1932

Abstract

The emerging field of self-assembled vertically aligned nanocomposite (VAN) thin films effectively enables strain, interface, and microstructure engineering as well as (multi)functional improvements in electric, magnetic, optical, and energy-related properties. Well-ordered or patterned microstructures not only empower VAN thin films with many new functionalities but also enable VAN thin films to be used in nanoscale devices. Comparative ordered devices formed via templating methods suffer from critical drawbacks of processing complexity and potential contamination. Therefore, VAN thin films with spontaneous ordering stand out and display many appealing features for next-generation technological devices, such as electronics, optoelectronics, ultrahigh-density memory systems, photonics, and 3D microbatteries. The spontaneous ordering described in this review contains ordered/patterned structures in both in-plane and out-of-plane directions. In particular, approaches to obtaining spontaneously ordered/patterned structures in-plane are systematically reviewedfrom both thermodynamic and kinetic perspectives. Out-of-plane ordering is also discussed in detail. In addition to reviewing the progress of VAN films with spontaneous ordering, this article also highlights some recent developments in spontaneous ordering approaches and proposes future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-091719-112806
2020-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-091719-112806.html?itemId=/content/journals/10.1146/annurev-matsci-091719-112806&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hwang J, Feng Z, Charles N, Wang XR, Lee D et al. 2019. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today 31:100–18
    [Google Scholar]
  2. 2. 
    Bhalla AS, Guo RY, Roy R 2000. The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4:3–26
    [Google Scholar]
  3. 3. 
    Habermeier HU. 2007. Thin films of perovskite-type complex oxides. Mater. Today 10:34–43
    [Google Scholar]
  4. 4. 
    Martin LW, Chu YH, Ramesh R 2010. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mat. Sci. Eng. R Rep. 68:89–133
    [Google Scholar]
  5. 5. 
    Ramesh R, Schlom DG. 2019. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4:257–68
    [Google Scholar]
  6. 6. 
    Vrejoiu I, Alexe M, Hesse D, Gosele U 2008. Functional perovskites—from epitaxial films to nanostructured arrays. Adv. Funct. Mater. 18:3892–906
    [Google Scholar]
  7. 7. 
    Jiang J, Yang Q, Zhang Y, Li XY, Shao PW et al. 2019. Self-assembled ferroelectric nanoarray. ACS Appl. Mater. Interfaces 11:2205–10
    [Google Scholar]
  8. 8. 
    Zhang WR, Chen AP, Bi ZK, Jia QX, MacManus-Driscoll JL, Wang HY 2014. Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: from lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18:6–18
    [Google Scholar]
  9. 9. 
    MacManus-Driscoll JL, Suwardi A, Wang H 2015. Composite epitaxial thin films: a new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bull 40:933–42
    [Google Scholar]
  10. 10. 
    Huang JJ, MacManus-Driscoll JL, Wang HY 2017. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. J. Mater. Res. 32:4054–66
    [Google Scholar]
  11. 11. 
    Chen AP, Bi ZX, Jia QX, MacManus-Driscoll JL, Wang HY 2013. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater 61:2783–92
    [Google Scholar]
  12. 12. 
    MacManus-Driscoll JL. 2010. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20:2035–45
    [Google Scholar]
  13. 13. 
    MacManus-Driscoll JL, Zerrer P, Wang HY, Yang H, Yoon J et al. 2008. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7:314–20
    [Google Scholar]
  14. 14. 
    Zhang WR, Ramesh R, MacManus-Driscoll JL, Wang HY 2015. Multifunctional, self-assembled oxide nanocomposite thin films and devices. MRS Bull 40:736–45
    [Google Scholar]
  15. 15. 
    Chen A, Su Q, Han H, Enriquez E, Jia Q Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv. Mater. 31:1803241
    [Google Scholar]
  16. 16. 
    MacManus-Driscoll J, Suwardi A, Kursumovic A, Bi ZX, Tsai CF et al. 2015. New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach. APL Mater 3:062507
    [Google Scholar]
  17. 17. 
    Yang H, Wang HY, Yoon J, Wang YQ, Jain M et al. 2009. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21:3794–98
    [Google Scholar]
  18. 18. 
