1932

Abstract

The last few decades have seen an explosion in identification of genes that cause monogenetic neurological diseases, as well as advances in gene-targeting therapeutics. Neurological conditions that were once considered incurable are now increasingly tractable. At the forefront is the motor neuron disease spinal muscular atrophy (SMA), historically the leading inherited cause of infant mortality. In the last 5 years, three SMA treatments have been approved by the US Food and Drug Administration (FDA): intrathecally delivered splice-switching antisense oligonucleotide (nusinersen), systemically delivered AAV9-based gene replacement therapy (onasemnogene abeparvovec), and an orally bioavailable, small-molecule, splice-switching drug (risdiplam). Despite this remarkable progress, clinical outcomes in patients are variable. Therapeutic optimization will require improved understanding of drug pharmacokinetics and target engagement in neurons, potential toxicities, and long-term effects. We review current progress in SMA therapeutics, clinical trials, shortcomings of current treatments, and implications for the treatment of other neurogenetic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-070119-115459
2021-01-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/med/72/1/annurev-med-070119-115459.html?itemId=/content/journals/10.1146/annurev-med-070119-115459&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zoghbi HY, Warren ST. 2010. Neurogenetics: advancing the “next-generation” of brain research. Neuron 68:165–73
    [Google Scholar]
  2. 2. 
    Vgontzas A, Renthal W. 2019. Introduction to neurogenetics. Am. J. Med. 132:142–52
    [Google Scholar]
  3. 3. 
    Bargiela D, Yu-Wai-Man P, Keogh M et al. 2015. Prevalence of neurogenetic disorders in the North of England. Neurology 85:1195–201
    [Google Scholar]
  4. 4. 
    Verhaart IEC, Robertson A, Wilson IJ et al. 2017. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J. Rare Dis. 12:124
    [Google Scholar]
  5. 5. 
    Lefebvre S, Burglen L, Reboullet S et al. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–65
    [Google Scholar]
  6. 6. 
    Lefebvre S, Burlet P, Liu Q et al. 1997. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16:265–69
    [Google Scholar]
  7. 7. 
    Parsons DW, McAndrew PE, Iannaccone ST et al. 1998. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet. 63:1712–23
    [Google Scholar]
  8. 8. 
    Crawford TO, Pardo CA. 1996. The neurobiology of childhood spinal muscular atrophy. Neurobiol. Dis. 3:97–110
    [Google Scholar]
  9. 9. 
    Sumner CJ, Crawford TO. 2018. Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J. Clin. Investig. 128:3219–27
    [Google Scholar]
  10. 10. 
    Lorson CL, Hahnen E, Androphy EJ, Wirth B 1999. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. PNAS 96:6307–11
    [Google Scholar]
  11. 11. 
    Monani UR, McPherson JD, Burghes AH 1999. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT). Biochim. Biophys. Acta 1445:330–36
    [Google Scholar]
  12. 12. 
    Cartegni L, Krainer AR. 2002. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30:377–84
    [Google Scholar]
  13. 13. 
    Kashima T, Manley JL. 2003. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34:460–63
    [Google Scholar]
  14. 14. 
    Bajan S, Hutvagner G. 2020. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cells 9:137
    [Google Scholar]
  15. 15. 
    Cota-Coronado A, Diaz-Martinez NF, Padilla-Camberos E, Diaz-Martinez NE 2019. Editing the central nervous system through CRISPR/Cas9 systems. Front. Mol. Neurosci. 12:110
    [Google Scholar]
  16. 16. 
    Schoch KM, Miller TM. 2017. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–70
    [Google Scholar]
  17. 17. 
    Wurster CD, Ludolph AC. 2018. Antisense oligonucleotides in neurological disorders. Ther. Adv. Neurol. Disord. 11:1756286418776932
    [Google Scholar]
  18. 18. 
    Crooke ST, Wang S, Vickers TA et al. 2017. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35:230–37
    [Google Scholar]
  19. 19. 
    Ravi B, Antonellis A, Sumner CJ, Lieberman AP 2019. Genetic approaches to the treatment of inherited neuromuscular diseases. Hum. Mol. Genet. 28:R55–R64
    [Google Scholar]
  20. 20. 
    Bennett CF, Baker BF, Pham N et al. 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  21. 21. 
    Singh NK, Singh NN, Androphy EJ, Singh RN 2006. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol. 26:1333–46
    [Google Scholar]
  22. 22. 
    Singh NN, Howell MD, Androphy EJ, Singh RN 2017. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 24:520–26
    [Google Scholar]
  23. 23. 
    Keam SJ. 2018. Inotersen: first global approval. Drugs 78:1371–76
    [Google Scholar]
  24. 24. 
    Wood H. 2018. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 14:570
    [Google Scholar]
  25. 25. 
