1932

Abstract

Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050214-013407
2016-01-14
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/med/67/1/annurev-med-050214-013407.html?itemId=/content/journals/10.1146/annurev-med-050214-013407&mimeType=html&fmt=ahah

Literature Cited

  1. Mehta RL, Cerda J, Burdmann EA. 1.  et al. 2015. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:1–28 [Google Scholar]
  2. Yang L, Xing G, Wang L. 2.  et al. 2015. Acute kidney injury in China: a cross-sectional survey.. Lancet 3861465–71
  3. Cerda J, Bagga A, Kher V, Chakravarthi RM. 3.  2008. The contrasting characteristics of acute kidney injury in developed and developing countries. Nat. Clin. Pract. Nephrol. 4:138–53 [Google Scholar]
  4. Jha V, Parameswaran S. 4.  2013. Community-acquired acute kidney injury in tropical countries. Nat. Rev. Nephrol. 9:278–90 [Google Scholar]
  5. Chawla LS, Eggers PW, Star RA, Kimmel PL. 5.  2014. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371:58–66 [Google Scholar]
  6. Ishani A, Xue JL, Himmelfarb J. 6.  et al. 2009. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20:223–28 [Google Scholar]
  7. Coca SG, Singanamala S, Parikh CR. 7.  2012. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81:442–48 [Google Scholar]
  8. Clements ME, Chaber CJ, Ledbetter SR, Zuk A. 8.  2013. Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8e70464
  9. Peng J, Li X, Zhang D. 9.  et al. 2015. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int. 87:137–50 [Google Scholar]
  10. Polichnowski AJ, Lan R, Geng H. 10.  et al. 2014. Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J. Am. Soc. Nephrol. 25:1496–507 [Google Scholar]
  11. Bonventre JV, Yang L. 11.  2011. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 121:4210–21 [Google Scholar]
  12. Ferenbach DA, Bonventre JV. 12.  2015. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11:264–76 [Google Scholar]
  13. Molitoris BA. 13.  2014. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J. Clin. Investig. 124:2355–63 [Google Scholar]
  14. Aksu U, Demirci C, Ince C. 14.  2011. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib. Nephrol. 174:119–28 [Google Scholar]
  15. Basile DP, Donohoe D, Roethe K, Osborn JL. 15.  2001. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Ren. Physiol. 281:F887–99 [Google Scholar]
  16. Inagi R. 16.  2009. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Exp. Nephrol. 112:e1–e9 [Google Scholar]
  17. Zhang K, Kaufman RJ. 17.  2008. From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–62 [Google Scholar]
  18. Senft D, Ronai ZA. 18.  2015. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40:141–48 [Google Scholar]
  19. Hetz C. 19.  2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13:89–102 [Google Scholar]
  20. Hodeify R, Megyesi J, Tarcsafalvi A. 20.  et al. 2013. Gender differences control the susceptibility to ER stress-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 304:F875–82 [Google Scholar]
  21. Pallet N, Fougeray S, Beaune P. 21.  et al. 2009. Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation 88:605–13 [Google Scholar]
  22. Peyrou M, Hanna PE, Cribb AE. 22.  2007. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol. Sci. 99:346–53 [Google Scholar]
  23. Lhotak S, Sood S, Brimble E. 23.  et al. 2012. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am. J. Physiol. Ren. Physiol. 303:F266–78 [Google Scholar]
  24. Bando Y, Tsukamoto Y, Katayama T. 24.  et al. 2004. ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J. 18:1401–3 [Google Scholar]
  25. Gao X, Fu L, Xiao M. 25.  et al. 2012. The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Basic Clin. Pharmacol. Toxicol. 111:14–23 [Google Scholar]
  26. B'Chir W, Maurin AC, Carraro V. 94.  et al. 2013. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41:7683–99 [Google Scholar]
  27. Dong B, Zhou H, Han C. 26.  et al. 2014. Ischemia/reperfusion-induced CHOP expression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4. PLoS ONE 9:e110944 [Google Scholar]
  28. Chiang CK, Hsu SP, Wu CT. 27.  et al. 2011. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol. Med. 17:1295–305 [Google Scholar]
  29. Raturi A, Simmen T. 28.  2013. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim. Biophys. Acta 1833:213–24 [Google Scholar]
  30. Venkatachalam MA, Griffin KA, Lan R. 29.  et al. 2010. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Ren. Physiol. 298:F1078–94 [Google Scholar]
  31. Brooks C, Wei Q, Cho SG, Dong Z. 30.  2009. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Investig. 119:1275–85 [Google Scholar]
