1932

Abstract

Understanding a tumor's detailed molecular profile has become increasingly necessary to deliver the standard of care for patients with advanced cancer. Innovations in both tumor genomic sequencing technology and the development of drugs that target molecular alterations have fueled recent gains in genome-driven oncology care. “Basket studies,” or histology-agnostic clinical trials in genomically selected patients, represent one important research tool to continue making progress in this field. We review key aspects of genome-driven oncology care, including the purpose and utility of basket studies, biostatistical considerations in trial design, genomic knowledgebase development, and patient matching and enrollment models, which are critical for translating our genomic knowledge into clinically meaningful outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-062016-050343
2018-01-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/69/1/annurev-med-062016-050343.html?itemId=/content/journals/10.1146/annurev-med-062016-050343&mimeType=html&fmt=ahah

Literature Cited

  1. Schram AM, Berger MF, Hyman DM. 1.  2017. Precision oncology: charting a path forward to broader deployment of genomic profiling. PLOS Med 14:2e1002242 [Google Scholar]
  2. Druker BJ, Guilhot F, O'Brien SG. 2.  et al. 2006. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355:232408–17 [Google Scholar]
  3. Bower H, Björkholm M, Dickman PW. 3.  et al. 2016. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J. Clin. Oncol. 34:242851–57 [Google Scholar]
  4. Slamon DJ, Leyland-Jones B, Shak S. 4.  et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:11783–92 [Google Scholar]
  5. Flaherty KT, Puzanov I, Kim KB. 5.  et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:9809–19 [Google Scholar]
  6. Lynch TJ, Bell DW, Sordella R. 6.  et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:212129–39 [Google Scholar]
  7. De Roock W, De Vriendt V, Normanno N. 7.  et al. 2011. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 12:6594–603 [Google Scholar]
  8. Hyman DM, Taylor BS, Baselga J. 8.  2017. Implementing genome-driven oncology. Cell 168:4584–99 [Google Scholar]
  9. 9. US Food and Drug Administration. Approved drugs—FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm560040.htm
  10. Kim ES, Herbst RS, Wistuba II. 10.  et al. 2011. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1:144–53 [Google Scholar]
  11. Liu S, Lee JJ. 11.  2015. An overview of the design and conduct of the BATTLE trials. Chin. Clin. Oncol. 4:333 [Google Scholar]
  12. Chang MT, Asthana S, Gao SP. 12.  et al. 2016. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34:2155–63 [Google Scholar]
  13. Kandoth C, McLellan MD, Vandin F. 13.  et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:7471333–39 [Google Scholar]
  14. Chapman PB, Hauschild A, Robert C. 14.  et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:262507–16 [Google Scholar]
  15. Robert C, Karaszewska B, Schachter J. 15.  et al. 2015. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372:130–39 [Google Scholar]
  16. Brose MS, Cabanillas ME, Cohen EEW. 16.  et al. 2016. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol 17:91272–82 [Google Scholar]
  17. Tiacci E, Park JH, De Carolis L. 17.  et al. 2015. Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N. Engl. J. Med. 373:181733–47 [Google Scholar]
  18. Planchard D, Besse B, Groen HJM. 18.  et al. 2016. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17:7984–93 [Google Scholar]
  19. Hyman DM, Puzanov I, Subbiah V. 19.  et al. 2015. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373:8726–36 [Google Scholar]
  20. Haroche J, Cohen-Aubart F, Emile J-F. 20.  et al. 2013. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 121:91495–1500 [Google Scholar]
