1932

Abstract

Cardiac amyloidosis (CA) is an infiltrative and restrictive cardiomyopathy that leads to heart failure, reduced quality of life, and death. The disease has two main subtypes, transthyretin cardiac amyloidosis (ATTR-CA) and immunoglobulin light chain cardiac amyloidosis (AL-CA), characterized by the nature of the infiltrating protein. ATTR-CA is further subdivided into wild-type (ATTRwt-CA) and variant (ATTRv-CA) based on the presence or absence of a mutation in the transthyretin gene. CA is significantly underdiagnosed and increasingly recognized as a cause of heart failure with preserved ejection fraction. Advances in diagnosis that employ nuclear scintigraphy to diagnose ATTR-CA without a biopsy and the emergence of effective treatments, including transthyretin stabilizers and silencers, have changed the landscape of this field and render early and accurate diagnosis critical. This review summarizes the epidemiology, pathophysiology, diagnosis, prognosis, and management of CA with an emphasis on the significance of recent developments and suggested future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-052918-020140
2020-01-27
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/med/71/1/annurev-med-052918-020140.html?itemId=/content/journals/10.1146/annurev-med-052918-020140&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Benson MD, Buxbaum JN, Eisenberg DS et al. 2019. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 25:215–19
    [Google Scholar]
  2. 2. 
    Kumar SK, Gertz MA, Lacy MQ et al. 2011. Recent improvements in survival in primary systemic amyloidosis and the importance of an early mortality risk score. Mayo Clin. Proc. 86:12–18
    [Google Scholar]
  3. 3. 
    Witteles R. 2016. Cardiac amyloidosis. Am. Coll. Cardiol. Expert Anal. https://www.acc.org/latest-in-cardiology/articles/2016/07/07/14/59/cardiac-amyloidosis
  4. 4. 
    Lousada I, Comenzo RL, Landau H et al. 2015. Light chain amyloidosis: patient experience survey from the Amyloidosis Research Consortium. Adv. Ther. 32:920–28
    [Google Scholar]
  5. 5. 
    Pinney JH, Whelan CJ, Petrie A et al. 2013. Senile systemic amyloidosis: clinical features at presentation and outcome. J. Am. Heart Assoc. 2:e000098
    [Google Scholar]
  6. 6. 
    Grogan M, Scott CG, Kyle RA et al. 2016. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J. Am. Coll. Cardiol. 68:1014–20
    [Google Scholar]
  7. 7. 
    Cornwell GG 3rd, Murdoch WL, Kyle RA et al. 1983. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am. J. Med. 75:618–23
    [Google Scholar]
  8. 8. 
    Tanskanen M, Peuralinna T, Polvikoski T et al. 2008. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann. Med. 40:232–39
    [Google Scholar]
  9. 9. 
    Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G et al. 2015. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 36:2585–94
    [Google Scholar]
  10. 10. 
    Castano A, Narotsky DL, Hamid N et al. 2017. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. 38:2879–87
    [Google Scholar]
  11. 11. 
    Morner S, Hellman U, Suhr OB et al. 2005. Amyloid heart disease mimicking hypertrophic cardiomyopathy. J. Intern. Med. 258:225–30
    [Google Scholar]
  12. 12. 
    Mohamed-Salem L, Santos-Mateo JJ, Sanchez-Serna J et al. 2018. Prevalence of wild type ATTR assessed as myocardial uptake in bone scan in the elderly population. Int. J. Cardiol. 270:192–96
    [Google Scholar]
  13. 13. 
    Jacobson DR, Alexander AA, Tagoe C, Buxbaum JN 2015. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid 22:171–74
    [Google Scholar]
  14. 14. 
    Maurer MS, Hanna M, Grogan M et al. 2016. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J. Am. Coll. Cardiol. 68:161–72
    [Google Scholar]
  15. 15. 
    Reilly MM, Staunton H, Harding AE 1995. Familial amyloid polyneuropathy (TTR ala 60) in North West Ireland: a clinical, genetic, and epidemiological study. J. Neurol. Neurosurg. Psychiatry 59:45–49
    [Google Scholar]
  16. 16. 
    Falk RH, Alexander KM, Liao R, Dorbala S 2016. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J. Am. Coll. Cardiol. 68:1323–41
    [Google Scholar]
  17. 17. 
    Kyle RA, Larson DR, Kurtin PJ et al. 2019. Incidence of AL amyloidosis in Olmsted County, Minnesota, 1990 through 2015. Mayo Clin. Proc. 94:465–71
    [Google Scholar]
  18. 18. 
