1932

Abstract

Pulmonary arterial hypertension (PAH) is a pulmonary vasculopathy that causes right ventricular dysfunction and exercise limitation and progresses to death. New findings from translational studies have suggested alternative pathways for treatment. These avenues include sex hormones, genetic abnormalities and DNA damage, elastase inhibition, metabolic dysfunction, cellular therapies, and anti-inflammatory approaches. Both novel and repurposed compounds with rationale from preclinical experimental models and human cells are now in clinical trials in patients with PAH. Findings from these studies will elucidate the pathobiology of PAH and may result in clinically important improvements in outcome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-041717-085955
2019-01-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/med/70/1/annurev-med-041717-085955.html?itemId=/content/journals/10.1146/annurev-med-041717-085955&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Humbert M, Sitbon O, Chaouat A et al. 2006. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173:1023–30
    [Google Scholar]
  2. 2.  Lahm T, Tuder RM, Petrache I 2014. Progress in solving the sex hormone paradox in pulmonary hypertension. Am. J. Physiol. Lung. Cell Mol. Physiol. 307:L7–26
    [Google Scholar]
  3. 3.  Hemnes AR, Maynard KB, Champion HC et al. 2012. Testosterone negatively regulates right ventricular load stress responses in mice. Pulm. Circ. 2:352–58
    [Google Scholar]
  4. 4.  Austin ED, Hamid R, Hemnes AR et al. 2012. BMPR2 expression is suppressed by signaling through the estrogen receptor. Biol. Sex Differ. 3:6
    [Google Scholar]
  5. 5.  Chen X, Talati M, Fessel JP et al. 2016. The estrogen metabolite 16α-hydroxyestrone exacerbates bone morphogenetic protein receptor type II-associated pulmonary arterial hypertension through microRNA-29-mediated modulation of cellular metabolism. Circulation 133:82–97
    [Google Scholar]
  6. 6.  Austin ED, Cogan JD, West JD et al. 2009. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur. Respir. J. 34:1093–99
    [Google Scholar]
  7. 7.  Mair KM, Wright AF, Duggan N et al. 2014. Sex-dependent influence of endogenous estrogen in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 190:456–67
    [Google Scholar]
  8. 8.  White K, Johansen AK, Nilsen M et al. 2012. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation 126:1087–98
    [Google Scholar]
  9. 9.  Chen X, Austin ED, Talati M et al. 2017. Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. Eur. Respir. J. 50:1602337
    [Google Scholar]
  10. 10.  Kawut SM, Lima JA, Barr RG et al. 2011. Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation 123:2542–51
    [Google Scholar]
  11. 11.  Ventetuolo CE, Ouyang P, Bluemke DA et al. 2011. Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am. J. Respir. Crit. Care Med. 183:659–67
    [Google Scholar]
  12. 12.  Ventetuolo CE, Mitra N, Wan F et al. 2016. Oestradiol metabolism and androgen receptor genotypes are associated with right ventricular function. Eur. Respir. J. 47:553–63
    [Google Scholar]
  13. 13.  Jacobs W, van de Veerdonk MC, Trip P et al. 2014. The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest 145:1230–36
    [Google Scholar]
  14. 14.  Kawut SM, Al-Naamani N, Agerstrand C et al. 2009. Determinants of right ventricular ejection fraction in pulmonary arterial hypertension. Chest 135:752–59
    [Google Scholar]
  15. 15.  Ventetuolo CE, Baird GL, Barr RG et al. 2016. Higher estradiol and lower dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. Am. J. Respir. Crit. Care Med. 193:1168–75
    [Google Scholar]
  16. 16.  Baird GL, Archer-Chicko C, Barr RG et al. 2018. Lower DHEA-S levels predict disease and worse outcomes in post-menopausal women with idiopathic, connective tissue disease- and congenital heart disease-associated pulmonary arterial hypertension. Eur. Respir. J. 51:1800467