    Zhao R, Li WW, Lee JH, Choi EM, Liang Y et al. 2014. Precise tuning of (YBa2Cu3O7−δ)1−x:(BaZrO3)x thin film nanocomposite structures. Adv. Funct. Mater. 24:5240–45
    [Google Scholar]
  19. 19. 
    Harrington SA, Zhai JY, Denev S, Gopalan V, Wang HY et al. 2011. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6:491–95
    [Google Scholar]
  20. 20. 
    Zhan Q, Yu R, Crane SP, Zheng H, Kisielowski C, Ramesh R 2006. Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89:172902
    [Google Scholar]
  21. 21. 
    Sun X, Li Q, Huang J, Jian J, Lu P et al. 2019. Strain and property tuning of the 3D framed epitaxial nanocomposite thin films via interlayer thickness variation. J. Appl. Phys. 125:082530
    [Google Scholar]
  22. 22. 
    Sun X, Li Q, Huang J, Fan M, Rutherford BX et al. 2019. Strain-driven nanodumbbell structure and enhanced physical properties in hybrid vertically aligned nanocomposite thin films. Appl. Mater. Today 16:204–12
    [Google Scholar]
  23. 23. 
    Chen AP, Bi ZX, Tsai CF, Lee J, Su Q et al. 2011. Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21:2423–29
    [Google Scholar]
  24. 24. 
    Gao XY, Li LG, Jian J, Huang JJ, Sun X et al. 2019. Tunable low-field magnetoresistance properties in (La0.7Ca0.3MnO3)1−x:(CeO2)x vertically aligned nanocomposite thin films. Appl. Phys. Lett. 115:053103
    [Google Scholar]
  25. 25. 
    Choi EM, Di Bernardo A, Zhu BN, Lu P, Alpern H et al. 2019. 3D strain-induced superconductivity in La2CuO4+δ using a simple vertically aligned nanocomposite approach. Sci. Adv. 5:eaav5532
    [Google Scholar]
  26. 26. 
    Fan M, Wang H, Misra S, Zhang B, Qi ZM et al. 2018. Microstructure, magnetic, and magnetoresistance properties of La0.7Sr0.3MnO3:CuO nanocomposite thin films. ACS Appl. Mater. Interfaces 10:5779–84
    [Google Scholar]
  27. 27. 
    Sun X, Huang JJ, Jian J, Fan M, Wang H et al. 2018. Three-dimensional strain engineering in epitaxial vertically aligned nanocomposite thin films with tunable magnetotransport properties. Mater. Horiz. 5:536–44
    [Google Scholar]
  28. 28. 
    Huang JJ, Gellatly A, Kauffmann A, Sun X, Wang HY 2018. Exchange bias effect along vertical interfaces in La0.7Sr0.3MnO3:NiO vertically aligned nanocomposite thin films integrated on silicon substrates. Cryst. Growth Des. 18:4388–94
    [Google Scholar]
  29. 29. 
    Huang JJ, Jin TN, Misra S, Wang H, Qi ZM et al. 2018. Tailorable optical response of Au–LiNbO3 hybrid metamaterial thin films for optical waveguide applications. Adv. Opt. Mater. 6:1800510
    [Google Scholar]
  30. 30. 
    Huang JJ, Li LG, Lu P, Qi ZM, Sun X et al. 2017. Self-assembled Co–BaZrO3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars. Nanoscale 9:7970–76
    [Google Scholar]
  31. 31. 
    Wang H, Li LG, Huang JJ, Gao XY, Sun X et al. 2019. Two-phase room-temperature multiferroic nanocomposite with BiMnO3-tilted nanopillars in the Bi2W1-xMnXO6 matrix. ACS Appl. Mater. Interfaces 11:26261–67
    [Google Scholar]
  32. 32. 
    Wang H, Li L, Huang J, Gao X, Sun X, Wang H 2019. Multiferroic vertically aligned nanocomposite with CoFe2O4 nanocones embedded in layered Bi2WO6 matrix. Mater. Res. Lett. 7:418–25
    [Google Scholar]
  33. 33. 
