1932

Abstract

Inflammatory bowel diseases (IBD) arise from a convergence of genetic risk, environmental factors, and gut microbiota, where each is necessary but not sufficient to cause disease. Emerging evidence supports a bidirectional relationship between disease progression and changes in microbiota membership and function. Thus, the study of the gut microbiome and host–microbe interactions should provide critical insights into disease pathogenesis as well as leads for developing microbiome-based diagnostics and interventions for IBD. In this article, we review the most recent advances in understanding the relationship between the gut microbiota and IBD and highlight the importance of going beyond establishing description and association to gain mechanistic insights into causes and consequences of IBD. The review aims to contextualize recent findings to form conceptional frameworks for understanding the etiopathogenesis of IBD and for the future development of microbiome-based diagnostics and interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042320-021020
2022-01-27
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/med/73/1/annurev-med-042320-021020.html?itemId=/content/journals/10.1146/annurev-med-042320-021020&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Roda G, Chien Ng S, Kotze PG et al. 2020. Crohn's disease. Nat. Rev. Dis. Prim. 6:122
    [Google Scholar]
  2. 2. 
    Kobayashi T, Siegmund B, Le Berre C et al. 2020. Ulcerative colitis. Nat. Rev. Dis. Prim. 6:174
    [Google Scholar]
  3. 3. 
    Actis GC, Pellicano R, Fagoonee S, Ribaldone DG 2019. History of inflammatory bowel diseases. J. Clin. Med. 8:111970
    [Google Scholar]
  4. 4. 
    Mulder DJ, Noble AJ, Justinich CJ, Duffin JM. 2014. A tale of two diseases: the history of inflammatory bowel disease. J. Crohn's Colitis 8:5341–48
    [Google Scholar]
  5. 5. 
    Flynn S, Eisenstein S 2019. Inflammatory bowel disease presentation and diagnosis. Surg. Clin. N. Am. 99:61051–62
    [Google Scholar]
  6. 6. 
    Kaplan GG, Ng SC. 2017. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152:2313–21.e2
    [Google Scholar]
  7. 7. 
    Graham DB, Xavier RJ 2020. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578:7796527–39
    [Google Scholar]
  8. 8. 
    Ng SC, Shi HY, Hamidi N et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390:101142769–78
    [Google Scholar]
  9. 9. 
    Ananthakrishnan AN, Bernstein CN, Iliopoulos D et al. 2018. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15:39–49
    [Google Scholar]
  10. 10. 
    Hurst RD, Molinari M, Chung TP et al. 1996. Prospective study of the incidence, timing and treatment of pouchitis in 104 consecutive patients after restorative proctocolectomy. Arch. Surg. 131:5497–500
    [Google Scholar]
  11. 11. 
    Simchuk EJ, Thirlby RC. 2000. Risk factors and true incidence of pouchitis in patients after ileal pouch-anal anastomoses. World J. Surg. 24:7851–56
    [Google Scholar]
  12. 12. 
    Mizoguchi A. 2012. Animal models of inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 105:263–320
    [Google Scholar]
  13. 13. 
    Wu H, Shen B. 2009. Pouchitis: lessons for inflammatory bowel disease. Curr. Opin. Gastroenterol. 25:4314–22
    [Google Scholar]
  14. 14. 
    Cleynen I, Boucher G, Jostins L et al. 2016. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387:10014156–67
    [Google Scholar]
  15. 15. 
    Lee M, Chang EB 2021. Inflammatory bowel diseases (IBD) and the microbiome—searching the crime scene for clues. Gastroenterology 160:2524–37
    [Google Scholar]
  16. 16. 
    Torres J, Hu J, Seki A et al. 2020. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69:142–51
    [Google Scholar]
  17. 17. 
    Gevers D, Kugathasan S, Denson LA et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:3382–92
    [Google Scholar]
  18. 18. 
    Vich Vila A, Imhann F, Collij V et al. 2018. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10:472eaap8914
    [Google Scholar]
  19. 19. 
    Schirmer M, Franzosa EA, Lloyd-Price J et al. 2018. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3:337–46
    [Google Scholar]
  20. 20. 
    Lloyd-Price J, Arze C, Ananthakrishnan AN et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:7758655–62
    [Google Scholar]
  21. 21. 
    Yilmaz B, Juillerat P, Øyås O et al. 2019. Microbial network disturbances in relapsing refractory Crohn's disease. Nat. Med. 25:2323–36
    [Google Scholar]
  22. 22. 
