MA, Jiao S, Xu Z, Hempel M et al. 2018. Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13:238–45
    [Google Scholar]
  68. 68.
    Feng J, Deschout H, Caneva S, Hofmann S, Loncaric I et al. 2018. Imaging of optically active defects with nanometer resolution. Nano Lett 18:1739–44
    [Google Scholar]
  69. 69.
    Comtet J, Grosjean B, Glushkov E, Avsar A, Watanabe K et al. 2020. Direct observation of water-mediated single-proton transport between hBN surface defects. Nat. Nanotechnol. 15:598–604
    [Google Scholar]
  70. 70.
    Meinhart CD, Wereley ST, Santiago JG. 1999. PIV measurements of a microchannel flow. Exp. Fluids 27:414–19
    [Google Scholar]
  71. 71.
    Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L. 2016. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537:210–13Measures the water flow rate through a single nanotube using nanojets.
    [Google Scholar]
  72. 72.
    Xu K, Cao P, Heath JR. 2010. Graphene visualizes the first water adlayers on mica at ambient conditions. Science 329:1188–91
    [Google Scholar]
  73. 73.
    Hu J, Xiao XD, Ogletree DF, Salmeron M. 1995. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science 268:267–69
    [Google Scholar]
  74. 74.
    Koenig SP, Wang L, Pellegrino J, Bunch JS. 2012. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7:728–32
    [Google Scholar]
  75. 75.
    Sun PZ, Yang Q, Kuang WJ, Stebunov YV, Xiong WQ et al. 2020. Limits on gas impermeability of graphene. Nature 579:229–32
    [Google Scholar]
  76. 76.
    Yang Q, Sun PZ, Fumagalli L, Stebunov YV, Haigh SJ et al. 2020. Capillary condensation under atomic-scale confinement. Nature 588:250–53
    [Google Scholar]
  77. 77.
    Daiguji H, Adachi T, Tatsumi N. 2008. Ion transport through a T-intersection of nanofluidic channels. Phys. Rev. E 78:026301
    [Google Scholar]
  78. 78.
    Naguib N, Ye H, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M. 2004. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–43
    [Google Scholar]
  79. 79.
    Wang Y, Zhang H, Kang Y, Zhu Y, Simon GP, Wang H. 2019. Voltage-gated ion transport in two-dimensional sub-1 nm nanofluidic channels. ACS Nano 13:11793–99
    [Google Scholar]
  80. 80.
    Tomo Y, Askounis A, Ikuta T, Takata Y, Sefiane K, Takahashi K. 2018. Superstable ultrathin water film confined in a hydrophilized carbon nanotube. Nano Lett 18:1869–74
    [Google Scholar]
  81. 81.
    Ross FM, Minor AM. 2019. In situ transmission electron microscopy. Springer Handbook of Microscopy PW Hawkes, JCH Spence 101–87 Cham, Switz: Springer
    [Google Scholar]
  82. 82.
    Ross FM. 2015. Opportunities and challenges in liquid cell electron microscopy. Science 350:aaa9886
    [Google Scholar]
  83. 83.
    Unocic RR, Sun X-G, Sacci RL, Adamczyk LA, Alsem DH et al. 2014. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal. 20:1029–37
    [Google Scholar]
  84. 84.
    Qin X, Yuan Q, Zhao Y, Xie S, Liu Z. 2011. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett 11:2173–77
    [Google Scholar]
  85. 85.
    Glish GL, Vachet RW. 2003. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov. 2:140–50
    [Google Scholar]
  86. 86.
    Byun H, Bin Lee Y, Kim EM, Shin H 2019. Fabrication of size-controllable human mesenchymal stromal cell spheroids from micro-scaled cell sheets. Biofabrication 11:035025
    [Google Scholar]
  87. 87.
    Kang D, Liu Q, Chen M, Gu J, Zhang D. 2016. Spontaneous cross-linking for fabrication of nanohybrids embedded with size-controllable particles. ACS Nano 10:889–98
    [Google Scholar]
  88. 88.
    Kim J, Suh JS. 2014. Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano 8:4190–96
    [Google Scholar]
  89. 89.