    Falk RH, Skinner M. 2000. The systemic amyloidoses: an overview. Adv. Intern. Med. 45:107–37
    [Google Scholar]
  19. 19. 
    Donnelly JP, Hanna M. 2017. Cardiac amyloidosis: an update on diagnosis and treatment. Cleveland Clin. J. Med. 84:12 Suppl. 312–26
    [Google Scholar]
  20. 20. 
    Shi J, Guan J, Jiang B et al. 2010. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. PNAS 107:4188–93
    [Google Scholar]
  21. 21. 
    Brenner DA, Jain M, Pimentel DR et al. 2004. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ. Res. 94:1008–10
    [Google Scholar]
  22. 22. 
    Gertz MA, Comenzo R, Falk RH et al. 2005. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 79:319–28
    [Google Scholar]
  23. 23. 
    Feng D, Syed IS, Martinez M et al. 2009. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation 119:2490–97
    [Google Scholar]
  24. 24. 
    Longhi S, Quarta CC, Milandri A et al. 2015. Atrial fibrillation in amyloidotic cardiomyopathy: prevalence, incidence, risk factors and prognostic role. Amyloid 22:147–55
    [Google Scholar]
  25. 25. 
    Martinez-Naharro A, Gonzalez-Lopez E, Corovic A et al. 2019. High prevalence of intracardiac thrombi in cardiac amyloidosis. J. Am. Coll. Cardiol. 73:1733–34
    [Google Scholar]
  26. 26. 
    Bokhari S, Morgenstern R, Weinberg R et al. 2018. Standardization of 99mTechnetium pyrophosphate imaging methodology to diagnose TTR cardiac amyloidosis. J. Nucl. Cardiol. 25:181–90
    [Google Scholar]
  27. 27. 
    Bokhari S, Castano A, Pozniakoff T et al. 2013. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ. Cardiovasc. Imag. 6:195–201
    [Google Scholar]
  28. 28. 
    Treglia G, Glaudemans A, Bertagna F et al. 2018. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur. J. Nucl. Med. Mol. Imag. 45:1945–55
    [Google Scholar]
  29. 29. 
    Quarta CC, Gonzalez-Lopez E, Gilbertson JA et al. 2017. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur. Heart J. 38:1905–8
    [Google Scholar]
  30. 30. 
    Katzmann JA, Abraham RS, Dispenzieri A et al. 2005. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin. Chem. 51:878–81
    [Google Scholar]
  31. 31. 
    Gillmore JD, Maurer MS, Falk RH et al. 2016. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–12
    [Google Scholar]
  32. 32. 
    Phull P, Sanchorawala V, Connors LH et al. 2018. Monoclonal gammopathy of undetermined significance in systemic transthyretin amyloidosis (ATTR). Amyloid 25:62–67
    [Google Scholar]
  33. 33. 
    Coelho T, Maurer MS, Suhr OB 2013. THAOS—the Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr. Med. Res. Opin. 29:63–76
    [Google Scholar]
  34. 34. 
    Ihse E, Rapezzi C, Merlini G et al. 2013. Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid 20:142–50
    [Google Scholar]
  35. 35. 
    Rapezzi C, Lorenzini M, Longhi S et al. 2015. Cardiac amyloidosis: the great pretender. Heart Fail. Rev. 20:117–24
    [Google Scholar]
  36. 36. 
    Nakagawa M, Sekijima Y, Yazaki M et al. 2016. Carpal tunnel syndrome: a common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 23:58–63
    [Google Scholar]
  37. 37. 
    Westermark P, Westermark GT, Suhr OB, Berg S 2014. Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Upsala J. Med. Sci. 119:223–28
    [Google Scholar]
  38. 38. 
    Rubin J, Alvarez J, Teruya S et al. 2017. Hip and knee arthroplasty are common among patients with transthyretin cardiac amyloidosis, occurring years before cardiac amyloid diagnosis: Can we identify affected patients earlier?. Amyloid 24:226–30
    [Google Scholar]
  39. 39. 
    Geller HI, Singh A, Alexander KM et al. 2017. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis. JAMA 318:962–63
    [Google Scholar]
  40. 40. 
    Jacobson DR, Pastore RD, Yaghoubian R et al. 1997. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 336:466–73
    [Google Scholar]
  41. 41. 
    Ranlov I, Alves IL, Ranlov PJ et al. 1992. A Danish kindred with familial amyloid cardiomyopathy revisited: identification of a mutant transthyretin-methionine111 variant in serum from patients and carriers. Am. J. Med. 93:3–8
    [Google Scholar]
  42. 42. 
