1932

Abstract

Many intracellular pathogens, including the protozoan parasite , live inside a vacuole that resides in the host cytosol. Vacuolar residence provides these pathogens with a defined niche for replication and protection from detection by host cytosolic pattern recognition receptors. However, the limiting membrane of the vacuole, which constitutes the host-pathogen interface, is also a barrier for pathogen effectors to reach the host cytosol and for the acquisition of host-derived nutrients. This review provides an update on the specialized secretion and trafficking systems used by to overcome the barrier of the parasitophorous vacuole membrane and thereby allow the delivery of proteins into the host cell and the acquisition of host-derived nutrients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-011720-122318
2020-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-011720-122318.html?itemId=/content/journals/10.1146/annurev-micro-011720-122318&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC 2005. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLOS Pathog 1:2e17
    [Google Scholar]
  2. 2. 
    Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S et al. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:6895–907
    [Google Scholar]
  3. 3. 
    Beck JR, Fung C, Straub KW, Coppens I, Vashisht AA et al. 2013. A Toxoplasma palmitoyl acyl transferase and the palmitoylated armadillo repeat protein TgARO govern apical rhoptry tethering and reveal a critical role for the rhoptries in host cell invasion but not egress. PLOS Pathog 9:2e1003162
    [Google Scholar]
  4. 4. 
    Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ et al. 2019. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. PNAS 116:136361–70
    [Google Scholar]
  5. 5. 
    Bermudes D, Peck KR, Afifi MA, Beckers CJ, Joiner KA 1994. Tandemly repeated genes encode nucleoside triphosphate hydrolase isoforms secreted into the parasitophorous vacuole of Toxoplasma gondii. J. Biol. Chem 269:4629252–60
    [Google Scholar]
  6. 6. 
    Blakely WJ, Holmes MJ, Arrizabalaga G 2020. The secreted acid phosphatase domain-containing GRA44 from Toxoplasma gondii is required for c-Myc induction in infected cells. mSphere 5:1e00877–19
    [Google Scholar]
  7. 7. 
    Boddey JA, Hodder AN, Gunther S, Gilson PR, Patsiouras H et al. 2010. An aspartyl protease directs malaria effector proteins to the host cell. Nature 463:7281627–31
    [Google Scholar]
  8. 8. 
    Boddey JA, Moritz RL, Simpson RJ, Cowman AF 2009. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic 10:3285–99
    [Google Scholar]
  9. 9. 
    Bougdour A, Durandau E, Brenier-Pinchart MP, Ortet P, Barakat M et al. 2013. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13:4489–500
    [Google Scholar]
  10. 10. 
    Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S et al. 2005. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J. Biol. Chem 280:4034245–58
    [Google Scholar]
  11. 11. 
    Braun L, Brenier-Pinchart MP, Hammoudi PM, Cannella D, Kieffer-Jaquinod S et al. 2019. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nat. Microbiol. 4:71208–20
    [Google Scholar]
  12. 12. 
    Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL et al. 2013. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J. Exp. Med. 210:102071–86
    [Google Scholar]
  13. 13. 
    Braun L, Travier L, Kieffer S, Musset K, Garin J et al. 2008. Purification of Toxoplasma dense granule proteins reveals that they are in complexes throughout the secretory pathway. Mol. Biochem. Parasitol. 157:113–21
    [Google Scholar]
  14. 14. 
    Breinich MS, Ferguson DJP, Foth BJ, van Dooren GG, Lebrun M et al. 2009. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr. Biol 19:4277–86
    [Google Scholar]
  15. 15. 
    Bullen HE, Bisio H, Soldati-Favre D 2019. The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: cyclic GMP, calcium, and phosphatidic acid. PLOS Pathog 15:5e1007670
    [Google Scholar]
  16. 16. 
    Caffaro CE, Boothroyd JC. 2011. Evidence for host cells as the major contributor of lipids in the intravacuolar network of Toxoplasma-infected cells. Eukaryot. Cell 10:81095–99
    [Google Scholar]
  17. 17. 
    Carruthers VB, Sibley LD. 1997. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur. J. Cell Biol. 73:2114–23
    [Google Scholar]
  18. 18. 
    Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A et al. 2011. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147:61355–68
    [Google Scholar]
  19. 19. 
    Cesbron-Delauw MF, Guy B, Torpier G, Pierce RJ, Lenzen G et al. 1989. Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii. PNAS 86:197537–41
    [Google Scholar]
  20. 20. 