    Bhushan B, Jung YC. 2011. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56:1–108
    [Google Scholar]
  34. 34. 
    Liu KS, Jiang L. 2012. Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res. 42:231–63
    [Google Scholar]
  35. 35. 
    Wang ST, Liu KS, Yao X, Jiang L 2015. Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem. Rev. 115:8230–93
    [Google Scholar]
  36. 36. 
    Chen K, Li L. 2019. Ordered structures with functional units as a paradigm of material design. Adv. Mater. 31:1901115
    [Google Scholar]
  37. 37. 
    Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC 2015. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6:6368
    [Google Scholar]
  38. 38. 
    Bae WG, Kim HN, Kim D, Park SH, Jeong HE, Suh KY 2014. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater. 26:675–700
    [Google Scholar]
  39. 39. 
    Sun MH, Huang SZ, Chen LH, Li Y, Yang XY et al. 2016. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45:3479–563
    [Google Scholar]
  40. 40. 
    Gogolides E, Ellinas K, Tserepi A 2015. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 132:135–55
    [Google Scholar]
  41. 41. 
    Dumanli AG, Savin T. 2016. Recent advances in the biomimicry of structural colours. Chem. Soc. Rev. 45:6698–724
    [Google Scholar]
  42. 42. 
    Phillips KR, England GT, Sunny S, Shirman E, Shirman T et al. 2016. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 45:281–322
    [Google Scholar]
  43. 43. 
    Chen HY, Brivio S, Chang CC, Frascaroli J, Hou TH et al. 2017. Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication. J. Electroceramics 39:21–38
    [Google Scholar]
  44. 44. 
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA 2011. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111:3736–827
    [Google Scholar]
  45. 45. 
    Cummins C, Ghoshal T, Holmes JD, Morris MA 2016. Strategies for inorganic incorporation using neat block copolymer thin films for etch mask function and nanotechnological application. Adv. Mater. 28:5586–618
    [Google Scholar]
  46. 46. 
    Jeong SJ, Kim JY, Kim BH, Moon HS, Kim SO 2013. Directed self-assembly of block copolymers for next generation nanolithography. Mater. Today 16:468–76
    [Google Scholar]
  47. 47. 
    Lotito V, Zambelli T. 2017. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists. Adv. Colloid Interface Sci. 246:217–74
    [Google Scholar]
  48. 48. 
    Zadin V, Brandell D, Kasemagi H, Aabloo A, Thomas JO 2011. Finite element modelling of ion transport in the electrolyte of a 3D-microbattery. Solid State Ionics 192:279–83
    [Google Scholar]
  49. 49. 
    van Dommelen R, Fanzio P, Sasso L 2018. Surface self-assembly of colloidal crystals for micro- and nano-patterning. Adv. Colloid Interface Sci. 251:97–114
    [Google Scholar]
  50. 50. 
    Hwang HY, Palstra TTM, Cheong SW, Batlogg B 1995. Pressure effects on the magnetoresistance in doped manganese perovskites. Phys. Rev. B 52:15046
    [Google Scholar]
  51. 51. 
    Choi HK, Aimon NM, Kim DH, Sun XY, Gwyther J et al. 2014. Hierarchical templating of a BiFeO3–CoFe2O4 multiferroic nanocomposite by a triblock terpolymer film. ACS Nano 8:9248–54
    [Google Scholar]
  52. 52. 
    Kim DH, Ning S, Ross CA 2019. Self-assembled multiferroic perovskite–spinel nanocomposite thin films: epitaxial growth, templating and integration on silicon. J. Mater. Chem. C 7:9128–48
    [Google Scholar]
  53. 53. 
    Comes R, Liu HX, Kholchov M, Kasica R, Lu JW, Wolf SA 2012. Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett 12:2367–73
    [Google Scholar]
  54. 54. 
    Ni JF, Li L. 2018. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 28:1704880
    [Google Scholar]
  55. 55. 
    Arthur TS, Bates DJ, Cirigliano N, Johnson DC, Malati P et al. 2011. Three-dimensional electrodes and battery architectures. MRS Bull 36:523–31
    [Google Scholar]
  56. 56. 