    Almeida MR, Hesse A, Steinmetz A et al. 1991. Transthyretin Leu 68 in a form of cardiac amyloidosis. Basic Res. Cardiol. 86:567–71
    [Google Scholar]
  43. 43. 
    Sattianayagam PT, Hahn AF, Whelan CJ et al. 2012. Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur. Heart J. 33:1120–27
    [Google Scholar]
  44. 44. 
    Rapezzi C, Quarta CC, Obici L et al. 2013. Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective. Eur. Heart J. 34:520–28
    [Google Scholar]
  45. 45. 
    Cyrille NB, Goldsmith J, Alvarez J, Maurer MS 2014. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis. Am. J. Cardiol. 114:1089–93
    [Google Scholar]
  46. 46. 
    Quarta CP, Longhi S, Berardini A et al. 2012. A simple voltage/mass index improved diagnsois of cardiac amyloidosis; an electrocardiographic and echocardiographic study of 570 patients with left ventricular hypertrophy. J. Am. Coll. Cardiol. 59:E1586
    [Google Scholar]
  47. 47. 
    Liu D, Hu K, Stork S et al. 2014. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction. PLOS ONE 9:e115910
    [Google Scholar]
  48. 48. 
    Barros-Gomes S, Williams B, Nhola LF et al. 2017. Prognosis of light chain amyloidosis with preserved LVEF: added value of 2D speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc. Imag. 10:398–407
    [Google Scholar]
  49. 49. 
    Hu K, Liu D, Herrmann S et al. 2013. Clinical implication of mitral annular plane systolic excursion for patients with cardiovascular disease. Eur. Heart J. Cardiovasc. Imag. 14:205–12
    [Google Scholar]
  50. 50. 
    Matthews SD, Rubin J, Cohen LP, Maurer MS 2018. Myocardial contraction fraction: a volumetric measure of myocardial shortening analogous to strain. J. Am. Coll. Cardiol. 71:255–56
    [Google Scholar]
  51. 51. 
    Tendler A, Helmke S, Teruya S et al. 2015. The myocardial contraction fraction is superior to ejection fraction in predicting survival in patients with AL cardiac amyloidosis. Amyloid 22:61–66
    [Google Scholar]
  52. 52. 
    Rubin J, Steidley DE, Carlsson M et al. 2018. Myocardial contraction fraction by M-mode echocardiography is superior to ejection fraction in predicting mortality in transthyretin amyloidosis. J. Cardiac Fail. 24:504–11
    [Google Scholar]
  53. 53. 
    Palladini G, Campana C, Klersy C et al. 2003. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 107:2440–45
    [Google Scholar]
  54. 54. 
    Palladini G, Russo P, Nuvolone M et al. 2007. Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis. Blood 110:787–88
    [Google Scholar]
  55. 55. 
    Dispenzieri A, Gertz MA, Kyle RA et al. 2004. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J. Clin. Oncol. 22:3751–57
    [Google Scholar]
  56. 56. 
    Kumar S, Dispenzieri A, Lacy MQ et al. 2012. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J. Clin. Oncol. 30:989–95
    [Google Scholar]
  57. 57. 
    Lilleness B, Ruberg FL, Mussinelli R et al. 2019. Development and validation of a survival staging system incorporating BNP in patients with light chain amyloidosis. Blood 133:215–23
    [Google Scholar]
  58. 58. 
    Gillmore JD, Damy T, Fontana M et al. 2018. A new staging system for cardiac transthyretin amyloidosis. Eur. Heart J. 39:2799–806
    [Google Scholar]
  59. 59. 
    Ruberg FL, Maurer MS, Judge DP et al. 2012. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am. Heart J. 164:222–28
    [Google Scholar]
  60. 60. 
    Gertz MA, Falk RH, Skinner M et al. 1985. Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am. J. Cardiol. 55:1645
    [Google Scholar]
  61. 61. 
    Pollak A, Falk RH. 1993. Left ventricular systolic dysfunction precipitated by verapamil in cardiac amyloidosis. Chest 104:618–20
    [Google Scholar]
  62. 62. 
    Cassidy JT. 1961. Cardiac amyloidosis. Two cases with digitalis sensitivity. Ann. Intern. Med. 55:989–94
    [Google Scholar]
  63. 63. 
    Muchtar E, Gertz MA, Kumar SK et al. 2018. Digoxin use in systemic light-chain (AL) amyloidosis: contra-indicated or cautious use?. Amyloid 25:86–92
    [Google Scholar]
  64. 64. 
    Feng D, Edwards WD, Oh JK et al. 2007. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation 116:2420–26
    [Google Scholar]
  65. 65. 
