1932

Abstract

This is a time of substantial progress in the evaluation and care of patients with idiopathic pulmonary fibrosis (IPF). In addition to the approval and widespread availability of the first IPF-specific therapies, there have been improvements in imaging interpretation and lung biopsy methods to enable more expeditious and more accurate diagnosis. Recent advances in identifying genetic factors that underlie susceptibility to IPF and affect prognosis have raised the possibility of personalized therapeutic approaches in the future. Further, evolving work is elucidating novel mechanisms influencing epithelial, mesenchymal, and inflammatory cell responses during the injury-repair process, thus advancing understanding of disease pathogenesis. As analytic approaches mature, the field is now poised to harness the power of rapidly advancing “omics” technologies to further accelerate progress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-041317-102715
2019-01-27
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/med/70/1/annurev-med-041317-102715.html?itemId=/content/journals/10.1146/annurev-med-041317-102715&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Raghu G, Chen SY, Hou Q et al. 2016. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18–64 years old. Eur. Respir. J. 48:179–86
    [Google Scholar]
  2. 2.  Wolters PJ, Blackwell TS, Eickelberg O et al. 2018. Time for a change: Is idiopathic pulmonary fibrosis still idiopathic and only fibrotic?. Lancet Respir. Med. 6:154–60
    [Google Scholar]
  3. 3.  Raghu G, Collard HR, Egan JJ et al. 2011. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183:788–824
    [Google Scholar]
  4. 4.  Lynch DA, Sverzellati N, Travis WD et al. 2018. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society white paper. Lancet Respir. Med. 6:138–53
    [Google Scholar]
  5. 5.  Hunninghake GM, Hatabu H, Okajima Y et al. 2013. MUC5B promoter polymorphism and interstitial lung abnormalities. N. Engl. J. Med. 368:2192–200
    [Google Scholar]
  6. 6.  Putman RK, Hatabu H, Araki T et al. 2016. Association between interstitial lung abnormalities and all-cause mortality. JAMA 315:672–81
    [Google Scholar]
  7. 7.  Araki T, Putman RK, Hatabu H et al. 2016. Development and progression of interstitial lung abnormalities in the Framingham Heart Study. Am. J. Respir. Crit. Care Med. 194:121514–22
    [Google Scholar]
  8. 8.  Hutchinson JP, McKeever TM, Fogarty AW et al. 2016. Surgical lung biopsy for the diagnosis of interstitial lung disease in England: 1997–2008. Eur. Respir. J. 48:1453–61
    [Google Scholar]
  9. 9.  Durheim MT, Kim S, Gulack BC et al. 2017. Mortality and respiratory failure after thoracoscopic lung biopsy for interstitial lung disease. Ann. Thorac. Surg. 104:465–70
    [Google Scholar]
  10. 10.  Lentz RJ, Argento AC, Colby TV et al. 2017. Transbronchial cryobiopsy for diffuse parenchymal lung disease: a state-of-the-art review of procedural techniques, current evidence, and future challenges. J. Thorac. Dis. 9:2186–203
    [Google Scholar]
  11. 11.  Fischer A, Antoniou KM, Brown KK et al. 2015. An official European Respiratory Society/American Thoracic Society research statement: interstitial pneumonia with autoimmune features. Eur. Respir. J. 46:976–87
    [Google Scholar]
  12. 12.  Castillo D, Walsh S, Hansell DM et al. 2018. Validation of multidisciplinary diagnosis in IPF. Lancet Respir. Med. 6:88–89
    [Google Scholar]
  13. 13.  Munro AJ, Swartzman S 2013. What is a virtual multidisciplinary team (vMDT)?. Br. J. Cancer 108:2433–41
    [Google Scholar]
  14. 14.  Herazo-Maya JD, Noth I, Duncan SR et al. 2013. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci. Transl. Med. 5:205ra136
    [Google Scholar]
  15. 15.  Yang IV, Luna LG, Cotter J et al. 2012. The peripheral blood transcriptome identifies the presence and extent of disease in idiopathic pulmonary fibrosis. PLOS ONE 7:e37708
    [Google Scholar]
  16. 16.  Herazo-Maya JD, Sun J, Molyneaux PL et al. 2017. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir. Med. 5:857–68
    [Google Scholar]
  17. 17.  Pankratz DG, Choi Y, Imtiaz U et al. 2017. Usual interstitial pneumonia can be detected in transbronchial biopsies using machine learning. Ann. Am. Thorac. Soc. 14:1646–54
    [Google Scholar]