    Reddy ALM, Gowda SR, Shaijumon MM, Ajayan PM 2012. Hybrid nanostructures for energy storage applications. Adv. Mater. 24:5045–64
    [Google Scholar]
  57. 57. 
    Zhang F, Qi LM. 2016. Recent progress in self-supported metal oxide nanoarray electrodes for advanced lithium-ion batteries. Adv. Sci. 3:1600049
    [Google Scholar]
  58. 58. 
    Chen Y, Pepin A. 2001. Nanofabrication: conventional and nonconventional methods. Electrophoresis 22:187–207
    [Google Scholar]
  59. 59. 
    Barth JV, Costantini G, Kern K 2005. Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–79
    [Google Scholar]
  60. 60. 
    Skolnick MS, Mowbray DJ. 2004. Self-assembled semiconductor quantum dots: fundamental physics and device applications. Annu. Rev. Mater. Res. 34:181–218
    [Google Scholar]
  61. 61. 
    Scott JF. 2007. Applications of modern ferroelectrics. Science 315:954–59
    [Google Scholar]
  62. 62. 
    Pauzauskie PJ, Yang P. 2006. Nanowire photonics. Mater. Today 9:36–45
    [Google Scholar]
  63. 63. 
    Lee S, MacManus-Driscoll JL. 2017. Research update: fast and tunable nanoionics in vertically aligned nanostructured films. APL Mater 5:042304
    [Google Scholar]
  64. 64. 
    Zheng H, Zhan Q, Zavaliche F, Sherburne M, Straub F et al. 2006. Controlling self-assembled perovskite-spinel nanostructures. Nano Lett 6:1401–7
    [Google Scholar]
  65. 65. 
    Kim TC, Lee SH, Jung HK, Kim YE, Choi JW et al. 2019. Effect of sputtering conditions on the structure and magnetic properties of self-assembled BiFeO3-CoFe2O4 nanocomposite thin films. J. Magn. Magn. Mater. 471:116–23
    [Google Scholar]
  66. 66. 
    Obradors X, Puig T, Gibert M, Queralto A, Zabaleta J, Mestres N 2014. Chemical solution route to self-assembled epitaxial oxide nanostructures. Chem. Soc. Rev. 43:2200–25
    [Google Scholar]
  67. 67. 
    Schlom DG, Chen LQ, Pan XQ, Schmehl A, Zurbuchen MA 2008. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91:2429–54
    [Google Scholar]
  68. 68. 
    Chambers SA. 2010. Epitaxial growth and properties of doped transition metal and complex oxide films. Adv. Mater. 22:219–48
    [Google Scholar]
  69. 69. 
    Martin LW, Schlom DG. 2012. Advanced synthesis techniques and routes to new single-phase multiferroics. Curr. Opin. Solid State Mater. Sci. 16:199–215
    [Google Scholar]
  70. 70. 
    Blamire MG, MacManus-Driscoll JL, Mathur ND, Barber ZH 2009. The materials science of functional oxide thin films. Adv. Mater. 21:3827–39
    [Google Scholar]
  71. 71. 
    Zou GF, Zhao J, Luo HM, McCleskey TM, Burrell AK, Jia QX 2013. Polymer-assisted-deposition: a chemical solution route for a wide range of materials. Chem. Soc. Rev. 42:439–49
    [Google Scholar]
  72. 72. 
    Brune H, Giovannini M, Bromann K, Kern K 1998. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–53
    [Google Scholar]
  73. 73. 
    Zhang WR, Li LG, Lu P, Fan M, Su Q et al. 2015. Perpendicular exchange-biased magnetotransport at the vertical heterointerfaces in La0.7Sr0.3MnO3:NiO nanocomposites. ACS Appl. Mater. Interfaces 7:21646–51
    [Google Scholar]
  74. 74. 
    Wang ZG, Li YX, Viswan R, Hu BL, Harris VG et al. 2013. Engineered magnetic shape anisotropy in BiFeO3–CoFe2O4 self-assembled thin films. ACS Nano 7:3447–56
    [Google Scholar]
  75. 75. 