    Kole R, Krieg AM. 2015. Exon skipping therapy for Duchenne muscular dystrophy. Adv. Drug Deliv. Rev. 87:104–7
    [Google Scholar]
  26. 26. 
    Aartsma-Rus A, Janson AA, van Ommen GJ, van Deutekom JC 2007. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med. Genet. 8:43
    [Google Scholar]
  27. 27. 
    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB et al. 2019. Targeting huntingtin expression in patients with Huntington's disease. N. Engl. J. Med. 380:2307–16
    [Google Scholar]
  28. 28. 
    Miller T, Cudkowicz M, Shaw PJ et al. 2019. Safety, PK, PD, and exploratory efficacy in single and multiple dose study of a SOD1 antisense oligonucleotide (BIIB067) administered to participants with ALS Paper presented at American Academy of Neurology 2019 Annual Meeting, May 4–10 Philadelphia, PA:
  29. 29. 
    Saraiva J, Nobre RJ, Pereira de Almeida L 2016. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J. Control Release 241:94–109
    [Google Scholar]
  30. 30. 
    Serguera C, Bemelmans AP. 2014. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain. Rev. Neurol. 170:727–38
    [Google Scholar]
  31. 31. 
    Deverman BE, Ravina BM, Bankiewicz KS et al. 2018. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17:767
    [Google Scholar]
  32. 32. 
    Dominguez E, Marais T, Chatauret N et al. 2011. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum. Mol. Genet. 20:681–93
    [Google Scholar]
  33. 33. 
    Patel U, Boucher M, de Leseleuc L, Visintini S 2016. Voretigene neparvovec: an emerging gene therapy for the treatment of inherited blindness. CADTH Issues in Emerging Health Technologies Ottawa, ON: Canadian Agency for Drugs and Technologies in Health
    [Google Scholar]
  34. 34. 
    Foust KD, Wang X, McGovern VL et al. 2010. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28:271–74
    [Google Scholar]
  35. 35. 
    Duque S, Joussemet B, Riviere C et al. 2009. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17:1187–96
    [Google Scholar]
  36. 36. 
    Bevan AK, Duque S, Foust KD et al. 2011. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol. Ther. 19:1971–80
    [Google Scholar]
  37. 37. 
    Warner KD, Hajdin CE, Weeks KM 2018. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17:547–58
    [Google Scholar]
  38. 38. 
    Naryshkin NA, Weetall M, Dakka A et al. 2014. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–93
    [Google Scholar]
  39. 39. 
    Cheung AK, Hurley B, Kerrigan R et al. 2018. Discovery of small molecule splicing modulators of Survival Motor Neuron-2 (SMN2) for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61:11021–36
    [Google Scholar]
  40. 40. 
    Sivaramakrishnan M, McCarthy KD, Campagne S et al. 2017. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8:1476
    [Google Scholar]
  41. 41. 
    Palacino J, Swalley SE, Song C et al. 2015. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11:511–17
    [Google Scholar]
  42. 42. 
    Evrysdi™ (risdiplam), for oral solution [package insert] San Francisco, CA: Genentech Inc. (a member of the Roche Group) 2020.
  43. 43. 
    McDonald CM, Campbell C, Torricelli RE et al. 2017. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:1489–98
    [Google Scholar]
  44. 44. 
    Angelbello AJ, Rzuczek SG, McKee KK et al. 2019. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. PNAS 116:7799–804
    [Google Scholar]
  45. 45. 
    Salani M, Urbina F, Brenner A et al. 2019. Development of a screening platform to identify small molecules that modify ELP1 pre-mRNA splicing in familial dysautonomia. SLAS Discov 24:57–67
    [Google Scholar]
  46. 46. 
    Nakamori M, Panigrahi GB, Lanni S et al. 2020. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat. Genet. 52:146–59
    [Google Scholar]
  47. 47. 
    Tsuburaya N, Homma K, Higuchi T et al. 2018. A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat. Commun. 9:2668
    [Google Scholar]
  48. 48. 
    De Sanctis R, Coratti G, Pasternak A et al. 2016. Developmental milestones in type I spinal muscular atrophy. Neuromuscul. Disord. 26:754–59
    [Google Scholar]
  49. 49. 
    Mazzone ES, Mayhew A, Montes J et al. 2017. Revised upper limb module for spinal muscular atrophy: development of a new module. Muscle Nerve 55:869–74
    [Google Scholar]
  50. 50. 
    Dunaway Young S, Montes J, Kramer SS et al. 2016. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve 54:836–42
    [Google Scholar]
  51. 51. 
    Glanzman AM, O'Hagen JM, McDermott MP et al. 2011. Validation of the expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J. Child Neurol. 26:1499–507
    [Google Scholar]
  52. 52. 
    Glanzman AM, Mazzone E, Main M et al. 2010. The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul. Disord. 20:155–61
    [Google Scholar]
  53. 53. 
