1932

Abstract

Transition metal dichalcogenide (TMD) monolayers and heterostructures have emerged as a compelling class of materials with transformative properties that may be harnessed for novel device technologies. These materials are commonly fabricated by exfoliation of flakes from bulk crystals, but wafer-scale epitaxy of single-crystal films is required to advance the field. This article reviews the fundamental aspects of epitaxial growth of van der Waals–bonded crystals specific to TMD films. The structural and electronic properties of TMD crystals are initially described along with sources and methods used for vapor phase deposition. Issues specific to TMD epitaxy are critically reviewed, including substrate properties and film-substrate orientation and bonding. The current status of TMD epitaxy on different substrate types is discussed along with characterization techniques for large-areaepitaxial films. Future directions are proposed, including developments in substrates, in situ and full-wafer characterization techniques, and heterostructure growth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-090519-113456
2020-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-090519-113456.html?itemId=/content/journals/10.1146/annurev-matsci-090519-113456&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mak KF, Lee C, Hone J, Shan J, Heinz TF 2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105:13136805
    [Google Scholar]
  2. 2. 
    Hanbicki AT, Currie M, Kioseoglou G, Friedman AL, Jonker BT 2015. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun 203:16–20
    [Google Scholar]
  3. 3. 
    Novoselov KS, Mishchenko A, Carvalho A, Neto AHC 2016. 2D materials and van der Waals heterostructures. Science 353:6298aac9439
    [Google Scholar]
  4. 4. 
    Schaibley JR, Rivera P, Yu H, Seyler KL, Yan J et al. 2016. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 7:13747
    [Google Scholar]
  5. 5. 
    Han GH, Duong DL, Keum DH, Yun SJ, Lee YH 2018. van der Waals metallic transition metal dichalcogenides. Chem. Rev. 118:136297–336
    [Google Scholar]
  6. 6. 
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS 2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:11699–712
    [Google Scholar]
  7. 7. 
    Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H 2013. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5:4263–75
    [Google Scholar]
  8. 8. 
    Splendiani A, Sun L, Zhang Y, Li T, Kim J et al. 2010. Emerging photoluminescence in monolayer MoS2. Nano Lett 10:41271–75
    [Google Scholar]
  9. 9. 
    Xiao D, Liu G-B, Feng W, Xu X, Yao W 2012. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108:19196802
    [Google Scholar]
  10. 10. 
    Peng D-Y, Zhao J. 2001. Representation of the vapour pressures of sulfur. J. Chem. Thermodyn. 33:91121–31
    [Google Scholar]
  11. 11. 
    Brewer L, Lamoreaux RH. 1980. The Mo-S system (molybdenum-sulfur). Bull. Alloy Phase Diagr. 1:93–95
    [Google Scholar]
  12. 12. 
    Stull DR. 1947. Vapor pressure of pure substances. Organic and inorganic compounds. Ind. Eng. Chem. 39:4517–40
    [Google Scholar]
  13. 13. 
    Zhang F, Momeni K, AlSaud MA, Azizi A, Hainey MF et al. 2017. Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS2. 2D Mater 4:225029
    [Google Scholar]
  14. 14. 
    Karlson U, Frankenberger WT, Spencer WF 1994. Physicochemical properties of dimethyl selenide and dimethyl diselenide. J. Chem. Eng. Data 39:3608–10
    [Google Scholar]
  15. 15. 
    Rumble JR, Lide DR, Bruno TJ 2019. Vapor pressure of metallic elements. CRC Handbook of Chemistry and Physics Boca Raton, FL: CRC Press, Taylor & Francis, 100th ed. http://hbcponline.com/faces/contents/ContentsSearch.xhtml
    [Google Scholar]
  16. 16. 
    TRINITRI-Technology 2018. Molybdenum CVD precursors. TRINITRI-Technology https://3n-technology.com/2018/04/05/molybdenum-cvd-precursors
  17. 17. 