    Zheng HM, Straub F, Zhan Q, Yang PL, Hsieh WK et al. 2006. Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18:2747–52
    [Google Scholar]
  76. 76. 
    Dix N, Muralidharan R, Warot-Fonrose B, Varela M, Sanchez F, Fontcuberta J 2009. Critical limitations in the fabrication of biferroic BiFeO3–CoFe2O4 columnar nanocomposites due to bismuth loss. Chem. Mater. 21:1375–80
    [Google Scholar]
  77. 77. 
    Fan M, Zhang B, Wang H, Jian J, Sun X et al. 2017. Self-organized epitaxial vertically aligned nanocomposites with long-range ordering enabled by substrate nanotemplating. Adv. Mater. 29:1606861
    [Google Scholar]
  78. 78. 
    Biswas A, Rossen PB, Yang CH, Siemons W, Jung MH et al. 2011. Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces. Appl. Phys. Lett. 98:051904
    [Google Scholar]
  79. 79. 
    Woo S, Jeong H, Lee SA, Seo H, Lacotte M et al. 2015. Surface properties of atomically flat poly-crystalline SrTiO3. Sci. Rep. 5:8822
    [Google Scholar]
  80. 80. 
    Zhang KHL, Walsh A, Catlow CRA, Lazarov VK, Egdell RG 2010. Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia. Nano Lett 10:3740–46
    [Google Scholar]
  81. 81. 
    Yan L, Bai FM, Li JF, Viehland D 2009. Nanobelt structure in perovskite-spinel composite thin films. J. Am. Ceram. Soc. 92:17–20
    [Google Scholar]
  82. 82. 
    Yan L, Yang YD, Wang ZG, Xing ZP, Li JF, Viehland D 2009. Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44:5080–94
    [Google Scholar]
  83. 83. 
    Kim DH, Sun XY, Aimon NM, Kim JJ, Campion MJ et al. 2015. A three component self-assembled epitaxial nanocomposite thin film. Adv. Funct. Mater. 25:3091–100
    [Google Scholar]
  84. 84. 
    Zhong GK, An F, Bitla Y, Wang JB, Zhong XL et al. 2018. Self-assembling epitaxial growth of a single crystalline CoFe2O4 nanopillar array via dual-target pulsed laser deposition. J. Mater. Chem. C 6:4854–60
    [Google Scholar]
  85. 85. 
    Takahashi R, Misumi H, Yamamoto T, Lippmaa M 2014. Spontaneous growth of strain-free magnetite nanocrystals via temperature-driven dewetting. Cryst. Growth Des. 14:1264–71
    [Google Scholar]
  86. 86. 
    Slutsker J, Levin I, Li JH, Artemev A, Roytburd AL 2006. Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73:184127
    [Google Scholar]
  87. 87. 
    Levin I, Li JH, Slutsker J, Roytburd AL 2006. Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18:2044–47
    [Google Scholar]
  88. 88. 
    Dawber M, Szafraniak I, Alexe M, Scott JF 2003. Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions. J. Phys. Condens. Matter 15:L667–71
    [Google Scholar]
  89. 89. 
    Chambliss DD, Wilson RJ, Chiang S 1991. Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations. Phys. Rev. Lett. 66:1721–24
    [Google Scholar]
  90. 90. 
    Nilius N, Rienks EDL, Rust HP, Freund HJ 2005. Self-organization of gold atoms on a polar FeO(111) surface. Phys. Rev. Lett. 95:066101
    [Google Scholar]
  91. 91. 
    Shchukin VA, Bimberg D. 1999. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71:1125–71
    [Google Scholar]
  92. 92. 
    Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM 2007. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37:589–626
    [Google Scholar]
  93. 93. 
    Liao SC, Tsai PY, Liang CW, Liu HJ, Yang JC et al. 2011. Misorientation control and functionality design of nanopillars in self-assembled perovskite-spinel heteroepitaxial nanostructures. ACS Nano 5:4118–22
    [Google Scholar]
  94. 94. 