    [Google Scholar]
  17. 17.  Kawut SM, Archer-Chicko CL, DeMichele A et al. 2017. Anastrozole in pulmonary arterial hypertension. A randomized, double-blind, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 195:360–68
    [Google Scholar]
  18. 18.  Orriols M, Gomez-Puerto MC, Ten Dijke P 2017. BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol. Life Sci. 74:2979–95
    [Google Scholar]
  19. 19.  Drake KM, Dunmore BJ, McNelly LN et al. 2013. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 49:403–9
    [Google Scholar]
  20. 20.  Frump AL, Lowery JW, Hamid R et al. 2013. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension. PLOS ONE 8:e80319
    [Google Scholar]
  21. 21.  Rothman AM, Arnold ND, Pickworth JA et al. 2016. MicroRNA-140–5p and SMURF1 regulate pulmonary arterial hypertension. J. Clin. Investig. 126:2495–508
    [Google Scholar]
  22. 22.  Nickel NP, Spiekerkoetter E, Gu M et al. 2015. Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am. J. Respir. Crit. Care Med. 191:1273–86
    [Google Scholar]
  23. 23.  Li W, Salmon RM, Jiang H, Morrell NW 2016. Regulation of the ALK1 ligands, BMP9 and BMP10. Biochem. Soc. Trans. 44:1135–41
    [Google Scholar]
  24. 24.  Savai R, Al-Tamari HM, Sedding D et al. 2014. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. 20:1289–300
    [Google Scholar]
  25. 25.  Yung LM, Nikolic I, Paskin-Flerlage SD et al. 2016. A selective transforming growth factor-β ligand trap attenuates pulmonary hypertension. Am. J. Respir. Crit. Care Med. 194:1140–51
    [Google Scholar]
  26. 26.  Spiekerkoetter E, Tian X, Cai J et al. 2013. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J. Clin. Investig. 123:3600–13
    [Google Scholar]
  27. 27.  Chun HJ, Bonnet S, Chan SY 2017. Translational advances in the field of pulmonary hypertension. Translating microRNA biology in pulmonary hypertension. It will take more than “miR” words. Am. J. Respir. Crit. Care Med. 195:167–78
    [Google Scholar]
  28. 28.  Boucherat O, Bonnet S 2016. MicroRNA signature of end-stage idiopathic pulmonary arterial hypertension: clinical correlations and regulation of WNT signaling. J. Mol. Med. 94:849–51
    [Google Scholar]
  29. 29.  Hong Z, Chen KH, DasGupta A et al. 2017. MicroRNA-138 and microRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am. J. Respir. Crit. Care Med. 195:515–29
    [Google Scholar]
  30. 30.  Plecitá-Hlavatá L, D'Alessandro A, El Kasmi K et al. 2017. Metabolic reprogramming and redox signaling in pulmonary hypertension. Adv. Exp. Med. Biol. 967:241–60
    [Google Scholar]
  31. 31.  Bertero T, Cottrill K, Krauszman A et al. 2015. The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J. Biol. Chem. 290:2069–85
    [Google Scholar]
  32. 32.  Ranchoux B, Meloche J, Paulin R et al. 2016. DNA damage and pulmonary hypertension. Int. J. Mol. Sci. 17:990
    [Google Scholar]
  33. 33.  Li M, Vattulainen S, Aho J et al. 2014. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 50:1118–28
    [Google Scholar]
  34. 34.  Meloche J, Pflieger A, Vaillancourt M et al. 2014. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation 129:786–97
    [Google Scholar]
  35. 35.  Federici C, Drake KM, Rigelsky CM et al. 2015. Increased mutagen sensitivity and DNA damage in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 192:219–28
    [Google Scholar]
  36. 36.  Chen PI, Cao A, Miyagawa K et al. 2017. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight 2:e90427
    [Google Scholar]
  37. 37.  Kaur G, Singh N, Lingeshwar P et al. 2015. Poly (ADP-ribose) polymerase-1: an emerging target in right ventricle dysfunction associated with pulmonary hypertension. Pulm. Pharmacol. Ther. 30:66–79
    [Google Scholar]
  38. 38.  Spiekerkoetter E, Sung YK, Sudheendra D et al. 2015. Low-dose FK506 (tacrolimus) in end-stage pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 192:254–57
