1932

Abstract

Understanding the nanoscale electrodynamic properties of a material at microwave frequencies is of great interest for materials science, condensed matter physics, device engineering, and biology. With specialized probes, sensitive detection electronics, and improved scanning platforms, microwave microscopy has become an important tool for cutting-edge materials research in the past decade. In this article, we review the basic components and data interpretation of microwave imaging and its broad range of applications. In addition to the general-purpose mapping of permittivity and conductivity, microwave microscopy is now exploited to perform quantitative measurements on semiconductor devices, photosensitive materials, ferroelectric domains and domain walls, and acoustic-wave systems. Implementation of the technique in low-temperature and high-magnetic-field chambers has also led to major discoveries in quantum materials with strong correlation and topological order. We conclude the review with an outlook of the ultimate resolution, operation frequency, and future industrial and academic applications of near-field microwave microscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081519-011844
2020-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-081519-011844.html?itemId=/content/journals/10.1146/annurev-matsci-081519-011844&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Jackson JD 1999. Classical Electrodynamics New York: Wiley, 3rd ed..
  2. 2. 
    Betzig E, Trautman JK 1992. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–95
    [Google Scholar]
  3. 3. 
    Dunn RC 1999. Near-field scanning optical microscopy. Chem. Rev. 99:2891–928
    [Google Scholar]
  4. 4. 
    Rosner BT, van der Weide DW 2002. High-frequency near-field microscopy. Rev. Sci. Instrum. 73:2505–25
    [Google Scholar]
  5. 5. 
    Xiang XD, Gao C 2002. Quantitative complex electrical impedance microscopy by scanning evanescent microwave microscope. Mater. Charact. 48:117–25
    [Google Scholar]
  6. 6. 
    Anlage SM, Talanov VV, Schwartz AR 2006. Principles of near-field microwave microscopy. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale SV Kalinin, A Gruverman 215–53 New York: Springer
    [Google Scholar]
  7. 7. 
    Lai K, Kundhikanjana W, Kelly MA, Shen ZX 2011. Nanoscale microwave microscopy using shielded cantilever probes. Appl. Nanosci. 1:13–18
    [Google Scholar]
  8. 8. 
    Synge EH 1928. A suggested method for extending the microscopic resolution into the ultramicroscopic region. Philos. Mag. 6:356–62
    [Google Scholar]
  9. 9. 
    Soohoo RF 1962. A microwave magnetic microscope. J. Appl. Phys. 33:1276–77
    [Google Scholar]
  10. 10. 
    Bryant CA, Gunn JB. 1965. Noncontact technique for the local measurement of semiconductor resistivity. Rev. Sci. Instrum. 36:1614–17
    [Google Scholar]
  11. 11. 
    Ash EA, Nicholls G. 1972. Super-resolution aperture scanning microscope. Nature 237:510–12
    [Google Scholar]
  12. 12. 
    Fee M, Chu S, Hansch TW 1989. Scanning electromagnetic transmission line microscope with sub-wavelength resolution. Opt. Commun. 69:219–24
    [Google Scholar]
  13. 13. 
    Binnig G, Rohrer H, Gerber Ch, Weibel E 1982. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:57–61
    [Google Scholar]
  14. 14. 
    Binnig G, Quate CF, Gerber Ch 1986. Atomic force microscope. Phys. Rev. Lett. 56:930–33
    [Google Scholar]
  15. 15. 
    Tabib-Azar M, Shoemaker NS, Harris S 1993. Non-destructive characterization of materials by evanescent microwaves. Meas. Sci. Technol. 4:583–90
    [Google Scholar]
  16. 16. 
    Golosovsky M, Davidov D. 1996. Novel millimeter-wave near-field resistivity microscope. Appl. Phys. Lett. 68:1579–81
    [Google Scholar]
  17. 17. 
    Wei T, Xiang XD, Wallace-Freedman WG, Schultz PG 1996. Scanning tip microwave near-field microscope. Appl. Phys. Lett. 68:3506–8
    [Google Scholar]
  18. 18. 