    Ohta T, Cicoira F, Doppelt P, Beitone L, Hoffmann P 2001. Static vapor pressure measurement of low volatility precursors for molecular vapor deposition below ambient temperature. Chem. Vap. Depos. 7:133–37
    [Google Scholar]
  18. 18. 
    Cordfunke EHP, Konings RJM. 1992. The vapour pressure of WCl6. J. Chem. Thermodyn. 24:3329–31
    [Google Scholar]
  19. 19. 
    Garner ML, Chandra D, Lau KH 1995. Low-temperature vapor pressures of W-, Cr-, and Co-carbonyls. J. Phase Equilib. 16:124–29
    [Google Scholar]
  20. 20. 
    Sadoway DR, Flengas SN. 2011. Vapor pressures of solid and liquid NbCl5 and TaCl5. Can. J. Chem. 54:111692–99
    [Google Scholar]
  21. 21. 
    Malm JG, Selig H. 1961. The vapour-pressures and other properties of ReF6 and ReF7. J. Inorg. Nucl. Chem. 20:3189–97
    [Google Scholar]
  22. 22. 
    Brooks LS. 1952. The vapor pressures of tellurium and selenium. J. Am. Chem. Soc. 74:1227–29
    [Google Scholar]
  23. 23. 
    Yaws CL. 2015. The Yaws Handbook of Vapor Pressure: Antoine Coefficients London: Elsevier
  24. 24. 
    Diethyltelluride [product specification sheet CAS no. 627-54-3]. . Bromborough, UK: SAFC Hitech 2007.
  25. 25. 
    Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H et al. 2014. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26:226371–79
    [Google Scholar]
  26. 26. 
    Zhou J, Lin J, Huang X, Zhou Y, Chen Y et al. 2018. A library of atomically thin metal chalcogenides. Nature 556:7701355–59
    [Google Scholar]
  27. 27. 
    Boscher ND, Carmalt CJ, Parkin IP 2006. Atmospheric pressure chemical vapour deposition of NbSe2 thin films on glass. Eur. J. Inorg. Chem. 2006. 6:1255–59
    [Google Scholar]
  28. 28. 
    Carmalt CJ, Peters ES, Parkin IP, Manning TD, Hector AL 2004. Chemical vapor deposition of niobium disulfide thin films. Eur. J. Inorg. Chem. 2004:224470–76
    [Google Scholar]
  29. 29. 
    Boscher ND, Carmalt CJ, Palgrave RG, Gil-Tomas JJ, Parkin IP 2006. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vap. Depos. 12:11692–98
    [Google Scholar]
  30. 30. 
    Boscher ND, Carmalt CJ, Parkin IP 2006. Atmospheric pressure chemical vapor deposition of WSe2 thin films on glass—highly hydrophobic sticky surfaces. J. Mater. Chem. 16:1122–27
    [Google Scholar]
  31. 31. 
    Kang K, Xie S, Huang L, Han Y, Huang PY et al. 2015. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:7549656–60
    [Google Scholar]
  32. 32. 
    Kumar VK, Dhar S, Choudhury TH, Shivashankar SA, Raghavan S 2015. A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale 7:177802–10
    [Google Scholar]
  33. 33. 
    Marx M, Nordmann S, Knoch J, Franzen C, Stampfer C et al. 2017. Large-area MoS2 deposition via MOVPE. J. Cryst. Growth 464:100–4
    [Google Scholar]
  34. 34. 
    Park K, Kim Y, Song J-G, Jin Kim S, Wan Lee C et al. 2016. Uniform, large-area self-limiting layer synthesis of tungsten diselenide. 2D Mater 3:114004
    [Google Scholar]
  35. 35. 
    Zhang X, Al Balushi ZY, Zhang F, Choudhury TH, Eichfeld SM et al. 2016. Influence of carbon in metalorganic chemical vapor deposition of few-layer WSe2 thin films. J. Electron. Mater. 45:126273–79
    [Google Scholar]
  36. 36. 
    Eichfeld SM, Hossain L, Lin YC, Piasecki AF, Kupp B et al. 2015. Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. ACS Nano 9:22080–87
    [Google Scholar]
  37. 37. 