    Miyoshi J, Lee STMM, Kennedy M et al. 2020. Metagenomic alterations in gut microbiota precede and predict onset of colitis in the IL10 gene–deficient murine model. Cell. Mol. Gastroenterol. Hepatol. 11:2491–502
    [Google Scholar]
  23. 23. 
    Vineis JH, Ringus DL, Morrison HG et al. 2016. Patient-specific Bacteroides genome variants in pouchitis. mBio 7:6e01713-16
    [Google Scholar]
  24. 24. 
    Huang Y, Dalal S, Antonopoulos D et al. 2017. Early transcriptomic changes in the ileal pouch provide insight into the molecular pathogenesis of pouchitis and ulcerative colitis. Inflamm. Bowel Dis. 23:3366–78
    [Google Scholar]
  25. 25. 
    Jacobs JP, Goudarzi M, Singh N et al. 2016. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell. Mol. Gastroenterol. Hepatol. 2:6750–66
    [Google Scholar]
  26. 26. 
    Hirano A, Umeno J, Okamoto Y et al. 2018. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 33:91590–97
    [Google Scholar]
  27. 27. 
    Libertucci J, Dutta U, Kaur S et al. 2018. Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn's disease. Am. J. Physiol. Gastrointest. Liver Physiol. 315:3G420–31
    [Google Scholar]
  28. 28. 
    Nishino K, Nishida A, Inoue R et al. 2018. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53:195–106
    [Google Scholar]
  29. 29. 
    Richard ML, Lamas B, Liguori G et al. 2015. Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm. Bowel Dis. 21:3656–65
    [Google Scholar]
  30. 30. 
    Sokol H, Leducq V, Aschard H et al. 2017. Fungal microbiota dysbiosis in IBD. Gut 66:61039–48
    [Google Scholar]
  31. 31. 
    Imai T, Inoue R, Kawada Y et al. 2019. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 54:2149–59
    [Google Scholar]
  32. 32. 
    Pierre JF, La Torre D, Sidebottom A et al. 2020. Peptide YY: a novel Paneth cell antimicrobial peptide that maintains fungal commensalism. bioRxiv 2020.05.15.096875. https://doi.org/10.1101/2020.05.15.096875
    [Crossref]
  33. 33. 
    Limon JJ, Tang J, Li D et al. 2019. Malassezia is associated with Crohn's disease and exacerbates colitis in mouse models. Cell Host Microbe 25:3 377–88.e6
    [Google Scholar]
  34. 34. 
    Iliev ID, Funari VA, Taylor KD et al. 2012. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:60861314–17
    [Google Scholar]
  35. 35. 
    Rahabi M, Jacquemin G, Prat M et al. 2020. Divergent roles for macrophage C-type lectin receptors, Dectin-1 and mannose receptors, in the intestinal inflammatory response. Cell Rep 30:134386–98.e5
    [Google Scholar]
  36. 36. 
    Zuo T, Lu XJ, Zhang Y et al. 2019. Gut mucosal virome alterations in ulcerative colitis. Gut 68:71169–79
    [Google Scholar]
  37. 37. 
    Duerkop BA, Kleiner M, Paez-Espino D et al. 2018. Murine colitis reveals a disease-associated bacteriophage community. Nat. Microbiol. 3:91023–31
    [Google Scholar]
  38. 38. 
    Shim JO. 2019. Recent advance in very early onset inflammatory bowel disease. Pediatr. Gastroenterol. Hepatol. Nutr. 22:141–49
    [Google Scholar]
  39. 39. 
    Pizarro TT, Pastorelli L, Bamias G et al. 2011. SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease–like ileitis. Inflamm. Bowel Dis. 17:122566–84
    [Google Scholar]
  40. 40. 
    Devkota S, Wang Y, Musch MW et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:7405104–8
    [Google Scholar]
  41. 41. 
    Liso M, De Santis S, Verna G et al. 2020. A specific mutation in Muc2 determines early dysbiosis in colitis-prone Winnie mice. Inflamm. Bowel Dis. 26:4546–56
    [Google Scholar]
  42. 42. 
    Wilk JN, Bilsborough J, Viney JL. 2005. The mdr1a–/– mouse model of spontaneous colitis: a relevant and appropriate animal model to study inflammatory bowel disease. Immunol. Res. 31:2151–59
    [Google Scholar]
  43. 43. 
    Glymenaki M, Singh G, Brass A et al. 2017. Compositional changes in the gut mucus microbiota precede the onset of colitis-induced inflammation. Inflamm. Bowel Dis. 23:6912–22
    [Google Scholar]
  44. 44. 