    Vlahacos CP, Black RC, Anlage SM, Amar A, Wellstood FC 1996. Near-field scanning microwave microscope with 100 μm resolution. Appl. Phys. Lett. 69:3272–74
    [Google Scholar]
  19. 19. 
    van der Weide DW. 1997. Localized picosecond resolution with a near-field microwave/scanning-force microscope. Appl. Phys. Lett. 70:677–79
    [Google Scholar]
  20. 20. 
    Gao C, Wei T, Duewer F, Lu Y, Xiang XD 1997. High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope. Appl. Phys. Lett. 71:1872–74
    [Google Scholar]
  21. 21. 
    Tabib-Azar M, Wang Y. 2004. Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures. IEEE Trans. Microw. Theory Tech. 52:971–79
    [Google Scholar]
  22. 22. 
    Wang Y, Bettermann AD, van der Weide DW 2007. Process for scanning near-field microwave microscope probes with integrated ultratall coaxial tips. J. Vac. Sci. Technol. B 25:813–16
    [Google Scholar]
  23. 23. 
    Lai K, Ji MB, Leindecker N, Kelly MA, Shen ZX 2007. Atomic force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev. Sci. Instrum. 78:063702
    [Google Scholar]
  24. 24. 
    Karbassi A, Ruf D, Bettermann AD, Paulson CA, van der Weide DW et al. 2008. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement. Rev. Sci. Instrum. 79:094706
    [Google Scholar]
  25. 25. 
    Huber HP, Moertelmaier M, Wallis TM, Chiang CJ, Hochleitner M et al. 2010. Calibrated nanoscale capacitance measurements using a scanning microwave microscope. Rev. Sci. Instrum. 81:113701
    [Google Scholar]
  26. 26. 
    Zhang L, Ju Y, Hosoi A, Fujimoto A 2010. Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization. Rev. Sci. Instrum. 81:123708
    [Google Scholar]
  27. 27. 
    Kundhikanjana W, Lai K, Kelly MA, Shen ZX 2011. Cryogenic microwave imaging of metal–insulator transition in doped silicon. Rev. Sci. Instrum. 82:033705
    [Google Scholar]
  28. 28. 
    Lai K, Kundhikanjana W, Kelly MA, Shen ZX 2008. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope. Rev. Sci. Instrum. 79:063703
    [Google Scholar]
  29. 29. 
    Yang Y, Lai K, Tang Q, Kundhikanjana W, Kelly MA et al. 2012. Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging. J. Micromech. Microeng. 22:115040
    [Google Scholar]
  30. 30. 
    Cui YT, Ma EY, Shen ZX 2016. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87:063711
    [Google Scholar]
  31. 31. 
    Wu X, Hao Z, Wu D, Zheng L, Jiang Z et al. 2018. Quantitative measurements of nanoscale permittivity and conductivity using tuning fork-based microwave impedance microscopy. Rev. Sci. Instrum. 89:043704
    [Google Scholar]
  32. 32. 
    Cui YT, Ma EY. 2018. Microwave impedance microscopy. Capacitance Spectroscopy of Semiconductors JV Li, G Ferrari 411–35 Boca Raton, FL: CRC Press
    [Google Scholar]
  33. 33. 
    Kundhikanjana W, Yang Y, Tanga Q, Zhang K, Lai K et al. 2013. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope. Semicond. Sci. Technol. 28:025010
    [Google Scholar]
  34. 34. 
    Gao C, Xiang XD. 1998. Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 69:3846–51
    [Google Scholar]
  35. 35. 
    Gao C, Duewer F, Xiang XD 1999. Quantitative microwave evanescent microscopy. Appl. Phys. Lett. 75:3005–7
    [Google Scholar]
  36. 36. 
    Steinhauer DE, Vlahacos CP, Wellstood FC, Anlage SM, Canedy C et al. 2000. Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope. Rev. Sci. Instrum. 71:2751–58
    [Google Scholar]
  37. 37. 
    Gao C, Hu B, Zhang P, Huang M, Liu W et al. 2004. Quantitative microwave evanescent microscopy of dielectric thin films using a recursive image charge approach. Appl. Phys. Lett. 84:4647–49
    [Google Scholar]
  38. 38. 