    [Google Scholar]
  39. 39.  Spiekerkoetter E, Sung YK, Sudheendra D et al. 2017. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur. Respir. J. 50:1602449
    [Google Scholar]
  40. 40.  Todorovich-Hunter L, Dodo H, Ye C et al. 1992. Increased pulmonary artery elastolytic activity in adult rats with monocrotaline-induced progressive hypertensive pulmonary vascular disease compared with infant rats with nonprogressive disease. Am. Rev. Respir. Dis. 146:213–23
    [Google Scholar]
  41. 41.  Ilkiw R, Todorovich-Hunter L, Maruyama K et al. 1989. SC-39026, a serine elastase inhibitor, prevents muscularization of peripheral arteries, suggesting a mechanism of monocrotaline-induced pulmonary hypertension in rats. Circ. Res. 64:814–25
    [Google Scholar]
  42. 42.  Maruyama K, Ye CL, Woo M et al. 1991. Chronic hypoxic pulmonary hypertension in rats and increased elastolytic activity. Am. J. Physiol. 261:H1716–26
    [Google Scholar]
  43. 43.  Merklinger SL, Jones PL, Martinez EC, Rabinovitch M 2005. Epidermal growth factor receptor blockade mediates smooth muscle cell apoptosis and improves survival in rats with pulmonary hypertension. Circulation 112:423–31
    [Google Scholar]
  44. 44.  Jones PL, Crack J, Rabinovitch M 1997. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the αvβ3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J. Cell Biol. 139:279–93
    [Google Scholar]
  45. 45.  Cowan KN, Heilbut A, Humpl T et al. 2000. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat. Med. 6:698–702
    [Google Scholar]
  46. 46.  Zaidi SH, You XM, Ciura S et al. 2000. Suppressed smooth muscle proliferation and inflammatory cell invasion after arterial injury in elafin-overexpressing mice. J. Clin. Investig. 105:1687–95
    [Google Scholar]
  47. 47.  Zaidi SH, You XM, Ciura S et al. 2002. Overexpression of the serine elastase inhibitor elafin protects transgenic mice from hypoxic pulmonary hypertension. Circulation 105:516–21
    [Google Scholar]
  48. 48.  Steiner MK, Syrkina OL, Kolliputi N et al. 2009. Interleukin-6 overexpression induces pulmonary hypertension. Circ. Res. 104:236–44
    [Google Scholar]
  49. 49.  Savale L, Tu L, Rideau D et al. 2009. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir. Res. 10:6
    [Google Scholar]
  50. 50.  Tamura Y, Phan C, Tu L et al. 2018. Ectopic upregulation of membrane-bound IL6R drives vascular remodeling in pulmonary arterial hypertension. J. Clin. Investig. 128:1956–70
    [Google Scholar]
  51. 51.  Hagen M, Fagan K, Steudel W et al. 2007. Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. Am. J. Physiol. Lung. Cell Mol. Physiol. 292:L1473–79
    [Google Scholar]
  52. 52.  Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D et al. 2007. Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am. J. Respir. Crit. Care Med. 175:1280–89
    [Google Scholar]
  53. 53.  Grzegorzewska AP, Seta F, Han R et al. 2017. Dimethyl fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci. Rep. 7:41605
    [Google Scholar]
  54. 54.  Humbert M, Monti G, Brenot F et al. 1995. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 151:1628–31
    [Google Scholar]
  55. 55.  Soon E, Holmes AM, Treacy CM et al. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122:920–27
    [Google Scholar]
  56. 56.  Hernández-Sanchez J, Harlow L, Church C et al. 2018. Clinical trial protocol for TRANSFORM-UK: a therapeutic open-label study of tocilizumab in the treatment of pulmonary arterial hypertension. Pulm. Circ. 8:1–8
    [Google Scholar]
  57. 57.  Paulin R, Michelakis ED 2014. The metabolic theory of pulmonary arterial hypertension. Circ. Res. 115:148–64
    [Google Scholar]
  58. 58.  Michelakis ED, McMurtry MS, Wu XC et al. 2002. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–50
    [Google Scholar]
  59. 59.  McMurtry MS, Bonnet S, Wu X et al. 2004. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–40