    Choudhury TH, Simchi H, Boichot R, Chubarov M, Mohney SE, Redwing JM 2018. Chalcogen precursor effect on cold-wall gas-source chemical vapor deposition growth of WS2. Cryst. Growth Des. 18:84357–64
    [Google Scholar]
  38. 38. 
    Viswanath S, Liu X, Rouvimov S, Mende PC, Azcatl A et al. 2015. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater 2:024007
    [Google Scholar]
  39. 39. 
    Koma A, Sunouchi K, Miyajima T 1984. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 2:1129–36
    [Google Scholar]
  40. 40. 
    Koma A, Saiki K, Sato Y 1990. Heteroepitaxy of a two-dimensional material on a three-dimensional material. Appl. Surf. Sci. 41–42:451–56
    [Google Scholar]
  41. 41. 
    Tsipas P, Xenogiannopoulou E, Kassavetis S, Tsoutsou D, Golias E et al. 2014. Observation of surface dirac cone in high-quality ultrathin epitaxial Bi2Se3 topological insulator on AlN(0001) dielectric. ACS Nano 8:76614–19
    [Google Scholar]
  42. 42. 
    Bansal N, Kim YS, Edrey E, Brahlek M, Horibe Y et al. 2011. Epitaxial growth of topological insulator Bi2Se3 film on Si(111) with atomically sharp interface. Thin Solid Films 520:1224–29
    [Google Scholar]
  43. 43. 
    Li HD, Wang ZY, Kan X, Guo X, He HT et al. 2010. The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J. Phys. 12:10103038
    [Google Scholar]
  44. 44. 
    Zhang G, Qin H, Teng J, Guo J, Guo Q et al. 2009. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 95:553114
    [Google Scholar]
  45. 45. 
    Taskin AA, Sasaki S, Segawa K, Ando Y 2012. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 24:415581–85
    [Google Scholar]
  46. 46. 
    Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M et al. 2015. Large-area epitaxial monolayer MoS2. ACS Nano 9:44611–20
    [Google Scholar]
  47. 47. 
    Zhang F, Wang Y, Erb C, Wang K, Moradifar P et al. 2019. Full orientation control of epitaxial MoS2 on hBN assisted by substrate defects. Phys. Rev. B 99:15155430
    [Google Scholar]
  48. 48. 
    Kumar H, Dong L, Shenoy VB 2016. Limits of coherency and strain transfer in flexible 2D van der Waals heterostructures: formation of strain solitons and interlayer debonding. Sci. Rep. 6:21516
    [Google Scholar]
  49. 49. 
    Ma L, Nath DN, Lee EW, Lee CH, Yu M et al. 2014. Epitaxial growth of large area single-crystalline few-layer MoS2 with high space charge mobility of 192 cm2 V−1 s−1. Appl. Phys. Lett. 105:772105
    [Google Scholar]
  50. 50. 
    Zhang X, Zhang F, Wang Y, Schulman DS, Zhang T et al. 2019. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13:33341–52
    [Google Scholar]
  51. 51. 
    Yu H, Yang Z, Du L, Zhang J, Shi J et al. 2017. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 13:71603005
    [Google Scholar]
  52. 52. 
    Zhou S, Wang S, Shi Z, Sawada H, Kirkland AI et al. 2018. Atomically sharp interlayer stacking shifts at anti-phase grain boundaries in overlapping MoS2 secondary layers. Nanoscale 10:3516692–702
    [Google Scholar]
  53. 53. 
    Du L, Yu H, Xie L, Wu S, Wang S et al. 2016. The effect of twin grain boundary tuned by temperature on the electrical transport properties of monolayer MoS2. Crystals 6:9115
    [Google Scholar]
  54. 54. 
    Ly TH, Perello DJ, Zhao J, Deng Q, Kim H et al. 2016. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nat. Commun. 7:10426
    [Google Scholar]
  55. 55. 