    Wu D, Pak AJ, Liu Y, Zhou Y, Wu X et al. 2015. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett 15:8136–40
    [Google Scholar]
  39. 39. 
    Han G, Chen ZG, Drennan J, Zou J 2014. Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 10:2747–65
    [Google Scholar]
  40. 40. 
    Kumar A, Ahluwalia PK. 2012. Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se,Te): effect of quantum confinement. Physica B 407:4627–34
    [Google Scholar]
  41. 41. 
    Vander Vorst A, Rosen A, Kotsuka Y 2006. RF/Microwave Interaction with Biological Tissues Hoboken, NJ: Wiley
  42. 42. 
    Biagi MC, Fabregas R, Gramse G, van der Hofstadt M, Juárez A et al. 2016. Nanoscale electric permittivity of single bacterial cells at gigahertz frequencies by scanning microwave microscopy. ACS Nano 10:280–88
    [Google Scholar]
  43. 43. 
    Wang Z, Kelly MA, Shen ZX, Wang G, Xiang XD et al. 2002. Evanescent microwave probe measurement of low-k dielectric films. J. Appl. Phys. 92:808–11
    [Google Scholar]
  44. 44. 
    Lai K, Kundhikanjana W, Kelly MA, Shen ZX 2008. Calibration of shielded microwave probes using bulk dielectrics. Appl. Phys. Lett. 93:123105
    [Google Scholar]
  45. 45. 
    Ruess FJ, Oberbeck L, Simmons MY, Goh KEJ, Hamilton AR 2014. Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett 10:1969–73
    [Google Scholar]
  46. 46. 
    Gramse G, Kölker A, Lim T, Stock TJZ, Solanki H et al. 2017. Nondestructive imaging of atomically thin nanostructures buried in silicon. Sci. Adv. 3:e1602586
    [Google Scholar]
  47. 47. 
    Tselev A, Velmurugan J, Ievlev AV, Kalinin SV, Kolmakov A 2016. Seeing through walls at the nanoscale: microwave microscopy of enclosed objects and processes in liquids. ACS Nano 10:3562–70
    [Google Scholar]
  48. 48. 
    Torigoe K, Arita M, Motooka T 2012. Sensitivity analysis of scanning microwave microscopy for nano-scale dopant measurements in Si. J. Appl. Phys. 111:104325
    [Google Scholar]
  49. 49. 
    Brinciotti E, Gramse G, Hommel S, Schweinboeck T, Altes A et al. 2015. Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy. Nanoscale 7:14715–22
    [Google Scholar]
  50. 50. 
    Buchter A, Hoffmann J, Delvallée A, Brinciotti E, Hapiuk D et al. 2018. Scanning microwave microscopy applied to semiconducting GaAs structures. Rev. Sci. Instrum. 89:023704
    [Google Scholar]
  51. 51. 
    Wang WH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS 2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699–712
    [Google Scholar]
  52. 52. 
    Wu D, Li X, Luan L, Wu X, Li W et al. 2016. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors. PNAS 113:8583–88
    [Google Scholar]
  53. 53. 
    Lai K, Peng H, Kundhikanjana W, Schoen DT, Xie C et al. 2009. Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy. Nano Lett 9:1265–69
    [Google Scholar]
  54. 54. 
    Kundhikanjana W, Lai K, Wang H, Dai H, Kelly MA et al. 2009. Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Lett 9:3762–65
    [Google Scholar]
  55. 55. 
    Liu Y, Ghosh R, Wu D, Ismach A, Ruoff R et al. 2014. Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett 14:4682–86
    [Google Scholar]
  56. 56. 
    Berweger S, Weber JC, John J, Velazquez JM, Pieterick A et al. 2015. Microwave near-field imaging of two-dimensional semiconductors. Nano Lett 15:1122–27
    [Google Scholar]
  57. 57. 
    Liu Y, Tan C, Chou H, Nayak A, Wu D et al. 2015. Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett 15:4979–84
    [Google Scholar]
  58. 58. 
    Kim JS, Liu Y, Zhu W, Kim S, Wu D et al. 2015. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5:8989
    [Google Scholar]
  59. 59. 