  18. 18.  Choi Y, Lu J, Hu Z et al. 2017. Analytical performance of Envisia: a genomic classifier for usual interstitial pneumonia. BMC Pulm. Med. 17:141
    [Google Scholar]
  19. 19.  Kim SY, Diggans J, Pankratz D et al. 2015. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir. Med. 3:473–82
    [Google Scholar]
  20. 20.  Raghu G, Anstrom KJ, King TE Jr. et al. 2012. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366:1968–77
    [Google Scholar]
  21. 21.  King TE Jr., Bradford WZ, Castro-Bernardini S et al. 2014. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370:2083–92
    [Google Scholar]
  22. 22.  Richeldi L, du Bois RM, Raghu G et al. 2014. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370:2071–82
    [Google Scholar]
  23. 23.  Selvaggio AS, Noble PW 2016. Pirfenidone initiates a new era in the treatment of idiopathic pulmonary fibrosis. Annu. Rev. Med. 67:487–95
    [Google Scholar]
  24. 24.  Costabel U, Albera C, Lancaster LH et al. 2017. An open-label study of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis (RECAP). Respir. Int. Rev. Thorac. Dis. 94:408–15
    [Google Scholar]
  25. 25.  Richeldi L, Kreuter M, Selman M et al. 2018. Long-term treatment of patients with idiopathic pulmonary fibrosis with nintedanib: results from the TOMORROW trial and its open-label extension. Thorax 73:581–83
    [Google Scholar]
  26. 26.  Albera C, Costabel U, Fagan EA et al. 2016. Efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis with more preserved lung function. Eur. Respir. J. 48:843–51
    [Google Scholar]
  27. 27.  Costabel U, Inoue Y, Richeldi L et al. 2016. Efficacy of nintedanib in idiopathic pulmonary fibrosis across prespecified subgroups in INPULSIS. Am. J. Respir. Crit. Care Med. 193:178–85
    [Google Scholar]
  28. 28.  Kolb M, Richeldi L, Behr J et al. 2017. Nintedanib in patients with idiopathic pulmonary fibrosis and preserved lung volume. Thorax 72:4340–46
    [Google Scholar]
  29. 29.  Nathan SD, Meyer KC 2014. IPF clinical trial design and endpoints. Curr. Opin. Pulm. Med. 20:463–71
    [Google Scholar]
  30. 30.  Nathan SD, Albera C, Bradford WZ et al. 2017. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir. Med. 5:33–41
    [Google Scholar]
  31. 31.  Vancheri C, Kreuter M, Richeldi L et al. 2018. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY trial. Am. J. Respir. Crit. Care Med. 197:356–63
    [Google Scholar]
  32. 32.  Raghu G, Rochwerg B, Zhang Y et al. 2015. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med. 192:e3–19
    [Google Scholar]
  33. 33.  Kreuter M, Wuyts W, Renzoni E et al. 2016. Antacid therapy and disease outcomes in idiopathic pulmonary fibrosis: a pooled analysis. Lancet Respir. Med. 4:381–89
    [Google Scholar]
  34. 34.  Schaffer JM, Singh SK, Reitz BA et al. 2015. Single- versus double-lung transplantation in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis since the implementation of lung allocation based on medical need. JAMA 313:936–48
    [Google Scholar]
  35. 35.  Kondoh Y, Cottin V, Brown KK 2017. Recent lessons learned in the management of acute exacerbation of idiopathic pulmonary fibrosis. Eur. Respir. Rev. 26:170050
    [Google Scholar]
  36. 36.  Patel NM, Lederer DJ, Borczuk AC et al. 2007. Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest 132:998–1006
    [Google Scholar]
  37. 37.  Gille T, Didier M, Boubaya M et al. 2017. Obstructive sleep apnoea and related comorbidities in incident idiopathic pulmonary fibrosis. Eur. Respir. J. 49:61601934
    [Google Scholar]
  38. 38.  Lancaster LH, Mason WR, Parnell JA et al. 2009. Obstructive sleep apnea is common in idiopathic pulmonary fibrosis. Chest 136:772–78
    [Google Scholar]
  39. 39.  Mermigkis C, Bouloukaki I, Schiza SE 2017. Sleep as a new target for improving outcomes in idiopathic pulmonary fibrosis. Chest 152:1327–38
    [Google Scholar]
  40. 40.  Dowman LM, McDonald CF, Hill CJ et al. 2017. The evidence of benefits of exercise training in interstitial lung disease: a randomised controlled trial. Thorax 72:610–19
    [Google Scholar]
  41. 41.  Raghu G, Brown KK, Collard HR et al. 2017. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir. Med. 5:22–32
    [Google Scholar]
  42. 42.  Raghu G, Martinez FJ, Brown KK et al. 2015. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. Eur. Respir. J. 46:1740–50