    Zou X, Liu Y, Yakobson BI 2013. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett 13:1253–58
    [Google Scholar]
  56. 56. 
    Kunert B, Németh I, Reinhard S, Volz K, Stolz W 2008. Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate. Thin Solid Films 517:1140–43
    [Google Scholar]
  57. 57. 
    Chen L, Liu B, Ge M, Ma Y, Abbas AN, Zhou C 2015. Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano 9:88368–75
    [Google Scholar]
  58. 58. 
    Hwang Y, Shin N. 2019. Hydrogen-assisted step-edge nucleation of MoSe2 monolayers on sapphire substrates. Nanoscale 11:167701–9
    [Google Scholar]
  59. 59. 
    Yu H, Liao M, Zhao W, Liu G, Zhou XJ et al. 2017. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11:1212001–7
    [Google Scholar]
  60. 60. 
    Zhang X, Zhang F, Wang Y, Schulman DS, Zhang T et al. 2019. Defect-controlled nucleation and orientation of WSe2 on hBN: a route to single-crystal epitaxial monolayers. ACS Nano 13:33341–52
    [Google Scholar]
  61. 61. 
    Mos M, Suenaga K, Ji HG, Lin Y, Vincent T et al. 2018. Surface-mediated aligned growth of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 12:10032–44
    [Google Scholar]
  62. 62. 
    Zhang X, Choudhury TH, Chubarov M, Xiang Y, Jariwala B et al. 2018. Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett 18:21049–56
    [Google Scholar]
  63. 63. 
    Nakano M, Wang Y, Kashiwabara Y, Matsuoka H, Iwasa Y 2017. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett 17:95595–99
    [Google Scholar]
  64. 64. 
    Lin Y-C, Jariwala B, Bersch BM, Xu K, Nie Y et al. 2018. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12:2965–75
    [Google Scholar]
  65. 65. 
    Ruzmetov D, Zhang K, Stan G, Kalanyan B, Bhimanapati GR et al. 2016. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10:33580–88
    [Google Scholar]
  66. 66. 
    Wan Y, Xiao J, Li J, Fang X, Zhang K et al. 2018. Epitaxial single-layer MoS2 on GaN with enhanced valley helicity. Adv. Mater. 30:51703888
    [Google Scholar]
  67. 67. 
    Chen MW, Ovchinnikov D, Lazar S, Pizzochero M, Whitwick MB et al. 2017. Highly oriented atomically thin ambipolar MoSe2 grown by molecular beam epitaxy. ACS Nano 11:66355–61
    [Google Scholar]
  68. 68. 
    Lan F, Lai Z, Xu Y, Cheng H, Wang Z et al. 2016. Synthesis of vertically standing MoS2 triangles on SiC. Sci. Rep. 6:31980
    [Google Scholar]
  69. 69. 
    Vilá RA, Momeni K, Wang Q, Bersch BM, Lu N et al. 2016. Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Mater 3:4041003
    [Google Scholar]
  70. 70. 
    Chen P, Xu W, Gao Y, Warner JH, Castell MR 2018. Epitaxial growth of monolayer MoS2 on SrTiO3 single crystal substrates for applications in nanoelectronics. ACS Appl. Nano Mater. 1:126976–88
    [Google Scholar]
  71. 71. 
    Cheng F, Ding Z, Xu H, Tan SJR, Abdelwahab I et al. 2018. Epitaxial growth of single-layer niobium selenides with controlled stoichiometric phases. Adv. Mater. Interfaces 5:151800429
    [Google Scholar]
  72. 72. 
    Shi J, Huan Y, Hong M, Xu R, Yang P et al. 2019. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 13:78442–51
    [Google Scholar]
  73. 73. 
    Gao Y, Liu Z, Sun DM, Huang L, Ma LP et al. 2015. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6:8569
    [Google Scholar]
  74. 74. 
    Bana H, Travaglia E, Bignardi L, Lacovig P, Sanders CE et al. 2018. Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater 5:3035012
    [Google Scholar]
  75. 75. 