    Tan C, Liu Y, Chou H, Kim JS, Wu D et al. 2016. Laser-assisted oxidation of multi-layer tungsten diselenide nanosheets. Appl. Phys. Lett. 108:083112
    [Google Scholar]
  60. 60. 
    de Visser PJ, Chua R, Island JO, Finkel M, Katan AJ et al. 2016. Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Mater 3:021002
    [Google Scholar]
  61. 61. 
    Berweger S, Qiu G, Wang Y, Pollard B, Genter KL et al. 2019. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors. Nano Lett 19:1289–94
    [Google Scholar]
  62. 62. 
    Wu D, Li W, Rai A, Wu X, Movva HCP et al. 2019. Visualization of local conductance in MoS2/WSe2 heterostructure transistors. Nano Lett 19:1976–81
    [Google Scholar]
  63. 63. 
    Seabron E, MacLaren S, Xie X, Rotkin SV, Rogers JA et al. 2016. Scanning probe microwave reflectivity of aligned single-walled carbon nanotubes: imaging of electronic structure and quantum behavior at the nanoscale. ACS Nano 10:360–68
    [Google Scholar]
  64. 64. 
    Matey JR, Blanc J. 1985. Scanning capacitance microscopy. J. Appl. Phys. 57:1437–44
    [Google Scholar]
  65. 65. 
    Imtiaz A, Wallis TM, Weber JC, Coakley KJ, Brubaker MD et al. 2014. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope. Appl. Phys. Lett. 104:263107
    [Google Scholar]
  66. 66. 
    Berweger S, Blanchard PT, Brubaker MD, Coakley KJ, Sanford NA et al. 2016. Near-field control and imaging of free charge carrier variations in GaN nanowires. Appl. Phys. Lett. 108:073101
    [Google Scholar]
  67. 67. 
    Choi W, Seabron E, Mohseni PK, Kim JD, Gokus T et al. 2017. Direct electrical probing of periodic modulation of zinc-dopant distributions in planar gallium arsenide nanowires. ACS Nano 11:1530–39
    [Google Scholar]
  68. 68. 
    Miller SL, McWhorter PJ. 1992. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 72:5999–6010
    [Google Scholar]
  69. 69. 
    Fujimoto T, Awaga K. 2013. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15:8983–9006
    [Google Scholar]
  70. 70. 
    Ponath P, Fredrickson K, Posadas AB, Ren Y, Wu X et al. 2015. Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nat. Commun. 6:6067
    [Google Scholar]
  71. 71. 
    Ren Y, Yuan H, Wu X, Chen Z, Iwasa Y et al. 2015. Direct imaging of nanoscale conductance evolution in ion-gel-gated oxide transistors. Nano Lett 15:4730–36
    [Google Scholar]
  72. 72. 
    Gu Y, Kwak ES, Lensch JL, Allen JE, Odom TW et al. 2005. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87:043111
    [Google Scholar]
  73. 73. 
    Brenner TM, Egger DA, Kronik L, Hodes G, Cahen D 2016. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1:15007
    [Google Scholar]
  74. 74. 
    Chu Z, Yang M, Schulz P, Wu D, Ma X et al. 2017. Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8:2230
    [Google Scholar]
  75. 75. 
    Geim AK, Grigorieva IV. 2013. Van der Waals heterostructures. Nature 499:419–25
    [Google Scholar]
  76. 76. 
    Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH 2016. 2D materials and van der Waals heterostructures. Science 353:aac9439
    [Google Scholar]
  77. 77. 
    Chu Z, Han A, Lei C, Lopatin S, Li P et al. 2018. Energy-resolved photoconductivity mapping in a monolayer-bilayer WSe2 lateral heterostructure. Nano Lett 18:7200–6
    [Google Scholar]
  78. 78. 
    Tsai Y, Chu Z, Han Y, Chuu CP, Wu D et al. 2017. Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement. Adv. Mater. 29:1703680
    [Google Scholar]
  79. 79. 
    Berweger S, MacDonald GA, Yang M, Coakley KJ, Berry JJ et al. 2017. Electronic and morphological inhomogeneities in pristine and deteriorated perovskite photovoltaic films. Nano Lett 17:1796–801
    [Google Scholar]
  80. 80. 