    Wenseleers W, Cambré S, Čulin J, Bouwen A, Goovaerts E. 2007. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: characterizing tube opening by Raman spectroscopy. Adv. Mater. 19:2274–78
    [Google Scholar]
  90. 90.
    Agrawal KV, Shimizu S, Drahushuk LW, Kilcoyne D, Strano MS. 2017. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12:267–73
    [Google Scholar]
  91. 91.
    Li Z, Liu P, Liu Y, Chen W, Wang G 2011. Fabrication of size-controllable Fe2O3 nanoring array via colloidal lithography. Nanoscale 3:2743–47
    [Google Scholar]
  92. 92.
    Schoch RB, Han J, Renaud P 2008. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80:839
    [Google Scholar]
  93. 93.
    Bocquet L, Charlaix E. 2010. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39:1073–95A detailed review on electrokinetic phenomena and fluid and ionic behavior at different length scales.
    [Google Scholar]
  94. 94.
    Prakash S, Yeom J. 2014. Nanofluidics and Microfluidics: Systems and Applications Waltham, MA: William Andrew
  95. 95.
    Esfandiar A, Radha B, Wang FC, Yang Q, Hu S et al. 2017. Size effect in ion transport through angstrom-scale slits. Science 358:51113
    [Google Scholar]
  96. 96.
    Keerthi A, Goutham S, You Y, Iamprasertkun P, Dryfe RAW et al. 2021. Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12:3092
    [Google Scholar]
  97. 97.
    Du Y, Lv Y, Qiu W-Z, Wu J, Xu Z-K. 2016. Nanofiltration membranes with narrowed pore size distribution via pore wall modification. Chem. Commun. 52:8589–92
    [Google Scholar]
  98. 98.
    Poggioli AR, Siria A, Bocquet L. 2019. Beyond the tradeoff: dynamic selectivity in ionic transport and current rectification. J. Phys. Chem. B 123:1171–85
    [Google Scholar]
  99. 99.
    Lee CY, Choi W, Han JH, Strano MS. 2010. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320–24
    [Google Scholar]
  100. 100.
    Pang P, He J, Park JH, Krstić PS, Lindsay S 2011. Origin of giant ionic currents in carbon nanotube channels. ACS Nano 5:7277–83
    [Google Scholar]
  101. 101.
    Yao Y-C, Taqieddin A, Alibakhshi MA, Wanunu M, Aluru NR, Noy A. 2019. Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano 13:12851–59
    [Google Scholar]
  102. 102.
    Haywood DG, Harms ZD, Jacobson SC. 2014. Electroosmotic flow in nanofluidic channels. Anal. Chem. 86:11174–80
    [Google Scholar]
  103. 103.
    Pennathur S, Santiago JG. 2005. Electrokinetic transport in nanochannels. 1. Theory. Anal. Chem. 77:6772–81
    [Google Scholar]
  104. 104.
    Siwy ZS. 2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:735–46
    [Google Scholar]
  105. 105.
    Wu J, Gerstandt K, Zhang H, Liu J, Hinds BJ. 2012. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nat. Nanotechnol. 7:133–39
    [Google Scholar]
  106. 106.
    Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R et al. 2014. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514:612–15
    [Google Scholar]
  107. 107.
    Fornasiero F, Park HG, Holt JK, Stadermann M, Grigoropoulos CP et al. 2008. Ion exclusion by sub-2-nm carbon nanotube pores. PNAS 105:17250–55
    [Google Scholar]
  108. 108.
    Zhang X, Wei M, Xu F, Wang Y. 2020. Thickness-dependent ion rejection in nanopores. J. Membr. Sci. 601:117899
    [Google Scholar]
  109. 109.
    Garaj S, Liu S, Golovchenko JA, Branton D. 2013. Molecule-hugging graphene nanopores. PNAS 110:12192–96
    [Google Scholar]
  110. 110.
    Liu K, Feng J, Kis A, Radenovic A. 2014. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8:2504–11
    [Google Scholar]
  111. 111.
    Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D et al. 2016. Single-layer MoS2 nanopores as nanopower generators. Nature 536:197–200
    [Google Scholar]
  112. 112.