    Caruso R, Mathes T, Martens EC et al. 2019. A specific gene-microbe interaction drives the development of Crohn's disease–like colitis in mice. Sci. Immunol. 4:34eaaw4341
    [Google Scholar]
  45. 45. 
    Chen K, Magri G, Grasset EK, Cerutti A. 2020. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20:7427–41
    [Google Scholar]
  46. 46. 
    Palm NW, de Zoete MR, Cullen TW et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:51000–10
    [Google Scholar]
  47. 47. 
    Bunker JJ, Erickson SA, Flynn TM et al. 2017. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358:6361eaan6619
    [Google Scholar]
  48. 48. 
    Nakajima A, Vogelzang A, Maruya M et al. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:82019–34
    [Google Scholar]
  49. 49. 
    Donaldson GP, Ladinsky MS, Yu KB et al. 2018. Gut microbiota utilize immunoglobulin a for mucosal colonization. Science 360:6390795–800
    [Google Scholar]
  50. 50. 
    Armstrong H, Alipour M, Valcheva R et al. 2019. Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome 7:11
    [Google Scholar]
  51. 51. 
    Castro-Dopico T, Dennison TW, Ferdinand JR et al. 2019. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50:41099–114.e10
    [Google Scholar]
  52. 52. 
    Bevins CL. 2017. The immune system in IBD: antimicrobial peptides. Crohn's Disease and Ulcerative Colitis: From Epidemiology and Immunobiology to a Rational Diagnostic and Therapeutic Approach DC Baumgart 75–86 Cham, Switz: Springer
    [Google Scholar]
  53. 53. 
    Piovani D, Danese S, Peyrin-Biroulet L et al. 2019. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157:3647–59.e4
    [Google Scholar]
  54. 54. 
    Sonnenburg ED, Smits SA, Tikhonov M et al. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:7585212–15
    [Google Scholar]
  55. 55. 
    Canakis A, Qazi T. 2020. Sleep and fatigue in IBD: an unrecognized but important extra-intestinal manifestation. Curr. Gastroenterol. Rep. 22:28
    [Google Scholar]
  56. 56. 
    Bishehsari F, Voigt RM, Keshavarzian A. 2020. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 16:12731–39
    [Google Scholar]
  57. 57. 
    Milani C, Duranti S, Bottacini F et al. 2017. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81:4e00036-17
    [Google Scholar]
  58. 58. 
    Knoop KA, Gustafsson JK, McDonald KG et al. 2017. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci. Immunol. 2:18eaao1314
    [Google Scholar]
  59. 59. 
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016. How colonization by microbiota in early life shapes the immune system. Science 352:6285539–44
    [Google Scholar]
  60. 60. 
    Al Nabhani Z, Dulauroy S, Marques R et al. 2019. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50:51276–88.e5
    [Google Scholar]
  61. 61. 
    Miyoshi J, Bobe AM, Miyoshi S et al. 2017. Peripartum antibiotics promote gut dysbiosis, loss of immune tolerance, and inflammatory bowel disease in genetically prone offspring. Cell Rep 20:2491–504
    [Google Scholar]
  62. 62. 
    Olszak T, An D, Zeissig S et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:6080489–93
    [Google Scholar]
  63. 63. 
    Schulfer AF, Battaglia T, Alvarez Y et al. 2018. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3:2234–42
    [Google Scholar]
  64. 64. 
    Hall AB, Yassour M, Sauk J et al. 2017. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 9:1103
    [Google Scholar]
  65. 65. 
    Henke MT, Kenny DJ, Cassilly CD et al. 2019. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. PNAS 116:2612672–77
    [Google Scholar]
  66. 66. 
    David LA, Maurice CF, Carmody RN et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  67. 67. 
    Belzer C, Chia LW, Aalvink S et al. 2017. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio 8:5e00770-17
    [Google Scholar]
  68. 68. 
    Russo E, Giudici F, Fiorindi C et al. 2019. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 10:2754
    [Google Scholar]
  69. 69. 
    Zheng L, Kelly CJ, Battista KD et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor–dependent repression of claudin-2. J. Immunol. 199:82976–84
    [Google Scholar]
  70. 70. 
    Schulthess J, Pandey S, Capitani M et al. 2019. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50:2432–45.e7
    [Google Scholar]
  71. 71. 
    Laserna-Mendieta EJ, Clooney AG, Carretero-Gomez JF et al. 2018. Determinants of reduced genetic capacity for butyrate synthesis by the gut microbiome in Crohn's disease and ulcerative colitis. J. Crohn's Colitis 12:2204–16
    [Google Scholar]
  72. 72. 
    Wahlström A, Sayin SI, Marschall HU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:141–50
    [Google Scholar]
  73. 73. 