    Johnston SR, Ma EY, Shen ZX 2018. Optically coupled methods for microwave impedance microscopy. Rev. Sci. Instrum. 89:043703
    [Google Scholar]
  81. 81. 
    Dagotto E. 2005. Complexity in strongly correlated electronic systems. Science 309:257–62
    [Google Scholar]
  82. 82. 
    Imada M, Fujimori A, Tokura Y 1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263
    [Google Scholar]
  83. 83. 
    Lai K, Nakamura M, Kundhikanjana W, Kawasaki M, Tokura Y et al. 2010. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329:190–93
    [Google Scholar]
  84. 84. 
    Tselev A, Strelcov E, Luk'yanchuk IA, Budai JD, Tischler JZ et al. 2010. Interplay between ferroelastic and metal-insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. Nano Lett 10:2003–11
    [Google Scholar]
  85. 85. 
    Tselev A, Lavrik NV, Kolmakov A, Kalinin SV 2013. Scanning near-field microwave microscopy of VO2 and chemical vapor deposition graphene. Adv. Funct. Mater. 23:2635–45
    [Google Scholar]
  86. 86. 
    Kundhikanjana W, Sheng Z, Yang Y, Lai K, Ma EY et al. 2015. Direct imaging of dynamic glassy behavior in a strained manganite film. Phys. Rev. Lett. 115:265701
    [Google Scholar]
  87. 87. 
    Schulz HJ. 1990. Incommensurate antiferromagnetism in the two-dimensional Hubbard model. Phys. Rev. Lett. 64:1445–48
    [Google Scholar]
  88. 88. 
    Ueda K, Fujioka J, Takahashi Y, Suzuki T, Ishiwata S et al. 2014. Anomalous domain-wall conductance in pyrochlore-type Nd2Ir2O7 on the verge of the metal-insulator transition. Phys. Rev. B 89:075127
    [Google Scholar]
  89. 89. 
    Ma EY, Cui YT, Ueda K, Tang S, Chen K et al. 2015. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350:538–41
    [Google Scholar]
  90. 90. 
    Ma EY, Bryant B, Tokunaga Y, Aeppli G, Tokura Y et al. 2015. Charge-order domain walls with enhanced conductivity in a layered manganite. Nat. Commun. 6:7595
    [Google Scholar]
  91. 91. 
    Fischer O, Kugler M, Maggio-Aprile I, Berthod C, Renner C 2007. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79:353–419
    [Google Scholar]
  92. 92. 
    Liu M, Sternbach AJ, Basov DN 2016. Nanoscale electrodynamics of strongly correlated quantum materials. Rep. Prog. Phys. 80:014501
    [Google Scholar]
  93. 93. 
    Wen XG. 1990. Topological orders in rigid states. Int. J. Mod. Phys. B 4:239–71
    [Google Scholar]
  94. 94. 
    Chang CZ, Li M. 2016. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J. Phys. Condens. Matter 28:123002
    [Google Scholar]
  95. 95. 
    von Klitzing K, Dorda G, Pepper M 1980. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45:494–97
    [Google Scholar]
  96. 96. 
    Lai K, Kundhikanjana W, Kelly MA, Shen ZX, Shabani J et al. 2011. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107:176809
    [Google Scholar]
  97. 97. 
    Chklovskii DB, Shklovskii BI, Glazman LI 1992. Electrostatics of edge channels. Phys. Rev. B 46:4026–34
    [Google Scholar]
  98. 98. 
    Cui YT, Wen B, Ma EY, Diankov G, Han Z et al. 2016. Unconventional correlation between quantum Hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117:186601
    [Google Scholar]
  99. 99. 
    Kane CL, Mele EJ. 2005. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95:146802
    [Google Scholar]
  100. 100. 
    Bernevig BA, Zhang SC. 2006. Quantum spin Hall effect. Phys. Rev. Lett. 96:106802
    [Google Scholar]
  101. 101. 