    Haataja L, Mercuri E, Regev R et al. 1999. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 135:153–61
    [Google Scholar]
  54. 54. 
    Hagenacker T, Wurster CD, Gunther R et al. 2020. Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol 19:317–25
    [Google Scholar]
  55. 55. 
    Spinraza (nusinersen) injection, for intrathecal use [package insert] Cambridge, MA: Biogen Inc 2016.
  56. 56. 
    De Vivo DC, Bertini E, Swoboda KJ et al. 2019. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29:842–56
    [Google Scholar]
  57. 57. 
    Finkel RS, Mercuri E, Darras BT et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  58. 58. 
    Mercuri E, Darras BT, Chiriboga CA et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378:625–35
    [Google Scholar]
  59. 59. 
    Finkel RS, Chiriboga CA, Vajsar J et al. 2016. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–26
    [Google Scholar]
  60. 60. 
    Dangouloff T, Servais L. 2019. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther. Clin. Risk Manag. 15:1153–61
    [Google Scholar]
  61. 61. 
    Kuo MH, Allis CD. 1999. In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–33
    [Google Scholar]
  62. 62. 
    Mazur C, Powers B, Zasadny K et al. 2019. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight 4:e129240
    [Google Scholar]
  63. 63. 
    Fodale V, Boggio R, Daldin M et al. 2017. Validation of ultrasensitive mutant huntingtin detection in human cerebrospinal fluid by single molecule counting immunoassay. J. Huntington's Dis. 6:349–61
    [Google Scholar]
  64. 64. 
    Gertsman I, Wuu J, McAlonis-Downes M et al. 2019. An endogenous peptide marker differentiates SOD1 stability and facilitates pharmacodynamic monitoring in SOD1 amyotrophic lateral sclerosis. JCI Insight 4:e12278
    [Google Scholar]
  65. 65. 
    Ramos DM, d'Ydewalle C, Gabbeta V et al. 2019. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J. Clin. Investig. 129:4817–31
    [Google Scholar]
  66. 66. 
    Perez BA, Shutterly A, Chan YK et al. 2020. Management of neuroinflammatory responses to AAV-mediated gene therapies for neurodegenerative diseases. Brain Sci 10:119
    [Google Scholar]
  67. 67. 
    Castle MJ, Cheng Y, Asokan A, Tuszynski MH 2018. Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. Sci. Adv. 4:eaau9859
    [Google Scholar]
  68. 68. 
    Veerapandiyan A, Pal R, D'Ambrosio S et al. 2018. Cervical puncture to deliver nusinersen in patients with spinal muscular atrophy. Neurology 91:e620–24
    [Google Scholar]
  69. 69. 
    Kim JK, Jha NN, Feng Z et al. 2020. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J. Clin. Investig. 130:1271–87
    [Google Scholar]
  70. 70. 
    Martinez TL, Kong L, Wang X et al. 2012. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J. Neurosci. 32:8703–15
    [Google Scholar]
  71. 71. 
    Bertrandy S, Burlet P, Clermont O et al. 1999. The RNA-binding properties of SMN: deletion analysis of the zebrafish orthologue defines domains conserved in evolution. Hum. Mol. Genet. 8:775–82
    [Google Scholar]
  72. 72. 
    Hinderer C, Katz N, Buza EL et al. 2018. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29:285–98
    [Google Scholar]
  73. 73. 
    Chandler RJ, Sands MS, Venditti CP 2017. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum. Gene Ther. 28:314–22
    [Google Scholar]
  74. 74. 
    Duan D. 2018. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 26:2337–56
    [Google Scholar]
  75. 75. 
    Poirier A, Weetall M, Heinig K et al. 2018. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol. Res. Perspect. 6:e00447
    [Google Scholar]
  76. 76. 
    Seo S, Mullins RF, Dumitrescu AV et al. 2013. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Investig. Ophthalmol. Vis. Sci. 54:6118–32
    [Google Scholar]
  77. 77. 
    Nasir J, Floresco SB, O'Kusky JR et al. 1995. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–23
    [Google Scholar]
  78. 78. 
    Abati E, Bresolin N, Comi G, Corti S 2020. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin. Ther. Targets 24:295–310
    [Google Scholar]
  79. 79. 
    Kong L, Valdivia D, Simon CMet al 2021. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci. Transl. Med.In press
    [Google Scholar]
  80. 80. 
    Kemper AR, Lam K, Comeau AM et al. 2018. Evidence-based review of newborn screening for spinal muscular atrophy (SMA): final report (v5. 2) Rep. Maternal Child Health Bur., US Secretary of Health and Human Services Advisory Committee on Heritable Disorders in Newborns and Children Rockville, MD:
  81. 81. 