    Suk ME, Aluru NR. 2014. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140:084707
    [Google Scholar]
  113. 113.
    Pérez MDB, Nicolaï A, Delarue P, Meunier V, Drndić M, Senet P. 2019. Improved model of ionic transport in 2-D MoS2 membranes with sub-5nm pores. Appl. Phys. Lett. 114:023107
    [Google Scholar]
  114. 114.
    Hu G, Mao M, Ghosal S. 2012. Ion transport through a graphene nanopore. Nanotechnology 23:395501
    [Google Scholar]
  115. 115.
    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J 2010. Graphene as a subnanometre trans-electrode membrane. Nature 467:190–93
    [Google Scholar]
  116. 116.
    Yu Y, Fan J, Xia J, Zhu Y, Wu H, Wang F. 2019. Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale 11:8449–57
    [Google Scholar]
  117. 117.
    Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH. 1998. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C. J. Phys. Chem. B 102:4193–204
    [Google Scholar]
  118. 118.
    Li Z, Qiu Y, Zhang Y, Yue M, Chen Y. 2019. Effects of surface trapping and contact ion pairing on ion transport in nanopores. J. Phys. Chem. C 123:15314–22
    [Google Scholar]
  119. 119.
    Zhou J, Cui S, Cochran H. 2003. Molecular simulation of aqueous electrolytes in model silica nanochannels. Mol. Phys. 101:1089–94
    [Google Scholar]
  120. 120.
    Liu H, He J, Tang J, Liu H, Pang P et al. 2010. Translocation of single-stranded DNA through single-walled carbon nanotubes. Science 327:64–67
    [Google Scholar]
  121. 121.
    Amiri H, Shepard KL, Nuckolls C, Hernández Sánchez R. 2017. Single-walled carbon nanotubes: mimics of biological ion channels. Nano Lett 17:1204–11
    [Google Scholar]
  122. 122.
    Secchi E, Niguès A, Jubin L, Siria A, Bocquet L. 2016. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116:154501
    [Google Scholar]
  123. 123.
    Yazda K, Tahir S, Michel T, Loubet B, Manghi M et al. 2017. Voltage-activated transport of ions through single-walled carbon nanotubes. Nanoscale 9:11976–86
    [Google Scholar]
  124. 124.
    Ren Y, Stein D. 2008. Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19:195707
    [Google Scholar]
  125. 125.
    Ghanbari H, Esfandiar A. 2020. Ion transport through graphene oxide fibers as promising candidate for blue energy harvesting. Carbon 165:267–74
    [Google Scholar]
  126. 126.
    Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al. 2010. DNA translocation through graphene nanopores. Nano Lett 10:3163–67
    [Google Scholar]
  127. 127.
    Rollings RC, Kuan AT, Golovchenko JA. 2016. Ion selectivity of graphene nanopores. Nat. Commun. 7:11408
    [Google Scholar]
  128. 128.
    Qin S, Liu D, Chen Y, Chen C, Wang G et al. 2018. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy 47:368–73
    [Google Scholar]
  129. 129.
    Yazda K, Bleau K, Zhang Y, Capaldi X, St-Denis T et al. 2021. High osmotic power generation via nanopore arrays in hybrid hexagonal boron nitride/silicon nitride membranes. Nano Lett 21:4152–59
    [Google Scholar]
  130. 130.
    Huang Z, Zhang Y, Hayashida T, Ji Z, He Y et al. 2017. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators. Appl. Phys. Lett. 111:263104
    [Google Scholar]
  131. 131.
    Haldrup S, Catalano J, Hansen MR, Wagner M, Jensen GV et al. 2015. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes. Nano Lett 15:1158–65
    [Google Scholar]
  132. 132.
    Narebska A, Koter S, Kujawski W. 1984. Ions and water transport across charged Nafion membranes. Irreversible thermodynamics approach. Desalination 51:3–17
    [Google Scholar]
  133. 133.
    Kilsgaard BS, Haldrup S, Catalano J, Bentien A. 2014. High figure of merit for electrokinetic energy conversion in Nafion membranes. J. Power Sources 247:235–42
    [Google Scholar]
  134. 134.