    Chang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA 2008. N-terminal processing of proteins exported by malaria parasites. Mol. Biochem. Parasitol. 160:2107–15
    [Google Scholar]
  21. 21. 
    Charron AJ, Sibley LD. 2004. Molecular partitioning during host cell penetration by Toxoplasma gondii. Traffic 5:11855–67
    [Google Scholar]
  22. 22. 
    Chasen NM, Asady B, Lemgruber L, Vommaro RC, Kissinger JC et al. 2017. A glycosylphosphatidylinositol-anchored carbonic anhydrase-related protein of Toxoplasma gondii is important for rhoptry biogenesis and virulence. mSphere 2:3e00027–17
    [Google Scholar]
  23. 23. 
    Chaturvedi S, Qi H, Coleman D, Rodriguez A, Hanson PI et al. 1999. Constitutive calcium-independent release of Toxoplasma gondii dense granules occurs through the NSF/SNAP/SNARE/Rab machinery. J. Biol. Chem. 274:42424–31
    [Google Scholar]
  24. 24. 
    Coffey MJ, Dagley LF, Seizova S, Kapp EA, Infusini G et al. 2018. Aspartyl protease 5 matures dense granule proteins that reside at the host-parasite interface in Toxoplasma gondii. mBio 9:5e01796–18
    [Google Scholar]
  25. 25. 
    Coffey MJ, Sleebs BE, Uboldi AD, Garnham A, Franco M et al. 2015. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell. eLife 4:e10809
    [Google Scholar]
  26. 26. 
    Coleman BI, Saha S, Sato S, Engelberg K, Ferguson DJP et al. 2018. A member of the ferlin calcium sensor family is essential for Toxoplasma gondii rhoptry secretion. mBio 9:5e01510–18
    [Google Scholar]
  27. 27. 
    Coppens I. 2014. Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int. J. Parasitol. 44:2109–20
    [Google Scholar]
  28. 28. 
    Coppens I, Andries M, Liu JL, Cesbron-Delauw MF 1999. Intracellular trafficking of dense granule proteins in Toxoplasma gondii and experimental evidences for a regulated exocytosis. Eur. J. Cell Biol. 78:7463–72
    [Google Scholar]
  29. 29. 
    Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H et al. 2006. Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125:2261–74
    [Google Scholar]
  30. 30. 
    Coppens I, Joiner KA. 2003. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14:93804–20
    [Google Scholar]
  31. 31. 
    Curt-Varesano A, Braun L, Ranquet C, Hakimi MA, Bougdour A 2016. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells. Cell. Microbiol. 18:2151–67
    [Google Scholar]
  32. 32. 
    Cygan AM, Theisen TC, Mendoza AG, Marino ND, Panas MW, Boothroyd JC 2020. Coimmunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma gondii parasitophorous vacuole required for translocation of dense granule effectors into host cells. mSphere 5:1e00858–19
    [Google Scholar]
  33. 33. 
    De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S 2016. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol 1:816107
    [Google Scholar]
  34. 34. 
    de Souza W, Attias M 2015. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM). J. Struct. Biol. 191:176–85
    [Google Scholar]
  35. 35. 
    Deffieu MS, Alayi TD, Slomianny C, Tomavo S 2019. The Toxoplasma gondii dense granule protein TgGRA3 interacts with host Golgi and dysregulates anterograde transport. Biol. Open. 8:3bio039818
    [Google Scholar]
  36. 36. 
    Delorme-Walker V, Abrivard M, Lagal V, Anderson K, Perazzi A et al. 2012. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. J. Cell Sci. 125:Part 184333–42
    [Google Scholar]
  37. 37. 
    Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K 2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:3715–30
    [Google Scholar]
  38. 38. 
    Dou Z, McGovern OL, Di Cristina M, Carruthers VB 2014. Toxoplasma gondii ingests and digests host cytosolic proteins. mBio 5:4e01188–14
    [Google Scholar]
  39. 39. 
    Drewry LL, Jones NG, Wang Q, Onken MD, Miller MJ, Sibley LD 2019. The secreted kinase ROP17 promotes Toxoplasma gondii dissemination by hijacking monocyte tissue migration. Nat. Microbiol. 4:111951–63
    [Google Scholar]
  40. 40. 
    Dubois DJ, Soldati-Favre D. 2019. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell. Microbiol 21:5e13018
    [Google Scholar]
  41. 41. 