    Ma EY, Calvo MR, Wang J, Lian B, Muhlbauer M et al. 2015. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nat. Commun. 6:7252
    [Google Scholar]
  102. 102. 
    Bernevig BA, Hughes TL, Zhang SC 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–61
    [Google Scholar]
  103. 103. 
    König M, Wiedmann S, Brüne C, Roth A, Buhmann H et al. 2007. Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–70
    [Google Scholar]
  104. 104. 
    Shi Y, Kahn J, Niu B, Fei Z, Sun B et al. 2019. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5:eaat8799
    [Google Scholar]
  105. 105. 
    Yu R, Zhang W, Zhang HJ, Zhang SC, Dai X et al. 2010. Quantized anomalous Hall effect in magnetic topological insulators. Science 329:61–64
    [Google Scholar]
  106. 106. 
    Chang CZ, Zhang J, Feng X, Shen J, Zhang Z et al. 2013. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340:167–70
    [Google Scholar]
  107. 107. 
    Allen M, Cui Y, Ma EY, Mogi M, Kawamurae M et al. 2019. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. PNAS 116:14511–15
    [Google Scholar]
  108. 108. 
    Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y et al. 2017. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16:516–21
    [Google Scholar]
  109. 109. 
    Grauer S, Fijalkowski KM, Schreyeck S, Winnerlein M, Brunner K et al. 2017. Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Phys. Rev. Lett. 118:246801
    [Google Scholar]
  110. 110. 
    Xiao D, Jiang J, Shin JH, Wang W, Wang F et al. 2018. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120:056801
    [Google Scholar]
  111. 111. 
    Jonscher AK. 1999. Dielectric relaxation in solids. J. Phys. D 32:R57–70
    [Google Scholar]
  112. 112. 
    Kittel C. 1951. Domain boundary motion in ferroelectric crystals and the dielectric constant at high frequency. Phys. Rev. 83:458
    [Google Scholar]
  113. 113. 
    Maglione M, Böhmer R, Loidl A, Höchli UT 1989. Polar relaxation mode in pure and iron doped barium titanate. Phys. Rev. B 40:11441–44
    [Google Scholar]
  114. 114. 
    Arlt G, Böttger U, Witte S 1994. Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies. Ann. Phys. 3:578–88
    [Google Scholar]
  115. 115. 
    Seidel J, Martin LW, He Q, Zhan Q, Chu YH et al. 2009. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8:229–34
    [Google Scholar]
  116. 116. 
    Vasudevan RK, Wu W, Guest JR, Baddorf AP, Morozovska AN et al. 2013. Domain wall conduction and polarization-mediated transport in ferroelectrics. Adv. Funct. Mater. 23:2592–616
    [Google Scholar]
  117. 117. 
    Lummen TTA, Leung J, Kumar A, Wu X, Ren Y et al. 2017. Emergent low-symmetry phases and large property enhancements in ferroelectric KNbO3 bulk crystals. Adv. Mater. 29:1700530
    [Google Scholar]
  118. 118. 
    Tselev A, Yu P, Cao Y, Dedon LR, Martin LW et al. 2016. Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nat. Commun. 7:11630
    [Google Scholar]
  119. 119. 
    Wu X, Petralanda U, Zheng L, Ren Y, Hu R et al. 2017. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Sci. Adv. 3:e1602371
    [Google Scholar]
  120. 120. 
    Choi T, Horibe Y, Yi HT, Choi YJ, Wu W et al. 2010. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9:253–58
    [Google Scholar]
  121. 121. 
    Wu X, Du K, Zheng L, Wu D, Cheong SW et al. 2018. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys. Rev. B 98:081409(R)
    [Google Scholar]
  122. 122. 
    Grüner G. 1988. The dynamics of charge-density waves. Rev. Mod. Phys. 60:1129–81
    [Google Scholar]
  123. 123. 
    Chen Y, Lewis RM, Engel LW, Tsui DC, Ye PD et al. 2003. Microwave resonance of the 2D Wigner crystal around integer Landau fillings. Phys. Rev. Lett. 91:016801
    [Google Scholar]
  124. 124. 
    Weigel R, Morgan DP, Owens JM, Ballato A, Lakin KM et al. 2002. Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50:738–49
    [Google Scholar]
  125. 125. 
