1932

Abstract

Nonalcoholic steatohepatitis (NASH) has become a major cause of cirrhosis and liver-related deaths worldwide. NASH is strongly associated with obesity and the metabolic syndrome, conditions that cause lipid accumulation in hepatocytes (hepatic steatosis). It is not well understood why some, but not other, individuals with hepatic steatosis develop NASH. The factors that determine whether or not NASH progresses to cirrhosis are also unclear. This review summarizes key components of NASH pathogenesis and discusses how inherent and acquired variations in regulation of these processes impact the risk for NASH and NASH cirrhosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-051215-031109
2017-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/68/1/annurev-med-051215-031109.html?itemId=/content/journals/10.1146/annurev-med-051215-031109&mimeType=html&fmt=ahah

Literature Cited

  1. Angulo P. 1.  2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346:1221–31 [Google Scholar]
  2. Welsh JA, Karpen S, Vos MB. 2.  2013. Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010. J. Pediatrics 162:496–500e1 [Google Scholar]
  3. Kojima S, Watanabe N, Numata M. 3.  et al. 2003. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J. Gastroenterol. 38:954–61 [Google Scholar]
  4. Szczepaniak LS, Nurenberg P, Leonard D. 4.  et al. 2005. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 288:E462–68 [Google Scholar]
  5. Williams CD, Stengel J, Asike MI. 5.  et al. 2011. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–31 [Google Scholar]
  6. Hui AY, Wong VW, Chan HL. 6.  et al. 2005. Histological progression of non-alcoholic fatty liver disease in Chinese patients. Aliment. Pharmacol. Ther. 21:407–13 [Google Scholar]
  7. Harrison SA, Torgerson S, Hayashi PH. 7.  2003. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am. J. Gastroenterol. 98:2042–47 [Google Scholar]
  8. Angulo P, Kleiner DE, Dam-Larsen S. 8.  et al. 2015. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149:389–97e10 [Google Scholar]
  9. Rafiq N, Bai C, Fang Y. 9.  et al. 2009. Long-term follow-up of patients with nonalcoholic fatty liver. Clin. Gastroenterol. Hepatol. 7:234–38 [Google Scholar]
  10. Vernon G, Baranova A, Younossi ZM. 10.  2011. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 34:274–85 [Google Scholar]
  11. Jun DW, Han JH, Kim SH. 11.  et al. 2008. Association between low thigh fat and non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 23:888–93 [Google Scholar]
  12. Park SH, Kim BI, Kim SH. 12.  et al. 2007. Body fat distribution and insulin resistance: beyond obesity in nonalcoholic fatty liver disease among overweight men. J. Am. Coll. Nutr. 26:321–26 [Google Scholar]
  13. Richardson MM, Jonsson JR, Powell EE. 13.  et al. 2007. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 133:80–90 [Google Scholar]
  14. Hardy T, Oakley F, Anstee QM. 14.  et al. 2016. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11:451–96 [Google Scholar]
  15. Suzuki A, Abdelmalek MF. 15.  2009. Nonalcoholic fatty liver disease in women. Womens Health 5:191–203 [Google Scholar]
  16. Suzuki A, Angulo P, Lymp J. 16.  et al. 2005. Chronological development of elevated aminotransferases in a nonalcoholic population. Hepatology 41:64–71 [Google Scholar]
  17. Nomura H, Kashiwagi S, Hayashi J. 17.  et al. 1988. Prevalence of fatty liver in a general population of Okinawa, Japan. Jpn. J. Med. 27:142–49 [Google Scholar]
  18. Clark JM, Brancati FL, Diehl AM. 18.  2002. Nonalcoholic fatty liver disease. Gastroenterology 122:1649–57 [Google Scholar]
  19. Kagansky N, Levy S, Keter D. 19.  et al. 2004. Non-alcoholic fatty liver disease—a common and benign finding in octogenarian patients. Liver Int 24:588–94 [Google Scholar]
  20. Suzuki A, Diehl AM. 20.  2005. Should nonalcoholic fatty liver disease be treated differently in elderly patients?. Nat. Clin. Pract. Gastroenterol. Hepatol. 2:208–9 [Google Scholar]
  21. Chalasani N, Wilson L, Kleiner DE. 21.  et al. 2008. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J. Hepatol. 48:829–34 [Google Scholar]