    [Google Scholar]
  43. 43.  Parker JM, Glaspole IN, Lancaster LH et al. 2018. A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 197:94–103
    [Google Scholar]
  44. 44.  Mora AL, Rojas M, Pardo A et al. 2017. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat. Rev. Drug Discov. 16:755–72
    [Google Scholar]
  45. 45.  Oldham JM, Ma SF, Martinez FJ et al. 2015. TOLLIP, MUC5B and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 192:121475–82
    [Google Scholar]
  46. 46.  Kropski JA, Blackwell TS, Loyd JE 2015. The genetic basis of idiopathic pulmonary fibrosis. Eur. Respir. J. 45:61717–27
    [Google Scholar]
  47. 47.  Fingerlin TE, Murphy E, Zhang W et al. 2013. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45:613–20
    [Google Scholar]
  48. 48.  Allen RJ, Porte J, Braybrooke R et al. 2017. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir. Med. 5:869–80
    [Google Scholar]
  49. 49.  Noth I, Zhang Y, Ma SF et al. 2013. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 1:309–17
    [Google Scholar]
  50. 50.  Seibold MA, Wise AL, Speer MC et al. 2011. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364:1503–12
    [Google Scholar]
  51. 51.  Helling BA, Gerber AN, Kadiyala V et al. 2017. Regulation of MUC5B expression in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 57:91–99
    [Google Scholar]
  52. 52.  Peljto AL, Zhang Y, Fingerlin TE et al. 2013. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA 309:2232–39
    [Google Scholar]
  53. 53.  Peljto AL, Selman M, Kim DS et al. 2015. The MUC5B promoter polymorphism is associated with idiopathic pulmonary fibrosis in a Mexican cohort but is rare among Asian ancestries. Chest 147:460–64
    [Google Scholar]
  54. 54.  Roy MG, Livraghi-Butrico A, Fletcher AA et al. 2014. Muc5b is required for airway defence. Nature 505:412–16
    [Google Scholar]
  55. 55.  Armanios MY, Chen JJ, Cogan JD et al. 2007. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356:1317–26
    [Google Scholar]
  56. 56.  Tsakiri KD, Cronkhite JT, Kuan PJ et al. 2007. Adult-onset pulmonary fibrosis caused by mutations in telomerase. PNAS 104:7552–57
    [Google Scholar]
  57. 57.  Cogan JD, Kropski JA, Zhao M et al. 2015. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 191:6646–55
    [Google Scholar]
  58. 58.  Kannengiesser C, Borie R, Menard C et al. 2015. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. Eur. Respir. J. 46:474–85
    [Google Scholar]
  59. 59.  Stuart BD, Choi J, Zaidi S et al. 2015. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47:512–17
    [Google Scholar]
  60. 60.  Kropski JA, Mitchell DB, Markin C et al. 2014. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 146:e1–7
    [Google Scholar]
  61. 61.  Alder JK, Stanley SE, Wagner CL et al. 2014. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 147:51361–68
    [Google Scholar]
  62. 62.  Kropski JA, Reiss S, Markin C et al. 2017. Rare genetic variants in PARN are associated with pulmonary fibrosis in families. Am. J. Respir. Crit. Care Med. 196:1481–84
    [Google Scholar]
  63. 63.  Stanley SE, Gable DL, Wagner CL 2016. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci. Transl. Med. 8:351ra107
    [Google Scholar]
  64. 64.  Thomas AQ, Lane K, Phillips J3rd et al. 2002. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med. 165:1322–28
    [Google Scholar]
  65. 65.  Fernandez BA, Fox G, Bhatia R et al. 2012. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir. Res. 13:64
    [Google Scholar]
  66. 66.  van Moorsel CH, van Oosterhout MF, Barlo NP et al. 2010. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort. Am. J. Respir. Crit. Care Med. 182:1419–25
    [Google Scholar]
  67. 67.  Wang Y, Kuan PJ, Xing C et al. 2009. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84:52–59
    [Google Scholar]
  68. 68.  Campo I, Zorzetto M, Mariani F et al. 2014. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir. Res. 15:43
    [Google Scholar]
  69. 69.  Epaud R, Delestrain C, Louha M et al. 2014. Combined pulmonary fibrosis and emphysema syndrome associated with ABCA3 mutations. Eur. Respir. J. 43:638–41
    [Google Scholar]
  70. 70.  Alder JK, Chen JJ, Lancaster L et al. 2008. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. PNAS 105:13051–56
    [Google Scholar]