    Fitzpatrick LR, Jenabzadeh P. 2020. IBD and bile acid absorption: focus on pre-clinical and clinical observations. Front. Physiol. 8:111970
    [Google Scholar]
  74. 74. 
    Allegretti JR, Kearney S, Li N et al. 2016. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 43:111142–53
    [Google Scholar]
  75. 75. 
    Hang S, Paik D, Yao L et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:7785143–48
    [Google Scholar]
  76. 76. 
    Song X, Sun X, Oh SF et al. 2020. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577:7790410–15
    [Google Scholar]
  77. 77. 
    Sinha SR, Haileselassie Y, Nguyen LP et al. 2020. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 27:4659–70.e5
    [Google Scholar]
  78. 78. 
    Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat. Commun. 9:3294
    [Google Scholar]
  79. 79. 
    Lai Y, Xue J, Liu CW et al. 2019. Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn's disease. Molecules 24:3449
    [Google Scholar]
  80. 80. 
    Nikolaus S, Schulte B, Al-Massad N et al. 2017. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 153:61504–16.e2
    [Google Scholar]
  81. 81. 
    Wlodarska M, Luo C, Kolde R et al. 2017. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 22:125–37.e6
    [Google Scholar]
  82. 82. 
    Neavin DR, Liu D, Ray B, Weinshilboum RM 2018. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int. J. Mol. Sci. 19:123851
    [Google Scholar]
  83. 83. 
    Alexeev EE, Lanis JM, Kao DJ et al. 2018. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am. J. Pathol. 188:51183–94
    [Google Scholar]
  84. 84. 
    Scott SA, Fu J, Chang PV. 2020. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. PNAS 117:3219376–87
    [Google Scholar]
  85. 85. 
    Dodd D, Spitzer MH, Van Treuren W et al. 2017. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551:7682648–52
    [Google Scholar]
  86. 86. 
    Lamas B, Richard ML, Leducq V et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22:6598–605
    [Google Scholar]
  87. 87. 
    Zhang J, Zhu S, Ma N et al. 2020. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: a therapeutic target to control intestinal inflammation. Med. Res. Rev. 41:21061–88
    [Google Scholar]
  88. 88. 
    Cohen LJ, Esterhazy D, Kim SH et al. 2017. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549:767048–53
    [Google Scholar]
  89. 89. 
    Chen H, Nwe PK, Yang Y et al. 2019. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177:51217–31.e18
    [Google Scholar]
  90. 90. 
    Zeng Z, Mukherjee A, Varghese AP et al. 2020. Roles of G protein–coupled receptors in inflammatory bowel disease. World J. Gastroenterol. 26:121242–61
    [Google Scholar]
  91. 91. 
    Franzosa EA, Sirota-Madi A, Avila-Pacheco J et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4:2293–305
    [Google Scholar]
  92. 92. 
    Bryan PF, Karla C, Edgar Alejandro MT et al. 2016. Sphingolipids as mediators in the crosstalk between microbiota and intestinal cells: implications for inflammatory bowel disease. Mediat. Inflamm. 2016:9890141
    [Google Scholar]
  93. 93. 
    An D, Oh SF, Olszak T et al. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:1/2123–33
    [Google Scholar]
  94. 94. 
    Brown EM, Ke X, Hitchcock D et al. 2019. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25:5668–80.e7
    [Google Scholar]
  95. 95. 
    Plichta DR, Graham DB, Subramanian S, Xavier RJ. 2019. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host–microbiome relationships. Cell 178:51041–56
    [Google Scholar]
  96. 96. 
    Shan Y, Segre JA, Chang EB. 2019. Responsible stewardship for communicating microbiome research to the press and public. Nat. Med. 25:6872–74
    [Google Scholar]
  97. 97. 
    Paramsothy S, Kamm MA, Kaakoush NO et al. 2017. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389:100751218–28
    [Google Scholar]
  98. 98. 
    Paramsothy S, Nielsen S, Kamm MA et al. 2019. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 156:51440–54.e2
    [Google Scholar]
  99. 99. 
    Preidis GA, Weizman AV, Kashyap PC, Morgan RL. 2020. AGA technical review on the role of probiotics in the management of gastrointestinal disorders. Gastroenterology 159:2708–38.e4
    [Google Scholar]
  100. 100. 
    Limketkai BN, Iheozor-Ejiofor Z, Gjuladin-Hellon T et al. 2019. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst. Rev. 2:2CD012839
    [Google Scholar]
/content/journals/10.1146/annurev-med-042320-021020
Loading
/content/journals/10.1146/annurev-med-042320-021020
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error