    Dubremetz JF, Achbarou A, Bermudes D, Joiner KA 1993. Kinetics and pattern of organelle exocytosis during Toxoplasma gondii/host-cell interaction. Parasitol. Res. 79:5402–8
    [Google Scholar]
  42. 42. 
    Ehrenman K, Sehgal A, Lige B, Stedman TT, Joiner KA, Coppens I 2010. Novel roles for ATP-binding cassette G transporters in lipid redistribution in Toxoplasma. Mol. Microbiol 76:51232–49
    [Google Scholar]
  43. 43. 
    Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD 2014. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 15:5537–50
    [Google Scholar]
  44. 44. 
    Franco M, Panas MW, Marino ND, Lee M-CW, Buchholz KR et al. 2016. A novel secreted protein, MYR1, is central to Toxoplasma’s manipulation of host cells. mBio 7:1e02231–15
    [Google Scholar]
  45. 45. 
    Fu Y, Cui X, Fan S, Liu J, Zhang X et al. 2018. Comprehensive characterization of Toxoplasma acyl coenzyme A-binding protein TgACBP2 and its critical role in parasite cardiolipin metabolism. mBio 9:5e01597–18
    [Google Scholar]
  46. 46. 
    Garénaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J et al. 2008. The dual origin of Toxoplasma gondii N-glycans. Biochemistry 47:4712270–76
    [Google Scholar]
  47. 47. 
    Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE, Beck JR 2018. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat. Microbiol. 3:101090–98
    [Google Scholar]
  48. 48. 
    Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V et al. 2016. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. J. Exp. Med. 213:91779–98
    [Google Scholar]
  49. 49. 
    Gendrin C, Bittame A, Mercier C, Cesbron-Delauw MF 2010. Post-translational membrane sorting of the Toxoplasma gondii GRA6 protein into the parasite-containing vacuole is driven by its N-terminal domain. Int. J. Parasitol. 40:111325–34
    [Google Scholar]
  50. 50. 
    Gendrin C, Mercier C, Braun L, Musset K, Dubremetz JF, Cesbron-Delauw MF 2008. Toxoplasma gondii uses unusual sorting mechanisms to deliver transmembrane proteins into the host-cell vacuole. Traffic 9:101665–80
    [Google Scholar]
  51. 51. 
    Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ 2007. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot. Cell 6:173–83
    [Google Scholar]
  52. 52. 
    Gold DA, Kaplan AD, Lis A, Bett GC, Rosowski EE et al. 2015. The Toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole. Cell Host Microbe 17:5642–52
    [Google Scholar]
  53. 53. 
    Goldszmid RS, Coppens I, Lev A, Caspar P, Mellman I, Sher A 2009. Host ER-parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii-infected dendritic cells. J. Exp. Med. 206:2399–410
    [Google Scholar]
  54. 54. 
    Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Frêche B 2008. Bacterial pore-forming toxins: the (w)hole story. Cell. Mol. Life Sci. 65:3493–507
    [Google Scholar]
  55. 55. 
    Hakimi M-A, Bougdour A. 2015. Toxoplasma’s ways of manipulating the host transcriptome via secreted effectors. Curr. Opin. Microbiol. 26:24–31
    [Google Scholar]
  56. 56. 
    Hammer JA 3rd, Sellers JR 2011. Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13:113–26
    [Google Scholar]
  57. 57. 
    Hammoudi PM, Jacot D, Mueller C, Di Cristina M, Dogga SK et al. 2015. Fundamental roles of the Golgi-associated Toxoplasma aspartyl protease, ASP5, at the host-parasite interface. PLOS Pathog 11:10e1005211
    [Google Scholar]
  58. 58. 
    He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B et al. 2018. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 7:e39887
    [Google Scholar]
  59. 59. 
    Heaslip AT, Nelson SR, Warshaw DM 2016. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol. Biol. Cell 27:132080–89
    [Google Scholar]
  60. 60. 
    Ho C-M, Beck JR, Lai M, Cui Y, Goldberg DE et al. 2018. Malaria parasite translocon structure and mechanism of effector export. Nature 561:772170–75
    [Google Scholar]
  61. 61. 
    Hsiao CH, Luisa Hiller N, Haldar K, Knoll LJ 2013. A HT/PEXEL motif in Toxoplasma dense granule proteins is a signal for protein cleavage but not export into the host cell. Traffic 14:5519–31
    [Google Scholar]
  62. 62. 