    Johnston SR, Yang Y, Cui YT, Ma EY, Kämpfe T et al. 2017. Measurement of surface acoustic wave resonances in ferroelectric domains by microwave microscopy. J. Appl. Phys. 122:074101
    [Google Scholar]
  126. 126. 
    Zheng L, Dong H, Wu X, Huang YL, Wang W et al. 2018. Interferometric imaging of nonlocal electromechanical power transduction in ferroelectric domains. PNAS 115:5338–42
    [Google Scholar]
  127. 127. 
    Royer D, Dieulesaint E. 1999. Elastic Waves in Solids New York: Springer
  128. 128. 
    Joseph CH, Sardi GM, Tuca SS, Gramse G, Lucibello A et al. 2016. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials. J. Magn. Magn. Mater. 420:62–69
    [Google Scholar]
  129. 129. 
    Cho Y, Kirihara A, Saeki T 1996. Scanning nonlinear dielectric microscope. Rev. Sci. Instrum. 67:2297–303
    [Google Scholar]
  130. 130. 
    Hirose K, Tanahashi K, Takato H, Cho Y 2017. Quantitative measurement of active dopant density distribution in phosphorus-implanted monocrystalline silicon solar cell using scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 111:032101
    [Google Scholar]
  131. 131. 
    Lee SC, Anlage SM. 2003. Study of local nonlinear properties using a near-field microwave microscope. IEEE Trans. Appl. Supercond. 13:3594–97
    [Google Scholar]
  132. 132. 
    Dutta SK, Vlahacos CP, Steinhauer DE, Thanawalla AS, Feenstra BJ et al. 1999. Imaging microwave electric fields using a near-field scanning microwave microscope. Appl. Phys. Lett. 74:156–58
    [Google Scholar]
  133. 133. 
    Gao F, Xue H, Yang Z, Lai K, Yu Y et al. 2018. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14:140–44
    [Google Scholar]
  134. 134. 
    Zheng L, Wu D, Wu X, Lai K 2018. Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy. Phys. Rev. Appl. 9:061002
    [Google Scholar]
  135. 135. 
    Shao L, Maity S, Zheng L, Wu L, Shams-Ansari A et al. 2019. Phononic band structure engineering for high-Q gigahertz surface acoustic wave resonators on lithium niobate. Phys. Rev. Appl. 12:014022
    [Google Scholar]
  136. 136. 
    Lee J, Long CJ, Yang H, Xiang XD, Takeuchi I 2010. Atomic resolution imaging at 2.5 GHz using near-field microwave microscopy. Appl. Phys. Lett. 97:183111
    [Google Scholar]
  137. 137. 
    Cho Y, Hirose R. 2007. Atomic dipole moment distribution of Si atoms on a Si(111)-(7×7) surface studied using noncontact scanning nonlinear dielectric microscopy. Phys. Rev. Lett. 99:186101
    [Google Scholar]
  138. 138. 
    Park W, Kim J, Lee K 2001. Millimeter-wave scanning near-field microscope using a resonant waveguide probe. Appl. Phys. Lett. 79:2642–44
    [Google Scholar]
  139. 139. 
    Kim M, Kim J, Kim H, Kim S, Yang J et al. 2004. Nondestructive high spatial resolution imaging with a 60 GHz near-field scanning millimeter-wave microscope. Rev. Sci. Instrum. 75:684–88
    [Google Scholar]
  140. 140. 
    Finkel M, Thierschmann H, Katan AJ, Westig MP, Spirito M et al. 2019. Shielded cantilever with on-chip interferometer circuit for THz scanning probe impedance microscopy. Rev. Sci. Instrum. 90:113701
    [Google Scholar]
  141. 141. 
    Geaney S, Cox D, Hönigl-Decrinis T, Shaikhaidarov R, Kubatkin SE et al. 2019. Near-field scanning microwave microscopy in the single photon regime. arXiv:1902.08066 [physics.app-ph]
/content/journals/10.1146/annurev-matsci-081519-011844
Loading
/content/journals/10.1146/annurev-matsci-081519-011844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error