    [Google Scholar]
  60. 60.  Michelakis ED, Gurtu V, Webster L et al. 2017. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9:eaao4583
    [Google Scholar]
  61. 61.  Ruiter G, Lanser IJ, de Man FS et al. 2014. Iron deficiency in systemic sclerosis patients with and without pulmonary hypertension. Rheumatology 53:285–92
    [Google Scholar]
  62. 62.  Howard LS, Watson GM, Wharton J et al. 2013. Supplementation of iron in pulmonary hypertension: rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension. Pulm. Circ. 3:100–7
    [Google Scholar]
  63. 63.  Cotroneo E, Ashek A, Wang L et al. 2015. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ. Res. 116:1680–90
    [Google Scholar]
  64. 64.  Ruiter G, Manders E, Happé CM et al. 2015. Intravenous iron therapy in patients with idiopathic pulmonary arterial hypertension and iron deficiency. Pulm. Circ. 5:466–72
    [Google Scholar]
  65. 65.  Frise MC, Cheng HY, Nickol AH et al. 2016. Clinical iron deficiency disturbs normal human responses to hypoxia. J. Clin. Investig. 126:2139–50
    [Google Scholar]
  66. 66.  Sartoretto JL, Melo GA, Carvalho MH et al. 2005. Metformin treatment restores the altered microvascular reactivity in neonatal streptozotocin-induced diabetic rats increasing NOS activity, but not NOS expression. Life Sci 77:2676–89
    [Google Scholar]
  67. 67.  Dean A, Nilsen M, Loughlin L et al. 2016. Metformin reverses development of pulmonary hypertension via aromatase inhibition. Hypertension 68:446–54
    [Google Scholar]
  68. 68.  Agard C, Rolli-Derkinderen M, Dumas-de-la-Roque E et al. 2009. Protective role of the antidiabetic drug metformin against chronic experimental pulmonary hypertension. Br. J. Pharmacol. 158:1285–94
    [Google Scholar]
  69. 69.  Pena A, Kobir A, Goncharov D et al. 2017. Pharmacological inhibition of mTOR kinase reverses right ventricle remodeling and improves right ventricle structure and function in rats. Am. J. Respir. Cell Mol. Biol. 57:615–25
    [Google Scholar]
  70. 70.  Goncharov DA, Kudryashova TV, Ziai H et al. 2014. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation 129:864–74
    [Google Scholar]
  71. 71.  Koudelka A, Ambrozova G, Klinke A et al. 2016. Nitro-oleic acid prevents hypoxia- and asymmetric dimethylarginine-induced pulmonary endothelial dysfunction. Cardiovasc. Drugs Ther. 30:579–86
    [Google Scholar]
  72. 72.  Maron BA, Leopold JA 2015. Emerging concepts in the molecular basis of pulmonary arterial hypertension: Part II: Neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of pulmonary arterial hypertension. Circulation 131:2079–91
    [Google Scholar]
  73. 73.  Vaillancourt M, Chia P, Sarji S et al. 2017. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir. Res. 18:201
    [Google Scholar]
  74. 74.  Bristow MR, Minobe W, Rasmussen R et al. 1992. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J. Clin. Investig. 89:803–15
    [Google Scholar]
  75. 75.  Piao L, Fang YH, Parikh KS et al. 2012. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation 126:2859–69
    [Google Scholar]
  76. 76.  Bogaard HJ, Natarajan R, Mizuno S et al. 2010. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182:652–60
    [Google Scholar]
  77. 77.  Drake JI, Gomez-Arroyo J, Dumur CI et al. 2013. Chronic carvedilol treatment partially reverses the right ventricular failure transcriptional profile in experimental pulmonary hypertension. Physiol. Genom. 45:449–61
    [Google Scholar]
  78. 78.  de Man FS, Handoko ML, van Ballegoij JJ et al. 2012. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ. Heart Fail. 5:97–105
    [Google Scholar]
  79. 79.  Perros F, Ranchoux B, Izikki M et al. 2015. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J. Am. Coll. Cardiol. 65:668–80
    [Google Scholar]