    Barbhaiya CR, Kumar S, Baldinger SH et al. 2016. Electrophysiologic assessment of conduction abnormalities and atrial arrhythmias associated with amyloid cardiomyopathy. Heart Rhythm 13:383–90
    [Google Scholar]
  66. 66. 
    Sayed RH, Rogers D, Khan F et al. 2015. A study of implanted cardiac rhythm recorders in advanced cardiac AL amyloidosis. Eur. Heart J. 36:1098–105
    [Google Scholar]
  67. 67. 
    Swiecicki PL, Edwards BS, Kushwaha SS et al. 2013. Left ventricular device implantation for advanced cardiac amyloidosis. J. Heart Lung Transplant. 32:563–68
    [Google Scholar]
  68. 68. 
    Davis MK, Kale P, Liedtke M et al. 2015. Outcomes after heart transplantation for amyloid cardiomyopathy in the modern era. Am. J. Transplant. 15:650–58
    [Google Scholar]
  69. 69. 
    Davis MK, Lee PH, Witteles RM 2015. Changing outcomes after heart transplantation in patients with amyloid cardiomyopathy. J. Heart Lung Transplant. 34:658–66
    [Google Scholar]
  70. 70. 
    Maurer MS, Schwartz JH, Gundapaneni B et al. 2018. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379:1007–16
    [Google Scholar]
  71. 71. 
    Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW 2004. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J. Med. Chem. 47:355–74
    [Google Scholar]
  72. 72. 
    Berk JL, Suhr OB, Obici L et al. 2013. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 310:2658–67
    [Google Scholar]
  73. 73. 
    Ikram A, Donnelly JP, Sperry BW et al. 2018. Diflunisal tolerability in transthyretin cardiac amyloidosis: a single center's experience. Amyloid 25:197–202
    [Google Scholar]
  74. 74. 
    Sekijima Y, Tojo K, Morita H et al. 2015. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid 22:79–83
    [Google Scholar]
  75. 75. 
    Adams D, Gonzalez-Duarte A, O'Riordan WD et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:11–21
    [Google Scholar]
  76. 76. 
    Benson MD, Waddington-Cruz M, Berk JL et al. 2018. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:22–31
    [Google Scholar]
  77. 77. 
    Benson MD, Dasgupta NR, Rissing SM et al. 2017. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid 24:219–25
    [Google Scholar]
  78. 78. 
    Comenzo RL, Vosburgh E, Falk RH et al. 1998. Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients. Blood 91:3662–70
    [Google Scholar]
  79. 79. 
    Sanchorawala V, Sun F, Quillen K et al. 2015. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20-year experience. Blood 126:2345–47
    [Google Scholar]
  80. 80. 
    Dispenzieri A, Buadi F, Kumar SK et al. 2015. Treatment of immunoglobulin light chain amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Mayo Clin. Proc. 90:1054–81
    [Google Scholar]
  81. 81. 
    Merlini G, Lousada I, Ando Y et al. 2016. Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis. Leukemia 30:1979–86
    [Google Scholar]
  82. 82. 
    Falk RH. 2019. Tafamidis for transthyretin amyloid cardiomyopathy: the solution or just the beginning of the end?. Eur. Heart J. 40:1009–12
    [Google Scholar]
  83. 83. 
    Liedtke M, Merlini G, Landau H et al. 2016. The VITAL amyloidosis study: a randomized, double-blind, placebo-controlled, global, phase 3 study of NEOD001 in patients with AL amyloidosis and cardiac dysfunction. Blood 128:5690
    [Google Scholar]
  84. 84. 
    ClinicalTrials.gov. NCT02245867 Study of chimeric fibril-reactive monoclonal antibody 11–1f4 in patients with AL amyloidosis. https://clinicaltrials.gov/ct2/show/NCT02245867
  85. 85. 
    ClinicalTrials.gov. NCT03201965 A study to evaluate the efficacy and safety of daratumumab in combination with cyclophosphamide, bortezomib and dexamethasone (CyBorD) compared to CyBorD alone in newly diagnosed systemic amyloid light-chain (AL) amyloidosis. https://clinicaltrials.gov/ct2/show/NCT03201965
  86. 86. 
    ClinicalTrials.gov. NCT03812172 Screening for cardiac amyloidosis using nuclear imaging for minority populations (SCAN-MP). https://clinicaltrials.gov/ct2/show/NCT03812172
/content/journals/10.1146/annurev-med-052918-020140
Loading
/content/journals/10.1146/annurev-med-052918-020140
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error