  22. Yamaguchi K, Yang L, McCall S. 22.  et al. 2007. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–74 [Google Scholar]
  23. Leamy AK, Egnatchik RA, Shiota M. 23.  et al. 2014. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J. Lipid Res. 55:1478–88 [Google Scholar]
  24. Sethi JK, Vidal-Puig AJ. 24.  2007. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 48:1253–62 [Google Scholar]
  25. Cortes VA, Fernandez-Galilea M. 25.  2015. Lipodystrophies: adipose tissue disorders with severe metabolic implications. J. Physiol. Biochem. 71:471–78 [Google Scholar]
  26. Margariti E, Deutsch M, Manolakopoulos S. 26.  et al. 2012. Non-alcoholic fatty liver disease may develop in individuals with normal body mass index. Ann. Gastroenterol. 25:45–51 [Google Scholar]
  27. Morita S, De-Santi Neto D, Morita FH. 27.  et al. 2015. Prevalence of non-alcoholic fatty liver disease and steatohepatitis risk factors in patients undergoing bariatric surgery. Obes. Surg. 25:2335–43 [Google Scholar]
  28. Alkhouri N, Dixon LJ, Feldstein AE. 28.  2009. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 3:445–51 [Google Scholar]
  29. Hannah WN Jr., Harrison SA. 29.  2016. Effect of weight loss, diet, exercise, and bariatric surgery on nonalcoholic fatty liver disease. Clin. Liver Dis. 20:2339–50 [Google Scholar]
  30. Nielsen S, Guo Z, Johnson CM. 30.  et al. 2004. Splanchnic lipolysis in human obesity. J. Clin. Investig. 113:1582–88 [Google Scholar]
  31. Suzuki A, Abdelmalek MF, Unalp-Arida A. 31.  et al. 2010. Regional anthropometric measures and hepatic fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 8:1062–69 [Google Scholar]
  32. Cheung O, Kapoor A, Puri P. 32.  et al. 2007. The impact of fat distribution on the severity of nonalcoholic fatty liver disease and metabolic syndrome. Hepatology 46:1091–100 [Google Scholar]
  33. Garaulet M, Perez-Llamas F, Baraza JC. 33.  et al. 2002. Body fat distribution in pre-and post-menopausal women: metabolic and anthropometric variables. J. Nutr. Health Aging 6:123–26 [Google Scholar]
  34. Kvist H, Chowdhury B, Grangard U. 34.  et al. 1988. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am. J. Clin. Nutr. 48:1351–61 [Google Scholar]
  35. Klair JS, Yang JD, Abdelmalek MF. 35.  et al. 2016. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease. Hepatology 64:185–91 [Google Scholar]
  36. Morse CG, McLaughlin M, Matthews L. 36.  et al. 2015. Nonalcoholic steatohepatitis and hepatic fibrosis in HIV-1-monoinfected adults with elevated aminotransferase levels on antiretroviral therapy. Clin. Infect. Dis. 60:1569–78 [Google Scholar]
  37. Lee PL, Tang Y, Li H. 37.  et al. 2016. Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease. Mol. Metab. 5:422–32 [Google Scholar]
  38. Johnston O, Rose CL, Webster AC. 38.  et al. 2008. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19:1411–18 [Google Scholar]
  39. Garg A. 39.  2004. Acquired and inherited lipodystrophies. N. Engl. J. Med. 350:1220–34 [Google Scholar]
  40. Rinella ME, Green RM. 40.  2004. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 40:47–51 [Google Scholar]
  41. Watanabe S, Horie Y, Suzuki A. 41.  2005. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. 33:161–66 [Google Scholar]
  42. Kudo Y, Tanaka Y, Tateishi K. 42.  et al. 2011. Altered composition of fatty acids exacerbates hepatotumorigenesis during activation of the phosphatidylinositol 3-kinase pathway. J. Hepatol. 55:1400–8 [Google Scholar]
  43. Hagenfeldt L, Wahren J, Pernow B. 43.  et al. 1972. Uptake of individual free fatty acids by skeletal muscle and liver in man. J. Clin. Investig. 51:2324–30 [Google Scholar]
  44. Machado MV, Michelotti GA, Pereira de Almeida T. 44.  et al. 2015. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 64:1148–57 [Google Scholar]
  45. Liu J, Cinar R, Xiong K. 45.  et al. 2013. Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide hydrolase. PNAS 110:18832–37 [Google Scholar]
  46. Osei-Hyiaman D, DePetrillo M, Pacher P. 46.  et al. 2005. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Investig. 115:1298–305 [Google Scholar]