    Hu K, Roos DS, Murray JM 2002. A novel polymer of tubulin forms the conoid of Toxoplasma gondii. J. Cell Biol 156:61039–50
    [Google Scholar]
  63. 63. 
    Jackson AJ, Clucas C, Mamczur NJ, Ferguson DJ, Meissner M 2013. Toxoplasma gondii Syntaxin 6 is required for vesicular transport between endosomal-like compartments and the Golgi complex. Traffic 14:111166–81
    [Google Scholar]
  64. 64. 
    Juge N, Moriyama S, Miyaji T, Kawakami M, Iwai H et al. 2015. Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter. PNAS 112:113356–61
    [Google Scholar]
  65. 65. 
    Deleted in proof
  66. 66. 
    Katris NJ, Ke H, McFadden GI, van Dooren GG, Waller RF 2019. Calcium negatively regulates secretion from dense granules in Toxoplasma gondii. Cell. Microbiol 21:6e13011
    [Google Scholar]
  67. 67. 
    Kessler H, Herm-Götz A, Hegge S, Rauch M, Soldati-Favre D et al. 2008. Microneme protein 8—a new essential invasion factor in Toxoplasma gondii. J. Cell Sci 121:7947–56
    [Google Scholar]
  68. 68. 
    Kim K, Weiss LM. 2004. Toxoplasma gondii: the model apicomplexan. Int. J. Parasitol. 34:3423–32
    [Google Scholar]
  69. 69. 
    Klumperman J. 2000. Transport between ER and Golgi. Curr. Opin. Cell Biol. 12:4445–49
    [Google Scholar]
  70. 70. 
    Koo J, Burrows LL, Howell PL 2012. Decoding the roles of pilotins and accessory proteins in secretin escort services. FEMS Microbiol. Lett. 328:11–12
    [Google Scholar]
  71. 71. 
    Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H et al. 2013. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLOS Pathog 9:3e1003213
    [Google Scholar]
  72. 72. 
    Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ et al. 2005. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell. Microbiol. 7:121823–33
    [Google Scholar]
  73. 73. 
    Lecordier L, Mercier C, Sibley LD, Cesbron-Delauw MF 1999. Transmembrane insertion of the Toxoplasma gondii GRA5 protein occurs after soluble secretion into the host cell. Mol. Biol. Cell 10:41277–87
    [Google Scholar]
  74. 74. 
    Lentini G, Dubois DJ, Maco B, Soldati-Favre D, Frénal K 2019. The roles of CEN2 and DLC8a in apical secretory organelles discharge of Toxoplasma gondii. Traffic 20:8583–600
    [Google Scholar]
  75. 75. 
    Leriche MA, Dubremetz JF. 1990. Exocytosis of Toxoplasma gondii dense granules into the parasitophorous vacuole after host cell invasion. Parasitol. Res. 76:7559–62
    [Google Scholar]
  76. 76. 
    Lodoen MB, Gerke C, Boothroyd JC 2010. A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. Cell. Microbiol. 12:155–66
    [Google Scholar]
  77. 77. 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G et al. 2015. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep 13:102273–86
    [Google Scholar]
  78. 78. 
    Ma JS, Sasai M, Ohshima J, Lee Y, Bando H et al. 2014. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J. Exp. Med. 211:102013–32
    [Google Scholar]
  79. 79. 
    Magno RC, Lemgruber L, Vommaro RC, De Souza W, Attias M 2005. Intravacuolar network may act as a mechanical support for Toxoplasma gondii inside the parasitophorous vacuole. Microsc. Res. Tech. 67:145–52
    [Google Scholar]
  80. 80. 
    Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T et al. 2018. Plasmepsin V cleaves malaria effector proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat. Microbiol. 3:91010–22
    [Google Scholar]
  81. 81. 
    Marino ND, Panas MW, Franco M, Theisen TC, Naor A et al. 2018. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLOS Pathog 14:1e1006828
    [Google Scholar]
  82. 82. 
    Matthews KM, Pitman EL, de Koning-Ward TF 2019. Illuminating how malaria parasites export proteins into host erythrocytes. Cell. Microbiol. 21:4e13009
    [Google Scholar]
  83. 83. 
    Mercier C, Dubremetz JF, Rauscher B, Lecordier L, Sibley LD, Cesbron-Delauw MF 2002. Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. Mol. Biol. Cell 13:72397–409
    [Google Scholar]
  84. 84. 