    Bentien A, Okada T, Kjelstrup S. 2013. Evaluation of nanoporous polymer membranes for electrokinetic energy conversion in power applications. J. Phys. Chem. C 117:1582–88
    [Google Scholar]
  135. 135.
    Xie Y, Wang X, Xue J, Jin K, Chen L, Wang Y 2008. Electric energy generation in single track-etched nanopores. Appl. Phys. Lett. 93:163116
    [Google Scholar]
  136. 136.
    Chen G, Sachar HS, Das S. 2018. Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matter 14:5246–55
    [Google Scholar]
  137. 137.
    Lin T-W, Hsu J-P. 2020. Pressure-driven energy conversion of conical nanochannels: anomalous dependence of power generated and efficiency on pH. J. Colloid Interface Sci. 564:491–98
    [Google Scholar]
  138. 138.
    Guo W, Cao L, Xia J, Nie FQ, Ma W et al. 2010. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20:1339–44
    [Google Scholar]
  139. 139.
    Hsu JP, Yang ST, Lin CY, Tseng S. 2017. Ionic current rectification in a conical nanopore: influences of electroosmotic flow and type of salt. J. Phys. Chem. C 121:4576–82
    [Google Scholar]
  140. 140.
    Lin CY, Combs C, Su YS, Yeh LH, Siwy ZS. 2019. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141:3691–98
    [Google Scholar]
  141. 141.
    Balme S, Ma T, Balanzat E, Janot JM. 2017. Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications. J. Membr. Sci. 544:18–24
    [Google Scholar]
  142. 142.
    Cao L, Guo W, Ma W, Wang L, Xia F et al. 2011. Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy Environ. Sci. 4:2259–66
    [Google Scholar]
  143. 143.
    Laucirica G, Albesa AG, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. 2020. Shape matters: enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy 71:104612
    [Google Scholar]
  144. 144.
    Ma T, Balanzat E, Janot JM, Balme S 2019. Nanopore functionalized by highly charged hydrogels for osmotic energy harvesting. ACS Appl. Mater. Interfaces 11:12578–85
    [Google Scholar]
  145. 145.
    Mei L, Yeh LH, Qian S. 2017. Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers. Nano Energy 32:374–81
    [Google Scholar]
  146. 146.
    van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. 2006. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6:2232–37
    [Google Scholar]
  147. 147.
    Yan Y, Sheng Q, Wang C, Xue J, Chang HC. 2013. Energy conversion efficiency of nanofluidic batteries: hydrodynamic slip and access resistance. J. Phys. Chem. C 117:8050–61
    [Google Scholar]
  148. 148.
    Wang M, Kang Q. 2010. Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluid. Nanofluidics 9:181–90
    [Google Scholar]
  149. 149.
    van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. 2007. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7:1022–25
    [Google Scholar]
  150. 150.
    Lu M-C, Satyanarayana S, Karnik R, Majumdar A, Wang C-C. 2006. A mechanical-electrokinetic battery using a nano-porous membrane. J. Micromech. Microeng. 16:667
    [Google Scholar]
  151. 151.
    Kim D-K, Duan C, Chen Y-F, Majumdar A. 2010. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluidics 9:1215–24
    [Google Scholar]
  152. 152.
    Zhang Y, Huang Z, He Y, Miao X. 2019. Enhancing the efficiency of energy harvesting from salt gradient with ion-selective nanochannel. Nanotechnology 30:295402
    [Google Scholar]
  153. 153.
    Davidson C, Xuan X 2008. Electrokinetic energy conversion in slip nanochannels. J. Power Sources 179:297–300
    [Google Scholar]
  154. 154.
    Jian Y, Li F, Liu Y, Chang L, Liu Q, Yang L 2017. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel. Colloids Surf. B 156:405–13
    [Google Scholar]
  155. 155.
    Duffin AM, Saykally RJ. 2007. Electrokinetic hydrogen generation from liquid water microjets. J. Phys. Chem. C 111:12031–37
    [Google Scholar]
  156. 156.