  47. Li ZZ, Berk M, McIntyre TM. 47.  et al. 2009. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J. Biol. Chem. 284:5637–44 [Google Scholar]
  48. Liu X, Burhans MS, Flowers MT. 48.  et al. 2016. Hepatic oleate regulates liver stress response partially through PGC-1alpha during high-carbohydrate feeding. J. Hepatol. 65:103–12 [Google Scholar]
  49. Vacca M, Allison M, Griffin JL. 49.  et al. 2015. Fatty acid and glucose sensors in hepatic lipid metabolism: implications in NAFLD. Semin. Liver Dis. 35:250–61 [Google Scholar]
  50. Noland RC, Koves TR, Seiler SE. 50.  et al. 2009. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J. Biol. Chem. 284:22840–52 [Google Scholar]
  51. Kostapanos MS, Kei A, Elisaf MS. 51.  2013. Current role of fenofibrate in the prevention and management of non-alcoholic fatty liver disease. World J. Hepatol. 5:470–78 [Google Scholar]
  52. Yoon M. 52.  2010. PPARalpha in obesity: sex difference and estrogen involvement. PPAR Res 2010:584296 [Google Scholar]
  53. Romano KA, Vivas EI, Amador-Noguez D. 53.  et al. 2015. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6:e02481 [Google Scholar]
  54. McCarty MF, DiNicolantonio JJ. 54.  2015. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age 37:596 doi: 10.1007/s11357-015-9823-8 [Google Scholar]
  55. Fischer LM, daCosta KA, Kwock L. 55.  et al. 2007. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am. J. Clin. Nutr. 85:1275–85 [Google Scholar]
  56. Ajuwon OR, Oguntibeju OO, Marnewick JL. 56.  2014. Amelioration of lipopolysaccharide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress. BMC Complement. Altern. Med. 14:392 doi: 10.1186/1472-6882-14-392 [Google Scholar]
  57. Brenner C, Galluzzi L, Kepp O. 57.  et al. 2013. Decoding cell death signals in liver inflammation. J. Hepatol. 59:583–94 [Google Scholar]
  58. Schneider JL, Cuervo AM. 58.  2014. Liver autophagy: much more than just taking out the trash. Nat. Rev. Gastroenterol. Hepatol. 11:187–200 [Google Scholar]
  59. Boya P, Gonzalez-Polo RA, Casares N. 59.  et al. 2005. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25:1025–40 [Google Scholar]
  60. Malhotra JD, Kaufman RJ. 60.  2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxidants Redox Signaling 9:2277–93 [Google Scholar]
  61. Hirsova P, Gores GJ. 61.  2015. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 1:17–27 [Google Scholar]
  62. Canbay A, Feldstein AE, Higuchi H. 62.  et al. 2003. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–98 [Google Scholar]
  63. Caldwell S, Ikura Y, Dias D. 63.  et al. 2010. Hepatocellular ballooning in NASH. J. Hepatol. 53:719–23 [Google Scholar]
  64. Brunt EM, Tiniakos DG. 64.  2010. Histopathology of nonalcoholic fatty liver disease. World J. Gastroenterol. 16:5286–96 [Google Scholar]
  65. Kakisaka K, Cazanave SC, Werneburg NW. 65.  et al. 2012. A hedgehog survival pathway in “undead” lipotoxic hepatocytes. J. Hepatol. 57:844–51 [Google Scholar]
  66. Bronner DN, O'Riordan MX, He Y. 66.  2013. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front. Cell Infect. Microbiol. Nov 27:383 doi: 10.3389/fcimb.2013.00083 [Google Scholar]
  67. Lebeaupin C, Proics E, de Bieville CH. 67.  et al. 2015. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 6:e1879 [Google Scholar]
  68. Sanman LE, Qian Y, Eisele NA. 68.  et al. 2016. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 24:5e13663 [Google Scholar]
  69. Zanoni I, Tan Y, Di Gioia M. 69.  et al. 2016. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352:1232–36 [Google Scholar]
  70. Andersen CJ, Murphy KE, Fernandez ML. 70.  2016. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 7:66–75 [Google Scholar]
  71. Cavalcante-Silva LH, Galvao JG, da Silva JS. 71.  et al. 2015. Obesity-driven gut microbiota inflammatory pathways to metabolic syndrome. Front. Physiol. Nov 19:6341 doi: 10.3389/fphys.2015.00341 [Google Scholar]
  72. Lackey DE, Olefsky JM. 72.  2016. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12:15–28 [Google Scholar]