  71. 71.  Diaz de Leon A, Cronkhite JT, Katzenstein AL et al. 2010. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLOS ONE 5:e10680
    [Google Scholar]
  72. 72.  Lawson WE, Grant SW, Ambrosini V et al. 2004. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 59:977–80
    [Google Scholar]
  73. 73.  Petrovski S, Todd JL, Durheim MT et al. 2017. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196:182–93
    [Google Scholar]
  74. 74.  Dressen A, Abbas A, Cabanski C et al. 2018. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir. Med. 6:P603–14
    [Google Scholar]
  75. 75.  Kropski JA, Young LR, Cogan JD et al. 2017. Genetic evaluation and testing of patients and families with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 195:111423–28
    [Google Scholar]
  76. 76.  Lawson WE, Crossno PF, Polosukhin VV et al. 2008. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell Mol. Physiol. 294:L1119–26
    [Google Scholar]
  77. 77.  Lawson WE, Cheng DS, Degryse AL et al. 2011. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. PNAS 108:10562–67
    [Google Scholar]
  78. 78.  Korfei M, Ruppert C, Mahavadi P et al. 2008. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178:838–46
    [Google Scholar]
  79. 79.  Stuart BD, Lee JS, Kozlitina J et al. 2014. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir. Med. 2:557–65
    [Google Scholar]
  80. 80.  Kropski JA, Pritchett JM, Zoz DF et al. 2015. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am. J. Respir. Crit. Care Med. 191:417–26
    [Google Scholar]
  81. 81.  Snetselaar R, van Batenburg AA, van Oosterhout MFM et al. 2017. Short telomere length in IPF lung associates with fibrotic lesions and predicts survival. PLOS ONE 12:e0189467
    [Google Scholar]
  82. 82.  Naikawadi RP, Disayabutr S, Mallavia B et al. 2016. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1:e86704
    [Google Scholar]
  83. 83.  Povedano JM, Martinez P, Flores JM et al. 2015. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 12:286–99
    [Google Scholar]
  84. 84.  Bueno M, Lai YC, Romero Y et al. 2015. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Investig. 125:521–38
    [Google Scholar]
  85. 85.  Bueno M, Brands J, Voltz L et al. 2018. ATF3 represses PINK1 gene transcription in lung epithelial cells to control mitochondrial homeostasis. Aging Cell 17:2e12720
    [Google Scholar]
  86. 86.  Yu G, Tzouvelekis A, Wang R et al. 2018. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24:39–49
    [Google Scholar]
  87. 87.  Nabhan AN, Brownfield DG, Harbury PB et al. 2018. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359:1118–23
    [Google Scholar]
  88. 88.  Zacharias WJ, Frank DB, Zepp JA et al. 2018. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555:251–55
    [Google Scholar]
  89. 89.  Liang J, Zhang Y, Xie T et al. 2016. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat. Med. 22:1285–93
    [Google Scholar]
  90. 90.  Xie T, Liang J, Liu N et al. 2016. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J. Clin. Investig. 126:3063–79
    [Google Scholar]
  91. 91.  Herrera J, Henke CA, Bitterman PB 2018. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Investig. 128:45–53
    [Google Scholar]
  92. 92.  Tschumperlin DJ, Ligresti G, Hilscher MB et al. 2018. Mechanosensing and fibrosis. J. Clin. Investig. 128:74–84
    [Google Scholar]
  93. 93.  Larson-Casey JL, Deshane JS, Ryan AJ et al. 2016. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44:582–96
    [Google Scholar]
  94. 94.  Young LR, Gulleman PM, Short CW et al. 2016. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 1:e88947
    [Google Scholar]
  95. 95.  Satoh T, Nakagawa K, Sugihara F et al. 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541:96–101
    [Google Scholar]
  96. 96.  Xi Y, Kim T, Brumwell AN et al. 2017. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19:904–14
    [Google Scholar]
  97. 97.  Xu Y, Mizuno T, Sridharan A et al. 2016. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1:e90558
    [Google Scholar]
  98. 98.  Xie T, Wang Y, Deng N et al. 2018. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 22:3625–40
    [Google Scholar]
/content/journals/10.1146/annurev-med-041317-102715
Loading
/content/journals/10.1146/annurev-med-041317-102715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error