  32. Zhan M, Brooks C, Liu F. 31.  et al. 2013. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83:568–81 [Google Scholar]
  33. Birk AV, Liu S, Soong Y. 32.  et al. 2013. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24:1250–61 [Google Scholar]
  34. Szeto HH, Liu S, Soong Y. 33.  et al. 2011. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22:1041–52 [Google Scholar]
  35. Liu S, Soong Y, Seshan SV, Szeto HH. 34.  2014. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol. Ren. Physiol. 306:F970–80 [Google Scholar]
  36. Funk JA, Odejinmi S, Schnellmann RG. 35.  2010. SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J. Pharmacol. Exp. Ther. 333:593–601 [Google Scholar]
  37. Funk JA, Schnellmann RG. 36.  2013. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol. 273:345–54 [Google Scholar]
  38. Hasegawa K, Wakino S, Yoshioka K. 37.  et al. 2010. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285:13045–56 [Google Scholar]
  39. He W, Wang Y, Zhang MZ. 38.  et al. 2010. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Investig. 120:1056–68 [Google Scholar]
  40. Rasbach KA, Schnellmann RG. 39.  2008. Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 325:536–43 [Google Scholar]
  41. Funk JA, Schnellmann RG. 40.  2012. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Ren. Physiol. 302:F853–64 [Google Scholar]
  42. Tran M, Tam D, Bardia A. 41.  et al. 2011. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Investig. 121:4003–14 [Google Scholar]
  43. Jeskiney SR, Funk JA, Stallons LJ. 42.  et al. 2015. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25:1157–62 [Google Scholar]
  44. Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG. 43.  2014. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350:257–64 [Google Scholar]
  45. Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG. 44.  2013. cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 347:626–34 [Google Scholar]
  46. Gall JM, Wang Z, Bonegio RG. 45.  et al. 2015. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J. Am. Soc. Nephrol. 26:1092–102 [Google Scholar]
  47. Morigi M, Perico L, Rota C. 46.  et al. 2015. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Investig. 125:715–26 [Google Scholar]
  48. Jiang M, Wei Q, Dong G. 47.  et al. 2012. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82:1271–83 [Google Scholar]
  49. He L, Livingston MJ, Dong Z. 48.  2014. Autophagy in acute kidney injury and repair. Nephron Clin. Pract. 127:56–60 [Google Scholar]
  50. Brooks CR, Yeung MY, Brooks YS. 49.  et al. 2015. KIM-1/TIM-1-mediated phagocytosis links ATG5/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 34192441–64
  51. Yang L, Brooks CR, Xiao S. 50.  et al. 2015. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J. Clin. Investig. 125:1620–36 [Google Scholar]
  52. Bonventre JV, Zuk A. 51.  2004. Ischemic acute renal failure: an inflammatory disease?. Kidney Int. 66:480–85 [Google Scholar]
  53. Jang HR, Rabb H. 52.  2015. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11:88–101 [Google Scholar]
  54. Kinsey GR, Okusa MD. 53.  2012. Role of leukocytes in the pathogenesis of acute kidney injury. Crit. Care 16:214 [Google Scholar]
  55. Ysebaert DK. 54.  2000. Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury. Nephrol. Dial. Transpl. 15:1562–74 [Google Scholar]
  56. Zuk A, Gershenovich M, Ivanova Y. 55.  et al. 2014. CXCR4 anatagonism as a therapeutic approach to prevent acute kidney injury. Am. J. Physiol. Ren. Physiol. 307:F783–F97 [Google Scholar]
  57. Gigliotti JC, Huang L, Ye H. 56.  et al. 2013. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24:1451–60 [Google Scholar]
  58. Bonventre JV. 57.  2003. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14:Suppl. 1S55–61 [Google Scholar]
  59. Humphreys BD, Czerniak S, DiRocco DP. 58.  et al. 2011. Repair of injured proximal tubule does not involve specialized progenitors. PNAS 108:9226–31 [Google Scholar]
  60. Humphreys BD, Valerius MT, Kobayashi A. 59.  et al. 2008. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–91 [Google Scholar]
  61. Eardley KS, Zehnder D, Quinkler M. 60.  et al. 2006. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 69:1189–97 [Google Scholar]
  62. Italiani P, Boraschi D. 61.  2014. From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Front. Immunol. 5:514 [Google Scholar]
  63. Clements M, Gershenovich M, Chaber C. 62.  et al. 2015. Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J. Am. Soc. Nephrol. In press
  64. Lee S, Huen S, Nishio H. 63.  et al. 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22:317–26 [Google Scholar]