  73. Lynch L, Nowak M, Varghese B. 73.  et al. 2012. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37:574–87 [Google Scholar]
  74. Chandra RK. 74.  1980. Cell-mediated immunity in genetically obese (C57BL/6J ob/ob) mice. Am. J. Clin. Nutr. 33:13–16 [Google Scholar]
  75. Ley RE, Backhed F, Turnbaugh P. 75.  et al. 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75 [Google Scholar]
  76. Guebre-Xabier M, Yang S, Lin HZ. 76.  et al. 2000. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage. Hepatology 31:633–40 [Google Scholar]
  77. Honda H, Ikejima K, Hirose M. 77.  et al. 2002. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology 36:12–21 [Google Scholar]
  78. Syn WK, Agboola KM, Swiderska M. 78.  et al. 2012. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61:1323–29 [Google Scholar]
  79. Kremer M, Hines IN. 79.  2008. Natural killer T cells and non-alcoholic fatty liver disease: fat chews on the immune system. World J. Gastroenterol. 14:487–88 [Google Scholar]
  80. Syn WK, Oo YH, Pereira TA. 80.  et al. 2010. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51:1998–2007 [Google Scholar]
  81. Friedman SL. 81.  2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72 [Google Scholar]
  82. Kramann R, Schneider RK, DiRocco DP. 82.  et al. 2015. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66 [Google Scholar]
  83. Michelotti GA, Xie G, Swiderska M. 83.  et al. 2013. Smoothened is a master regulator of adult liver repair. J. Clin. Investig. 123:2380–94 [Google Scholar]
  84. Omenetti A, Choi S, Michelotti G. 84.  et al. 2011. Hedgehog signaling in the liver. J. Hepatol. 54:366–73 [Google Scholar]
  85. Ochoa B, Syn WK, Delgado I. 85.  et al. 2010. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51:1712–23 [Google Scholar]
  86. Syn WK, Jung Y, Omenetti A. 86.  et al. 2009. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137:1478–88 [Google Scholar]
  87. Rangwala F, Guy CD, Lu J. 87.  et al. 2011. Increased production of sonic hedgehog by ballooned hepatocytes. J. Pathol. 224:401–10 [Google Scholar]
  88. Guy CD, Suzuki A, Zdanowicz M. 88.  et al. 2012. Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55:1711–21 [Google Scholar]
  89. Guy CD, Suzuki A, Abdelmalek MF. 89.  et al. 2015. Treatment response in the PIVENS trial is associated with decreased Hedgehog pathway activity. Hepatology 61:98–107 [Google Scholar]
  90. Chung SI, Moon H, Ju HL. 90.  et al. 2016. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J. Hepatol. 64:618–27 [Google Scholar]
  91. Myers BR, Sever N, Chong YC. 91.  et al. 2013. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev. Cell 26:346–57 [Google Scholar]
  92. Pospisilik JA, Schramek D, Schnidar H. 92.  et al. 2010. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140:148–60 [Google Scholar]
  93. Teperino R, Amann S, Bayer M. 93.  et al. 2012. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 151:414–26 [Google Scholar]
  94. Keramati AR, Fathzadeh M, Go GW. 94.  et al. 2014. A form of the metabolic syndrome associated with mutations in DYRK1B. N. Engl. J. Med. 370:1909–19 [Google Scholar]
  95. Lim GE, Albrecht T, Piske M. 95.  et al. 2015. 14-3-3ζ coordinates adipogenesis of visceral fat. Nat. Commun. 6:7671 [Google Scholar]
  96. Borggrefe T, Lauth M, Zwijsen A. 96.  et al. 2016. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta. 1863:303–13 [Google Scholar]
  97. Shi Y, Chen J, Karner CM. 97.  et al. 2015. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. PNAS 112:4678–83 [Google Scholar]
  98. Varelas X. 98.  2014. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141:1614–26 [Google Scholar]
  99. Wehner D, Weidinger G. 99.  2015. Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet 31:336–43 [Google Scholar]
  100. Jerde TJ. 100.  2015. Phosphatase and tensin homologue: novel regulation by developmental signaling. J. Signal Transduct 2015:282567 doi: 10.1155/2015/282567 [Google Scholar]
/content/journals/10.1146/annurev-med-051215-031109
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error