1932

Abstract

We live in a research era marked by impressive new tools powering the scientific method to accelerate the discovery, prediction, and control of increasingly complex systems. In common with many disciplines and societal challenges and opportunities, materials and condensed matter sciences are beneficiaries. The volume and fidelity of experimental, computational, and visualization data available, and tools to rapidly interpret them, are remarkable. Conceptual frameworks, including multiscale, multiphysics modeling of this complexity, are fueled by the data and, in turn, guide directions for future experimental and computational strategies. In this spirit, I discuss the importance of competing interactions, length scales, and constraints as pervasive sources of spatiotemporal complexity. I use representative examples drawn from materials and condensed matter, including the important role of elasticity in some technologically important quantum materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081519-050045
2020-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-081519-050045.html?itemId=/content/journals/10.1146/annurev-matsci-081519-050045&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    US Dep. Energy 2015. Quadrennial technology review: an assessment of energy technologies and research opportunities Rep., US Dep. Energy Washington, DC: https://www.energy.gov/quadrennial-technology-review-2015
  2. 2. 
    Sarrao JL, Brabtree GW 2015. Mesoscale materials, phenomena, and functionality. Mater. Res. Soc. 40:11)
    [Google Scholar]
  3. 3. 
    LeSar R, Bishop AR, Heffner R 1987. Competing Interactions and Microstructures: Statics and Dynamics New York: Springer
  4. 4. 
    Marianer S, Bishop AR. 1998. Frenkel-Kontorova model with nonconvex-interparticle interactions and strain gradients. Phys. Rev. B 37:9893–96
    [Google Scholar]
  5. 5. 
    Salje EKH. 1990. Phase Transformations in Ferroelastic and Co-Elastic Solids Cambridge, UK: Cambridge Univ. Press
  6. 6. 
    Lookman T, Shenoy SR, Rasmussen KO, Saxena A, Bishop AR 2003. Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67:024114
    [Google Scholar]
  7. 7. 
    Curnoe SH, Jacobs AE. 2001. Time evolution of tetragonal-orthorhombic ferroelastics. Phys. Rev. B 64:064101
    [Google Scholar]
  8. 8. 
    Krumhansl JA. 1992. Fine scale mesostructures in superconducting and other materials. Lattice Effects in High-Tc Superconductors T Bar-Yam, T Egami, J Mustre de León, AR Bishop 503–16 Singapore: World Sci.
    [Google Scholar]
  9. 9. 
    Asamitsu A, Moritomo Y, Tomioka Y, Arima Y, Tokura Y 1995. A structural phase transition induced by an external magnetic field. Nature 373:407–9
    [Google Scholar]
  10. 10. 
    Kartha S, Krumhansl JA, Sethna JP, Wickham LK 1995. Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52:803–22
    [Google Scholar]
  11. 11. 
    Rasmussen K, Lookman T, Saxena A, Albers R, Bishop AR 2001. Three-dimensional elastic compatibility: twinning in martensites. Phys. Rev. Lett. 87:055704
    [Google Scholar]
  12. 12. 
    Rowlinson JS. 1991. Symmetry of the pressure tensor in a nonuniform fluid. Phys. Rev. Lett. 67:406
    [Google Scholar]
  13. 13. 
    Landau LD, Lifshitz EM. 1980. Statistical Physics Oxford, UK: Pergamon
  14. 14. 
    Planes A, Lloveras P, Castán T, Saxena A, Porta M 2012. Ginzburg–Landau modeling of precursor nanoscale textures in ferroelastic materials. Contin. Mech. Thermodyn. 24:619–27
    [Google Scholar]
  15. 15. 
    Ahn K, Lookman T, Saxena A, Bishop AR 2005. Electronic properties of structural twin and antiphase boundaries in materials with strong electron-lattice couplings. Phys. Rev. B 71:212102
    [Google Scholar]
  16. 16. 
    Ahn KH, Lookman T, Bishop AR 2004. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428:401–4
    [Google Scholar]
  17. 17. 
    Ahn K, Seman TF, Lookman T, Bishop AR 2013. Role of complex energy landscapes and strains in multiscale inhomogeneities in perovskite manganites. Phys. Rev. B 88:144415
    [Google Scholar]
  18. 18. 
    Mathur N, Littlewood P. 2003. Mesoscopic texture in manganites. Phys. Today 56:125–30
    [Google Scholar]
  19. 19. 
    Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH 1994. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–15
    [Google Scholar]
  20. 20. 
    Millis AJ. 1998. Lattice effects in magnetoresistive manganese perovskites. Nature 392:147–50
    [Google Scholar]
  21. 21. 
    Chen CH, Cheong SW. 1996. Commensurate to incommensurate charge ordering and its real-space images in La0.5Ca0.5MnO3. Phys. Rev. Lett. 76:4042–45
    [Google Scholar]
  22. 22. 
    Hwang HY, Cheong SW, Radaelli PG, Marezio M, Batlogg B 1995. Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75:914–17
    [Google Scholar]
  23. 23. 
    Su WP, Schrieffer JR, Heeger AJ 1979. Solitons in polyacetylene. Phys. Rev. Lett. 42:1698–701
    [Google Scholar]
  24. 24. 
    Renner Ch, Aeppli G, Kim B-G, Soh Y-A, Cheong S-W 2002. Atomic-scale images of charge ordering in a mixed-valence manganite. Nature 416:518–21
    [Google Scholar]
  25. 25. 
    Uehara M, Mori S, Chen CH, Cheong S-W 1999. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399:560–63
    [Google Scholar]
  26. 26. 
    Levy P, Parisi F, Granja L, Indelicato E, Polla G 2002. Novel dynamical effects and persistent memory in phase separated manganites. Phys. Rev. Lett. 89:137001
    [Google Scholar]
  27. 27. 
    Lynn JW. 1997. Magnetic, structural, and spin dynamical properties of La1−xCaxMnO3. J. Appl. Phys. 81:5488–90
    [Google Scholar]
  28. 28. 
    Zhu JX, Ahn KH, Nussinov Z, Lookman T, Balatsky AV, Bishop AR 2003. Elasticity-driven nanoscale electronic structure in superconductors. Phys. Rev. Lett. 91:057004
    [Google Scholar]
  29. 29. 
    Phillips JC, Saxena A, Bishop AR 2003. Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductors. Rep. Prog. Phys. 66:2111–82
    [Google Scholar]
  30. 30. 
    Chen A, Su Q, Han H, Enriquez E, Jia Q 2019. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv. Mater. 31:1803241
    [Google Scholar]
  31. 31. 
    Gottschall T, Benke D, Fries M, Taubel A, Radulov I, Skokov K et al. 2017. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration. Adv. Funct. Mater. 27:1606735
    [Google Scholar]
  32. 32. 
    Maniadis P, Lookman T, Bishop AR 2008. Elasticity driven self-organization of polarons. Phys. Rev. B 78:134304
    [Google Scholar]
  33. 33. 
    Maniadis P, Lookman T, Bishop AR 2011. Elasticity-driven polaron patterns: stripes and glass phases. Phys. Rev. B 84:024304
    [Google Scholar]
  34. 34. 
    Reichhardt C, Olson Reichhardt CJ 2017. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80:026501
    [Google Scholar]
  35. 35. 
    Grønbech-Jenson N, Bishop AR, Falo F, Lomdahl PS 1992. Langevin-dynamics simulation of relaxation in large frustrated Josephson-junction arrays. Phys. Rev. B 45:10139–42
    [Google Scholar]
  36. 36. 
    Binder K, Young AP. 1986. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58:801–976
    [Google Scholar]
  37. 37. 
    Bruinsma R, Aeppli G. 1984. Interface motion and nonequilibrium properties of the random-field Ising model. Phys. Rev. Lett. 52:1547–50
    [Google Scholar]
  38. 38. 
    Fisher DS. 1985. Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31:1396–427
    [Google Scholar]
  39. 39. 
    Grønbech-Jensen N, Dominquez D, Bishop AR 1996. Simulations of current driven three-dimensional Josephson junction arrays. Physica B 222:396–400
    [Google Scholar]
  40. 40. 
    Grønbech-Jensen N, Falo F, Bishop AR, Lomdahl PS 1992. Flux-lattice noise and symmetry breaking in frustrated Josephson-junction arrays. Phys. Rev. B 46:11149–52
    [Google Scholar]
  41. 41. 
    Müller KA, Takashige M, Bednorz JG 1987. Flux trapping and superconductive glass state in La2CuO4−y:Ba. Phys. Rev. Lett. 58:1143–46
    [Google Scholar]
  42. 42. 