  65. Zhang MZ, Yao B, Yang S. 64.  et al. 2012. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Investig. 122:4519–32 [Google Scholar]
  66. Humphreys BD, Xu F, Sabbisetti V. 65.  et al. 2013. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 123:4023–35 [Google Scholar]
  67. Yang L, Besschetnova TY, Brooks CR. 66.  et al. 2010. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16:535–43 [Google Scholar]
  68. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. 67.  2015. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26:1765–76 [Google Scholar]
  69. Yang H, Fogo AB. 68.  2010. Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 21:1436–39 [Google Scholar]
  70. Freund A, Orjalo AV, Desprez PY, Campisi J. 69.  2010. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16:238–46 [Google Scholar]
  71. Barnes JL, Glass WF 2nd. 70.  2011. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib. Nephrol. 169:73–93 [Google Scholar]
  72. Broekema M, Harmsen MC, van Luyn MJ. 71.  et al. 2007. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol. 18:165–75 [Google Scholar]
  73. Lin F, Cordes K, Li L. 72.  et al. 2003. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischema-reperfusion injury in mice. J. Am. Soc. Nephrol. 14:1188–99 [Google Scholar]
  74. Ludin A, Itkin T, Gur-Cohen S. 73.  et al. 2012. Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13:1072–82 [Google Scholar]
  75. Kriz W, Kaissling B, Le Hir M. 74.  2011. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?. J. Clin. Investig. 121:468–74 [Google Scholar]
  76. Gomez IG, Duffield JS. 75.  2014. The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int. Suppl. 4:26–33 [Google Scholar]
  77. Anders HJ, Schaefer L. 76.  2014. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 25:1387–400 [Google Scholar]
  78. Leemans JC, Kors L, Anders HJ, Florquin S. 77.  2014. Pattern recognition receptors and the inflammasome in kidney disease. Nat. Rev. Nephrol. 10:398–414 [Google Scholar]
  79. Sallustio F, Constantino V, Cox SN. 78.  et al. 2013. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR-2 driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83:392–403 [Google Scholar]
  80. Kulkarni OP, Hartter I, Mulay SR. 79.  et al. 2014. Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25:978–89 [Google Scholar]
  81. Wang W, Wang X, Chun J. 80.  et al. 2013. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J. Immunol. 190:1239–49 [Google Scholar]
  82. Koyner JL, Garg AX, Coca SG. 81.  et al. 2012. Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Soc. Nephrol. 23:905–14 [Google Scholar]
  83. Alge JL, Arthur JM. 82.  2015. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 10:147–55 [Google Scholar]
  84. Kashani K, Kellum JA. 83.  2015. Novel biomarkers indicating repair or progression after acute kidney injury. Curr. Opin. Nephrol. Hypertens. 24:21–27 [Google Scholar]
  85. Sabbisetti VS, Waikar SS, Antoine DJ. 84.  et al. 2014. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25:2177–86 [Google Scholar]
  86. Fassett RG, Venuthurupalli SK, Gobe GC. 85.  et al. 2011. Biomarkers in chronic kidney disease: a review. Kidney Int. 80:806–21 [Google Scholar]
  87. Ko GJ, Grigoryev DN, Linfert D. 86.  et al. 2010. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD progression. Am. J. Physiol. Ren. Physiol. 298:F1472–F83 [Google Scholar]
  88. Go AS, Parikh CR, Ikizler TA. 87.  et al. 2010. The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol. 11:22 [Google Scholar]
  89. Ho J, Dart A, Rigatto C. 88.  2014. Proteomics in acute kidney injury—current status and future promise. Pediatr. Nephrol. 29:163–71 [Google Scholar]
  90. Sun J, Shannon M, Ando Y. 89.  et al. 2012. Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 893–894:107–13 [Google Scholar]
  91. Lee CG, Kim JG, Kim HJ. 90.  et al. 2014. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int. 86:943–53 [Google Scholar]
  92. Ramachandran K, Saikumar J, Bijol V. 91.  et al. 2013. Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin. Chem. 59:1742–52 [Google Scholar]
  93. Endo K, Kito N, Fukushima Y. 92.  et al. 2014. A novel biomarker for acute kidney injury using TaqMan-based unmethylated DNA-specific polymerase chain reaction. Biomed. Res. 35:207–13 [Google Scholar]
  94. Salih M, Zietse R, Hoorn EJ. 93.  2014. Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am. J. Physiol. Ren. Physiol. 306:F1251–59 [Google Scholar]
/content/journals/10.1146/annurev-med-050214-013407
Loading
/content/journals/10.1146/annurev-med-050214-013407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error