  21. Kaufman B, Shapira-Frommer R, Schmutzler RK. 21.  et al. 2015. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33:3244–50 [Google Scholar]
  22. Robson ME, Im S-A, Senkus E. 22.  et al. 2017. OlympiAD: Phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). J. Clin. Oncol. 35:Suppl.LBA2501 (Abstr.) [Google Scholar]
  23. Mirza MR, Monk BJ, Herrstedt J. 23.  et al. 2016. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375:222154–64 [Google Scholar]
  24. Hyman DM, Smyth LM, Donoghue MTA. 24.  et al. 2017. AKT inhibition in solid tumors with AKT1 mutations. J. Clin. Oncol. 35:202251–259 [Google Scholar]
  25. Hyman DM, Piha-Paul SA, Rodon J. 25.  2017. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 “basket” study Presented at Annu. Meet. Am. Assoc. Cancer Res., June 2–6 Chicago, IL: Abstr CT001
  26. Stransky N, Cerami E, Schalm S. 26.  et al. 2014. The landscape of kinase fusions in cancer. Nat. Commun. 5:4846 [Google Scholar]
  27. Hyman DM, Laetsch TW, Kummar S. 27.  et al. 2017. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J. Clin. Oncol. 35:Suppl.LBA2501 (Abstr.) [Google Scholar]
  28. Le DT, Uram JN, Wang H. 28.  et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:262509–20 [Google Scholar]
  29. Le DT, Durham JN, Smith KN. 29.  et al. 2017. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:6349409–13 [Google Scholar]
  30. Bleeker FE, Felicioni L, Buttitta F. 30.  et al. 2008. AKT1(E17K) in human solid tumours. Oncogene 27:425648–50 [Google Scholar]
  31. Zehir A, Benayed R, Shah RH. 31.  et al. 2017. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23:6703–13 [Google Scholar]
  32. Le Tourneau C, Delord J-P, Gonçalves A. 32.  et al. 2015. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol 16:131324–34 [Google Scholar]
  33. Massard C, Michiels S, Ferté C. 33.  et al. 2017. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov 7:6586–95 [Google Scholar]
  34. Von Hoff DD, Stephenson JJ, Rosen P. 34.  et al. 2010. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28:334877–83 [Google Scholar]
  35. Tsimberidou A-M, Wen S, Hong DS. 35.  et al. 2014. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin. Cancer Res. 20:184827–36 [Google Scholar]
  36. Kris MG, Johnson BE, Berry LD. 36.  et al. 2014. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:191998–2006 [Google Scholar]
  37. Cunanan KM, Gonen M, Shen R. 37.  et al. 2017. Basket trials in oncology: a trade-off between complexity and efficiency. J. Clin. Oncol. 35:3271–73 [Google Scholar]
  38. Schram AM, Reales DN, Cambria R. 38.  2017. Oncologist use and perception of large panel next generation tumor sequencing. Ann. Oncol. 28:2298–304 [Google Scholar]
  39. Chakravarty D, Gao J, Phillips S. 39.  et al. 2017. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol.1–16
  40. Eubank MH, Hyman DM, Kanakamedala AD. 40.  et al. 2016. Automated eligibility screening and monitoring for genotype-driven precision oncology trials. J. Am. Med. Inform. Assoc. 23:4777–81 [Google Scholar]
  41. Lynam EB, Leaw J, Wiener MB. 41.  2012. A patient focused solution for enrolling clinical trials in rare and selective cancer indications: a landscape of haystacks and needles. Drug Inf. J. 46:4472–78 [Google Scholar]
  42. Park JW, Liu MC, Yee D. 42.  et al. 2016. Adaptive randomization of neratinib in early breast cancer. N. Engl. J. Med. 375:111–22 [Google Scholar]
  43. Rugo HS, Olopade OI, DeMichele A. 43.  et al. 2016. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med. 375:123–34 [Google Scholar]
  44. Conley BA, Gray R, Chen A. 44.  et al. 2016. Abstract CT101: NCI-molecular analysis for therapy choice (NCI-MATCH) clinical trial: interim analysis. Cancer Res 76:14 Suppl.CT101 (Abstr.) [Google Scholar]
/content/journals/10.1146/annurev-med-062016-050343
Loading
/content/journals/10.1146/annurev-med-062016-050343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error