  80. 80.  Chen SL, Zhang YJ, Zhou L et al. 2013. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. EuroIntervention 9:269–76
    [Google Scholar]
  81. 81.  da Silva Goncalves Bos D, Happé C, Schalij I et al. 2017. Renal denervation reduces pulmonary vascular remodeling and right ventricular diastolic stiffness in experimental pulmonary hypertension. JACC. Basic Transl. Sci. 2:22–35
    [Google Scholar]
  82. 82.  da Silva Goncalves Bós D, Van Der Bruggen CEE, Kurakula K et al. 2018. Contribution of impaired parasympathetic activity to right ventricular dysfunction and pulmonary vascular remodeling in pulmonary arterial hypertension. Circulation 137:910–24
    [Google Scholar]
  83. 83.  Farha S, Saygin D, Park MM et al. 2017. Pulmonary arterial hypertension treatment with carvedilol for heart failure: a randomized controlled trial. JCI Insight 2:e95240
    [Google Scholar]
  84. 84.  Grinnan D, Bogaard HJ, Grizzard J et al. 2014. Treatment of group I pulmonary arterial hypertension with carvedilol is safe. Am. J. Respir. Crit. Care Med. 189:1562–64
    [Google Scholar]
  85. 85.  van Campen JS, de Boer K, van de Veerdonk MC et al. 2016. Bisoprolol in idiopathic pulmonary arterial hypertension: an explorative study. Eur. Respir. J. 48:787–96
    [Google Scholar]
  86. 86.  Chen SL, Zhang FF, Xu J et al. 2013. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J. Am. Coll. Cardiol. 62:1092–100
    [Google Scholar]
  87. 87.  Chen SL, Zhang H, Xie DJ et al. 2015. Hemodynamic, functional, and clinical responses to pulmonary artery denervation in patients with pulmonary arterial hypertension of different causes: phase II results from the Pulmonary Artery Denervation-1 study. Circ. Cardiovasc. Interv. 8:e002837
    [Google Scholar]
  88. 88.  Ehlken N, Lichtblau M, Klose H et al. 2016. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur. Heart J. 37:35–44
    [Google Scholar]
  89. 89.  Mereles D, Ehlken N, Kreuscher S et al. 2006. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114:1482–89
    [Google Scholar]
  90. 90.  de Man FS, Tu L, Handoko ML et al. 2012. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186:780–89
    [Google Scholar]
  91. 91.  Shenoy V, Kwon KC, Rathinasabapathy A et al. 2014. Oral delivery of angiotensin-converting enzyme 2 and angiotensin-(1–7) bioencapsulated in plant cells attenuates pulmonary hypertension. Hypertension 64:1248–59
    [Google Scholar]
  92. 92.  Shil PK, Kwon K-C, Zhu P et al. 2014. Oral delivery of ACE2/Ang-(1–7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis. Mol. Ther. 22:2069–82
    [Google Scholar]
  93. 93.  Shenoy V, Gjymishka A, Jarajapu YP et al. 2013. Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. Am. J. Respir. Crit. Care Med. 187:648–57
    [Google Scholar]
  94. 94.  Maron BA, Opotowsky AR, Landzberg MJ et al. 2013. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur. J. Heart Fail. 15:277–83
    [Google Scholar]
  95. 95.  Maron BA, Oldham WM, Chan SY et al. 2014. Upregulation of steroidogenic acute regulatory protein by hypoxia stimulates aldosterone synthesis in pulmonary artery endothelial cells to promote pulmonary vascular fibrosis. Circulation 130:168–79
    [Google Scholar]
  96. 96.  Maron BA, Zhang YY, White K et al. 2012. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 126:963–74
    [Google Scholar]
  97. 97.  Hemnes AR, Rathinasabapathy A, Austin EA et al. 2018. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur. Respir. J. 51:1702638
    [Google Scholar]
  98. 98.  Zhao YD, Courtman DW, Deng Y et al. 2005. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ. Res. 96:442–50
    [Google Scholar]
  99. 99.  Granton J, Langleben D, Kutryk MB et al. 2015. Endothelial NO-synthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: the PHACeT Trial. Circ. Res. 117:645–54
    [Google Scholar]
/content/journals/10.1146/annurev-med-041717-085955
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error