    Darras BT, Crawford TO, Finkel RS et al. 2019. Neurofilament as a potential biomarker for spinal muscular atrophy. Ann. Clin. Transl. Neurol. 6:932–44
    [Google Scholar]
  82. 82. 
    Preische O, Schultz SA, Apel A et al. 2019. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat. Med. 25:277–83
    [Google Scholar]
  83. 83. 
    Yuan A, Rao MV, Veeranna, Nixon RA 2017. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 9:a018309
    [Google Scholar]
  84. 84. 
    Khalil M, Teunissen CE, Otto M et al. 2018. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14:577–89
    [Google Scholar]
  85. 85. 
    Lin CH, Li CH, Yang KC et al. 2019. Blood NfL: a biomarker for disease severity and progression in Parkinson disease. Neurology 93:e1104–e1111
    [Google Scholar]
  86. 86. 
    Thouvenot E, Demattei C, Lehmann S et al. 2020. Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur. J. Neurol. 27:251–57
    [Google Scholar]
  87. 87. 
    Jakimovski D, Kuhle J, Ramanathan M et al. 2019. Serum neurofilament light chain levels associations with gray matter pathology: a 5-year longitudinal study. Ann. Clin. Transl. Neurol. 6:1757–70
    [Google Scholar]
  88. 88. 
    Kletzl H, Czech C, Cleary Y et al. 2018. SMN protein levels before and after treatment with risdiplam (RG7916) in patients with type 1 to 3 SMA compared to healthy subjects Paper presented at the 23rd International Annual Congress of the World Muscle Society, Oct. 2–6 Mendoza, Argentina:
  89. 89. 
    Kariyawasam DST, D'Silva A, Lin C et al. 2019. Biomarkers and the development of a personalized medicine approach in spinal muscular atrophy. Front. Neurol. 10:898
    [Google Scholar]
  90. 90. 
    Cybulska K, Perk L, Booij J et al. 2020. Huntington's disease: a review of the known PET imaging biomarkers and targeting radiotracers. Molecules 25:482
    [Google Scholar]
  91. 91. 
    Dolgin E. 2019. News feature: gene therapy successes point to better therapies. PNAS 116:23866–70
    [Google Scholar]
  92. 92. 
    Thomas K. 2016. Costly drug for fatal muscular disease wins F.D.A. approval. New York Times https://www.nytimes.com/2016/12/30/business/spinraza-price.html
    [Google Scholar]
  93. 93. 
    De Vivo D, Bertini E, Hwu W et al. 2018. Nusinersen in infants who initiate treatment in a presymptomatic stage of spinal muscular atrophy (SMA): interim results from the phase 2 NURTURE study. Can. J. Neurol. Sci. 45:S2S12–S13
    [Google Scholar]
  94. 94. 
    Mendell JR, Al-Zaidy S, Shell R et al. 2017. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377:1713–22
    [Google Scholar]
  95. 95. 
    Day JW, Chiriboga CA, Crawford T et al. 2020. Onasemnogene abeparvovec-xioi gene-replacement therapy for spinal muscular atrophy type 1 (SMA1): phase 3 US study (STR1VE) update. Neurology 94:15 Suppl.1828
    [Google Scholar]
  96. 96. 
    Schultz M, Swoboda K, Farrar M et al. 2019. AVXS-101 gene-replacement therapy (GRT) in presymptomatic spinal muscular atrophy (SMA): study update. Neurology 92:15 Suppl.1.6–057
    [Google Scholar]
  97. 97. 
    Finkel R, Day J, Darras B et al. 2020. One-time intrathecal (IT) administration of AVXS-101 IT gene therapy for spinal muscular atrophy: phase 1 study (STRONG) Poster presented at the Muscular Dystrophy Association (MDA) Clinical and Scientific Conference, Mar. 24, online, Abstr. 52
  98. 98. 
    Baranello G, Servais L, Day JW et al. 2019. FIREFISH part 1: 1-year results on motor function in babies with type 1 SMA. Neurology 92:15 Suppl.S25.003
    [Google Scholar]
  99. 99. 
    Servais L, Baranello G, Day JW et al. 2019. FIREFISH part 1: survival, ventilation and swallowing ability in babies with type 1 SMA receiving risdiplam (RG7916). Neurology 92:15 Suppl.S25.008
    [Google Scholar]
  100. 100. 
    Mercuri E, Baranello G, Kirschner J et al. 2019. Update from SUNFISH part 1: safety, tolerability and PK/PD from the dose-finding study, including exploratory efficacy data in patients with type 2 or 3 spinal muscular atrophy (SMA) treated with risdiplam (RG7916). Neurology 92:15 Suppl.S25.007
    [Google Scholar]
/content/journals/10.1146/annurev-med-070119-115459
Loading
/content/journals/10.1146/annurev-med-070119-115459
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error