    Duffin AM, Saykally RJ. 2008. Electrokinetic power generation from liquid water microjets. J. Phys. Chem. C 112:17018–22
    [Google Scholar]
  157. 157.
    Mansouri A, Bhattacharjee S, Kostiuk L. 2012. High-power electrokinetic energy conversion in a glass microchannel array. Lab Chip 12:4033–36
    [Google Scholar]
  158. 158.
    Olthuis W, Schippers B, Eijkel J, van den Berg A. 2005. Energy from streaming current and potential. Sens. Actuators B Chem. 111–112:385–89
    [Google Scholar]
  159. 159.
    Xie Y, Sherwood JD, Shui L, van den Berg A, Eijkel JC. 2011. Strong enhancement of streaming current power by application of two phase flow. Lab Chip 11:4006–11
    [Google Scholar]
  160. 160.
    Lynden-Bell RM, Rasaiah JC 1996. Mobility and solvation of ions in channels. J. Chem. Phys. 105:9266–80
    [Google Scholar]
  161. 161.
    Jung W, Kim J, Kim S, Park HG, Jung Y, Han CS. 2017. A novel fabrication of 3.6 nm high graphene nanochannels for ultrafast ion transport. Adv. Mater. 29:1605854Developed a theoretical model to study the ion dynamics in smooth angstrom-scale channels.
    [Google Scholar]
  162. 162.
    Morrison FA, Osterle JF. 1965. Electrokinetic energy conversion in ultrafine capillaries. J. Chem. Phys. 43:2111–15
    [Google Scholar]
  163. 163.
    Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T. 1998. Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim. Acta 43:3741–47
    [Google Scholar]
  164. 164.
    Bakli C, Chakraborty S. 2015. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency. Electrophoresis 36:675–81
    [Google Scholar]
  165. 165.
    Mouterde T, Keerthi A, Poggioli AR, Dar SA, Siria A et al. 2019. Molecular streaming and its voltage control in ångström-scale channels. Nature 567:87–90
    [Google Scholar]
  166. 166.
    Jin Y, Ng T, Tao R, Luo S, Su Y, Li Z. 2020. Coupling effects in electromechanical ion transport in graphene nanochannels. Phys. Rev. E 102:033112
    [Google Scholar]
  167. 167.
    Xiao K, Jiang L, Antonietti M. 2019. Ion transport in nanofluidic devices for energy harvesting. Joule 3:2364–80
    [Google Scholar]
  168. 168.
    Gao J, Liu X, Jiang Y, Ding L, Jiang L, Guo W. 2019. Understanding the giant gap between single-pore- and membrane-based nanofluidic osmotic power generators. Small 15:1804279
    [Google Scholar]
  169. 169.
    Su J, Ji D, Tang J, Li H, Feng Y et al. 2018. Anomalous pore-density dependence in nanofluidic osmotic power generation. Chin. J. Chem. 36:417–20
    [Google Scholar]
  170. 170.
    Emmerich T, Vasu KS, Niguès A, Keerthi A, Radha B et al. 2022. Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. https://doi.org/10.1038/s41563-022-01229-x
    [Crossref] [Google Scholar]
  171. 171.
    Su YS, Hsu SC, Peng PH, Yang JY, Gao M, Yeh LH. 2021. Unraveling the anomalous channel-length-dependent blue energy conversion using engineered alumina nanochannels. Nano Energy 84:105930
    [Google Scholar]
  172. 172.
    Graf M, Lihter M, Unuchek D, Sarathy A, Leburton JP et al. 2019. Light-enhanced blue energy generation using MoS2 nanopores. Joule 3:1549–64
    [Google Scholar]
  173. 173.
    Zhao C, Wang H, Zhang H. 2021. Bio-inspired artificial ion channels: from physical to chemical gating. Mater. Chem. Front. 5:4059–72
    [Google Scholar]
  174. 174.
    Xiao K, Chen L, Chen R, Heil T, Lemus SDC et al. 2019. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 10:74
    [Google Scholar]
  175. 175.
    Robin P, Kavokine N, Bocquet L. 2021. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 373:687–91
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081320-032747
Loading
/content/journals/10.1146/annurev-matsci-081320-032747
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error