    Dix N, Muralidharan R, Rebled JM, Estrade S, Peiro F et al. 2010. Selectable spontaneous polarization direction and magnetic anisotropy in BiFeO3–CoFe2O4 epitaxial nanostructures. ACS Nano 4:4955–61
    [Google Scholar]
  95. 95. 
    Chen AP, Weigand M, Bi ZX, Zhang WR, Lu XJ et al. 2014. Evolution of microstructure, strain and physical properties in oxide nanocomposite films. Sci. Rep. 4:5426
    [Google Scholar]
  96. 96. 
    Zhu YM, Liu PP, Yu R, Hsieh YH, Ke D et al. 2014. Orientation-tuning in self-assembled heterostructures induced by a buffer layer. Nanoscale 6:5126–31
    [Google Scholar]
  97. 97. 
    Crane SP, Bihler C, Brandt MS, Goennenwein STB, Gajek M, Ramesh R 2009. Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321:L5–L9
    [Google Scholar]
  98. 98. 
    Bi Z, Lee JH, Yang H, Jia Q, MacManus-Driscoll JL, Wang H 2009. Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)x:(Sm2O3)1−x thin films. J. Appl. Phys. 106:094309
    [Google Scholar]
  99. 99. 
    Su Q, Yoon D, Chen AP, Khatkhatay F, Manthiram A, Wang HY 2013. Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J. Power Sources 242:455–63
    [Google Scholar]
  100. 100. 
    Kim DH, Sun X, Kim TC, Eun YJ, Lee T et al. 2016. Magnetic phase formation in self-assembled epitaxial BiFeO3–MgO and BiFeO3–MgAl2O4 nanocomposite films grown by combinatorial pulsed laser deposition. ACS Appl. Mater. Interfaces 8:2673–79
    [Google Scholar]
  101. 101. 
    Hsieh YH, Liou JM, Huang BC, Liang CW, He Q et al. 2012. Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface. Adv. Mater. 24:4564–68
    [Google Scholar]
  102. 102. 
    Fouchet A, Wang HY, Yang H, Yoon J, Jia QX, MacManus-Driscoll JL 2009. Spontaneous ordering, strain control, and multifunctionality in vertical nanocomposite heteroepitaxial films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56:1534–38
    [Google Scholar]
  103. 103. 
    Liu HJ, Liu YY, Tsai CY, Liao SC, Chen YJ et al. 2015. Tuning the functionalities of a mesocrystal via structural coupling. Sci. Rep. 5:12073
    [Google Scholar]
  104. 104. 
    Huang JJ, Wang XJ, Hogan NL, Wu SX, Lu P et al. 2018. Nanoscale artificial plasmonic lattice in self-assembled vertically aligned nitride-metal hybrid metamaterials. Adv. Sci. 5:1800416
    [Google Scholar]
  105. 105. 
    Aggarwal S, Monga AP, Perusse SR, Ramesh R, Ballarotto V et al. 2000. Spontaneous ordering of oxide nanostructures. Science 287:2235–37
    [Google Scholar]
  106. 106. 
    Shchukin VA, Ledentsov NN, Kopev PS, Bimberg D 1995. Spontaneous ordering of arrays of coherent strained islands. Phys. Rev. Lett. 75:2968–71
    [Google Scholar]
  107. 107. 
    Tersoff J, LeGoues FK. 1994. Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72:3570–73
    [Google Scholar]
  108. 108. 
    Su Q, Zhang W, Lu P, Fang S, Khatkhatay F et al. 2016. Self-assembled magnetic metallic nanopillars in ceramic matrix with anisotropic magnetic and electrical transport properties. ACS Appl. Mater. Interfaces 8:20283–91
    [Google Scholar]
  109. 109. 
    Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L et al. 2004. Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 85:2035–37
    [Google Scholar]
  110. 110. 
    Yan L, Bai FM, Li JF, Viehland D 2010. Nanostructures in perovskite-ferrite two-phase composite epitaxial thin films. Philos. Mag. 90:103–11
    [Google Scholar]
  111. 111. 
    Li XL, Wang CX, Yang GW 2014. Thermodynamic theory of growth of nanostructures. Prog. Mater. Sci. 64:121–99
    [Google Scholar]
  112. 112. 