    Morgenstern I, Müller KA, Bednorz JG 1987. Numerical simulations of a high-Tc-superconductive glass model. Z. Phys. B Condens. Matter 69:33–47
    [Google Scholar]
  43. 43. 
    Hetzel R, Vanhimbeeck M, Schneider T 1989. Evidence for Kosterlitz-Thouless behavior in the disordered and frustrated two-dimensional XY-model. Z. Phys. B Condens. Matter 76:259–63
    [Google Scholar]
  44. 44. 
    Lifshitz M, Slyozov VV. 1961. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19:35–50
    [Google Scholar]
  45. 45. 
    Palmer RG. 1987. Relaxation in complex systems. Heidelberg Colloquium on Glassy Dynamics, Proceedings of a Colloquium on Spin Glasses, Optimization and Neural Networks Held at the University of Heidelberg, June 9–13, 1986 JL van Hemmen, I Morgenstern 275–86 Berlin: Springer-Verlag
    [Google Scholar]
  46. 46. 
    Dominguez D, Grønbech-Jenson N, Bishop AR 1995. Resistive hysteresis and nonlinear IV characteristics at the first order melting of the Abrikosov vortex lattice. Phys. Rev. Lett. 75:4670–73
    [Google Scholar]
  47. 47. 
    Dominguez D, Grønbech-Jenson N, Bishop AR 1996. Metastable filamentary vortex flow in thin film superconductors. Phys. Rev. Lett. 76:2985–88
    [Google Scholar]
  48. 48. 
    Olson Reichhardt CJ, Reichhardt C, Bishop AR 2004. Fibrillar templates and soft phases in systems with short-range dipolar and long-range interactions. Phys. Rev. Lett. 92:016801
    [Google Scholar]
  49. 49. 
    Phillips JC. 2002. Universal intermediate phases of dilute electronic and molecular glasses. Phys. Rev. Lett. 88:216401
    [Google Scholar]
  50. 50. 
    Chbeir R, Bauchy M, Micoulaut M, Boolchand P 2019. Evidence for a correlation of melt fragility index with topological phases of multicomponent glasses. Front. Mater. 6:173
    [Google Scholar]
  51. 51. 
    Stojković B, Yu ZG, Chernyshev AL, Bishop AR, Castro Neto AH, Grønbech-Jenson N 2000. Charge ordering and long-range interactions in layered transition metal oxides: a quasiclassical continuum study. Phys. Rev. B 62:4353–69
    [Google Scholar]
  52. 52. 
    Seul M, Andelman D. 1995. Domain shapes and patterns: the phenomenology of modulated phases. Science 267:476–83
    [Google Scholar]
  53. 53. 
    Porer M, Fechner M, Kubli M, Neugebauer MJ, Parchenko S et al. 2019. Ultrafast transient increase of oxygen octahedral rotations in a perovskite. Phys. Rev. Res. 1:012005
    [Google Scholar]
  54. 54. 
    Bishop AR, Bussman-Holder A, Kamba S, Maglione M 2010. Common characteristics of displacive and relaxor ferroelectrics. Phys. Rev. B 81:064106
    [Google Scholar]
  55. 55. 
    Burgy J, Mayr M, Martin-Mayor V, Moreo A, Dagotto E 2001. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87:277202
    [Google Scholar]
  56. 56. 
    Carlson EW, Emery VJ, Kivelson SA, Orgad D 2002. Concepts in high temperature superconductivity. arXiv:cond-mat/0206217 [cond-mat.supr-con]
  57. 57. 
    Frauenfelder H, Bishop AR, Garcia A, Perelson A, Schusher P et al. 1997. Landscape Paradigms in Physics and Biology Amsterdam: North-Holland
  58. 58. 
    Vanossi A, Rasmussen KO, Bishop AR, Malomed BA, Bortolani V 2000. Spontaneous pattern formation in driven nonlinear lattices. Phys. Rev. E 62:7353–57
    [Google Scholar]
  59. 59. 
    Ortiz-Ambriz A, Nisoli C, Reichhardt C, Reichhardt CJO, Tierno P 2019. Ice rule and emergent frustration in particle ice and beyond. Rev. Mod. Phys. 91:041003
    [Google Scholar]
  60. 60. 
    Lookman T, Alexander FJ, Bishop AR 2016. Perspective: codesign for materials science: an optimal learning approach. Appl. Phys. Lett. Mater. 4:053501
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081519-050045
Loading
/content/journals/10.1146/annurev-matsci-081519-050045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error