    Shi J, Zhang X, Ma D, Zhu J, Zhang Y et al. 2015. Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano 9:44017–25
    [Google Scholar]
  76. 76. 
    Ueno K, Saiki K, Shimada T, Koma A 1990. Epitaxial growth of transition metal dichalcogenides on cleaved faces of mica. J. Vac. Sci. Technol. A 8:168–72
    [Google Scholar]
  77. 77. 
    Ji Q, Zhang Y, Gao T, Zhang Y, Ma D et al. 2013. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13:83870–77
    [Google Scholar]
  78. 78. 
    Cui F, Wang C, Li X, Wang G, Liu K et al. 2016. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 28:255019–24
    [Google Scholar]
  79. 79. 
    Qin J-K, Shao W-Z, Li Y, Xu C-Y, Ren D-D et al. 2017. van der Waals epitaxy of large-area continuous ReS2 films on mica substrate. RSC Adv 7:3924188–94
    [Google Scholar]
  80. 80. 
    Zhang Z, Niu J, Yang P, Gong Y, Ji Q et al. 2017. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 29:371702359
    [Google Scholar]
  81. 81. 
    Guggenheim S, Chang YH, Koster van Groos AF 1987. Muscovite dehydroxylation: high temperature studies. Am. Mineral. 72:537–50
    [Google Scholar]
  82. 82. 
    Lu C-I, Butler CJ, Huang J-K, Hsing C-R, Yang H-H et al. 2015. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett. 106:18181904
    [Google Scholar]
  83. 83. 
    Vishwanath S, Liu X, Rouvimov S, Mende PC, Azcatl A et al. 2015. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater 2:224007
    [Google Scholar]
  84. 84. 
    Robinson JA, Puls CP, Staley NE, Stitt JP, Fanton MA et al. 2009. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett 9:3964–68
    [Google Scholar]
  85. 85. 
    Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U 2009. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103:24246804
    [Google Scholar]
  86. 86. 
    Robinson JA, Hollander M, LaBella M, Trumbull KA, Cavalero R, Snyder DW 2011. Epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett 11:93875–80
    [Google Scholar]
  87. 87. 
    Lin Y-C, Lu N, Perea-Lopez N, Li J, Lin Z et al. 2014. Direct synthesis of van der Waals solids. ACS Nano 8:43715–23
    [Google Scholar]
  88. 88. 
    Bianco GV, Losurdo M, Giangregorio MM, Sacchetti A, Prete P et al. 2015. Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Adv 5:11998700–8
    [Google Scholar]
  89. 89. 
    Azizi A, Eichfeld S, Geschwind G, Zhang K, Jiang B et al. 2015. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. ACS Nano 9:54882–90
    [Google Scholar]
  90. 90. 
    Shi Y, Zhou W, Lu A-Y, Fang W, Lee Y-H et al. 2012. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12:62784–91
    [Google Scholar]
  91. 91. 
    Wierzbowski J, Klein J, Sigger F, Straubinger C, Kremser M et al. 2017. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci. Rep. 7:112383
    [Google Scholar]
  92. 92. 
    Ma N, Jena D. 2014. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4:111043
    [Google Scholar]
  93. 93. 
    Hoshi Y, Kuroda T, Okada M, Moriya R, Masubuchi S et al. 2017. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 95:24241403
    [Google Scholar]
  94. 94. 
    Wang S, Wang X, Warner JH 2015. All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano 9:55246–54
    [Google Scholar]
  95. 95. 
    Fu D, Zhao X, Zhang Y-Y, Li L, Xu H et al. 2017. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139:279392–400
    [Google Scholar]
  96. 96. 
    Rossi A, Büch H, Di Rienzo C, Miseikis V, Convertino D et al. 2016. Scalable synthesis of WS2 on graphene and h-BN: an all-2D platform for light-matter transduction. 2D Mater 3:331013
    [Google Scholar]
  97. 97. 