    Misra S, Li LG, Jian J, Huang JJ, Wang XJ et al. 2018. Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties. ACS Appl. Mater. Interfaces 10:32895–902
    [Google Scholar]
  113. 113. 
    Stroscio JA, Pierce DT. 1994. Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy. Phys. Rev. B 49:8522–25
    [Google Scholar]
  114. 114. 
    Yu P, Chu YH, Ramesh R 2012. Oxide interfaces: pathways to novel phenomena. Mater. Today 15:320–27
    [Google Scholar]
  115. 115. 
    Sanchez F, Ocal C, Fontcuberta J 2014. Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chem. Soc. Rev. 43:2272–85
    [Google Scholar]
  116. 116. 
    Gibert M, Puig T, Obradors X, Benedetti A, Sandiumenge F, Huhne R 2007. Self-organization of heteroepitaxial CeO2 nanodots grown from chemical solutions. Adv. Mater. 19:3937–42
    [Google Scholar]
  117. 117. 
    Biswas A, Yang CH, Ramesh R, Jeong MH 2017. Atomically flat single terminated oxide substrate surfaces. Prog. Surf. Sci. 92:117–41
    [Google Scholar]
  118. 118. 
    Rizzo F, Augieri A, Armenio AA, Galluzzi V, Mancini A et al. 2016. Enhanced 77 K vortex-pinning in Y Ba2Cu3O7−x films with Ba2Y TaO6 and mixed Ba2Y TaO6 + Ba2Y NbO6 nano-columnar inclusions with irreversibility field to 11 T. APL Mater 4:061101
    [Google Scholar]
  119. 119. 
    Lee S, Zhang WR, Khatkhatay F, Wang HY, Jia QX, MacManus-Driscoll JL 2015. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett 15:7362–69
    [Google Scholar]
  120. 120. 
    Xie QH, Madhukar A, Chen P, Kobayashi NP 1995. Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75:2542–45
    [Google Scholar]
  121. 121. 
    Schmidt OG, Jin-Phillipp NY, Lange C, Denker U, Eberl K et al. 2000. Long-range ordered lines of self-assembled Ge islands on a flat Si (001) surface. Appl. Phys. Lett. 77:4139–41
    [Google Scholar]
  122. 122. 
    Huang J, Wang X, Phuah XL, Lu P, Qi Z, Wang H 2019. Plasmonic Cu nanostructures in ZnO as hyperbolic metamaterial thin films. Mater. Today Nano 8:100052
    [Google Scholar]
  123. 123. 
    Misra S, Li LG, Zhang D, Jian J, Qi ZM et al. 2019. Self-assembled ordered three-phase Au–BaTiO3–ZnO vertically aligned nanocomposites achieved by a templating method. Adv. Mater. 31:1806529
    [Google Scholar]
  124. 124. 
    Li LG, Sun LY, Gomez-Diaz JS, Hogan NL, Lu P et al. 2016. Self-assembled epitaxial Au-oxide vertically aligned nanocomposites for nanoscale metamaterials. Nano Lett 16:3936–43
    [Google Scholar]
  125. 125. 
    Zhang B, Fan M, Li LG, Jian J, Huang JJ et al. 2018. Tunable magnetic anisotropy of self-assembled Fe nanostructures within a La0.5Sr0.5FeO3 matrix. Appl. Phys. Lett. 112:013104
    [Google Scholar]
  126. 126. 
    Wang XJ, Jian J, Zhou ZG, Fan CC, Dai YM et al. 2019. Self-assembled Ag-TiN hybrid plasmonic metamaterial: tailorable tilted nanopillar and optical properties. Adv. Opt. Mater. 7:1801180
    [Google Scholar]
  127. 127. 
    Wang XJ, Jian J, Diaz-Amaya S, Kumah CE, Lu P et al. 2019. Hybrid plasmonic Au-TiN vertically aligned nanocomposites: a nanoscale platform towards tunable optical sensing. Nanoscale Adv 1:1045–54
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-091719-112806
Loading
/content/journals/10.1146/annurev-matsci-091719-112806
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error