    Lee JS, Choi SH, Yun SJ, Kim YI, Boandoh S et al. 2018. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362:6416817–21
    [Google Scholar]
  98. 98. 
    Yue R, Nie Y, Walsh LA, Addou R, Liang C et al. 2017. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides. 2D Mater 4:4045019
    [Google Scholar]
  99. 99. 
    Edelberg D, Rhodes D, Kerelsky A, Kim B, Wang J et al. 2019. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett 19:74371–79
    [Google Scholar]
  100. 100. 
    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y et al. 2013. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:62615–22
    [Google Scholar]
  101. 101. 
    de la Barrera SC, Lin Y-C, Eichfeld SM, Robinson JA, Gao Q et al. 2016. Thickness characterization of atomically thin WSe2 on epitaxial graphene by low-energy electron reflectivity oscillations. J. Vac. Sci. Technol. B 34:404J106
    [Google Scholar]
  102. 102. 
    Eichfeld SM, Eichfeld CM, Lin Y-C, Hossain L, Robinson JA 2014. Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry. APL Mater 2:992508
    [Google Scholar]
  103. 103. 
    Chubarov M, Choudhury TH, Zhang X, Redwing JM 2018. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films. Nanotechnology 29:555706
    [Google Scholar]
  104. 104. 
    Schaibley JR, Yu H, Clark G, Rivera P, Ross JS et al. 2016. Valleytronics in 2D materials. Nat. Rev. Mater. 1:16055
    [Google Scholar]
  105. 105. 
    Chen W, Zhao J, Zhang J, Gu L, Yang Z et al. 2015. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137:5015632–35
    [Google Scholar]
  106. 106. 
    Chen J, Zhao X, Tan SJR, Xu H, Wu B et al. 2017. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139:31073–76
    [Google Scholar]
  107. 107. 
    Gong Y, Ye G, Lei S, Shi G, He Y et al. 2016. Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 26:122009–15
    [Google Scholar]
  108. 108. 
    Batzill M. 2018. Mirror twin grain boundaries in molybdenum dichalcogenides. J. Phys. Condens. Matter 30:49493001
    [Google Scholar]
  109. 109. 
    Bana H, Travaglia E, Bignardi L, Lacovig P, Sanders CE et al. 2018. Epitaxial growth of single-orientation high-quality MoS2 monolayers. 2D Mater 5:335012
    [Google Scholar]
  110. 110. 
    Bignardi L, Lizzit D, Bana H, Travaglia E, Lacovig P et al. 2019. Growth and structure of singly oriented single-layer tungsten disulfide on Au(111). Phys. Rev. Mater. 3:114003
    [Google Scholar]
  111. 111. 
    Orlando F, Lacovig P, Omiciuolo L, Apostol NG, Larciprete R et al. 2014. Epitaxial growth of a single-domain hexagonal boron nitride monolayer. ACS Nano 8:1212063–70
    [Google Scholar]
  112. 112. 
    Mo S-K, Hwang C, Zhang Y, Fanciulli M, Muff S et al. 2016. Spin-resolved photoemission study of epitaxially grown MoSe2 and WSe2 thin films. J. Phys. Condens. Matter 28:45454001
    [Google Scholar]
  113. 113. 
    Murata H, Koma A. 1999. Modulated STM images of ultrathin MoSe2 films grown on MoS2 (0001) studied by STM/STS. Phys. Rev. B 59:1510327–34
    [Google Scholar]
  114. 114. 
    Yu Y, Wang G, Qin S, Wu N, Wang Z et al. 2017. Molecular beam epitaxy growth of atomically ultrathin MoTe2 lateral heterophase homojunctions on graphene substrates. Carbon 115:526–31
    [Google Scholar]
  115. 115. 
    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y et al. 2013. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:62615–22
    [Google Scholar]
  116. 116. 
    Hall J, Pielić B, Murray C, Jolie W, Wekking T et al. 2018. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study. 2D Mater 5:225005
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-090519-113456
Loading
/content/journals/10.1146/annurev-matsci-090519-113456
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error