    Miller SA, Thathy V, Ajioka JW, Blackman MJ, Kim K 2003. TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Mol. Microbiol. 49:4883–94
    [Google Scholar]
  85. 85. 
    Mital J, Meissner M, Soldati D, Ward GE 2005. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in host cell invasion. Mol. Biol. Cell 16:94341–49
    [Google Scholar]
  86. 86. 
    Morlon-Guyot J, Berry L, Sauquet I, Singh Pall G, El Hajj H et al. 2018. Conditional knock-down of a novel coccidian protein leads to the formation of aberrant apical organelles and abrogates mature rhoptry positioning in Toxoplasma gondii. Mol. Biochem. Parasitol 223:19–30
    [Google Scholar]
  87. 87. 
    Morlon-Guyot J, Pastore S, Berry L, Lebrun M, Daher W 2015. Toxoplasma gondii Vps11, a subunit of HOPS and CORVET tethering complexes, is essential for the biogenesis of secretory organelles. Cell. Microbiol. 17:81157–78
    [Google Scholar]
  88. 88. 
    Mueller C, Klages N, Jacot D, Santos JM, Cabrera A et al. 2013. The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles, a prerequisite for host cell invasion. Cell Host Microbe 13:3289–301
    [Google Scholar]
  89. 89. 
    Mueller C, Samoo A, Hammoudi P-M, Klages N, Kallio JP et al. 2016. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein. J. Cell Sci. 129:51031–45
    [Google Scholar]
  90. 90. 
    Nadipuram SM, Kim EW, Vashisht AA, Lin AH, Bell HN et al. 2016. In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis. mBio 7:4e00808–16
    [Google Scholar]
  91. 91. 
    Naor A, Panas MW, Marino N, Coffey MJ, Tonkin CJ, Boothroyd JC 2018. MYR1-dependent effectors are the major drivers of a host cell's early response to Toxoplasma, including counteracting MYR1-independent effects. mBio 9:2e02401–17
    [Google Scholar]
  92. 92. 
    Nolan SJ, Romano JD, Coppens I 2017. Host lipid droplets: an important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLOS Pathog 13:6e1006362
    [Google Scholar]
  93. 93. 
    Okuda S, Tokuda H. 2011. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65:239–59
    [Google Scholar]
  94. 94. 
    Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD 2016. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 20:172–82
    [Google Scholar]
  95. 95. 
    Panas MW, Ferrel A, Naor A, Tenborg E, Lorenzi HA, Boothroyd JC 2019. Translocation of dense granule effectors across the parasitophorous vacuole membrane in Toxoplasma-infected cells requires the activity of ROP17, a rhoptry protein kinase. mSphere 4:4e00276-19
    [Google Scholar]
  96. 96. 
    Panas MW, Naor A, Cygan AM, Boothroyd JC 2019. Toxoplasma controls host cyclin E expression through the use of a novel MYR1-dependent effector protein, HCE1. mBio 10:2e00674–19
    [Google Scholar]
  97. 97. 
    Parker KER, Fairweather SJ, Rajendran E, Blume M, McConville MJ et al. 2019. The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. PLOS Pathog 15:2e1007577
    [Google Scholar]
  98. 98. 
    Pavlou G, Biesaga M, Touquet B, Lagal V, Balland M et al. 2018. Toxoplasma parasite twisting motion mechanically induces host cell membrane fission to complete invasion within a protective vacuole. Cell Host Microbe 24:181–96.e5
    [Google Scholar]
  99. 99. 
    Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A et al. 2017. Structural basis for the subversion of MAP kinase signaling by an intrinsically disordered parasite secreted agonist. Structure 25:116–26
    [Google Scholar]
  100. 100. 
    Pernas L, Adomako-Ankomah Y, Shastri AJ, Ewald SE, Treeck M et al. 2014. Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLOS Biol 12:4e1001845
    [Google Scholar]
  101. 101. 
    Pernas L, Bean C, Boothroyd JC, Scorrano L 2018. Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab 27:4886–97
    [Google Scholar]
  102. 102. 
    Phillips R, Ursell T, Wiggins P, Sens P 2009. Emerging roles for lipids in shaping membrane-protein function. Nature 459:7245379–85
    [Google Scholar]
  103. 103. 
    Pieperhoff MS, Schmitt M, Ferguson DJP, Meissner M 2013. The role of clathrin in post-Golgi trafficking in Toxoplasma gondii. PLOS ONE 8:10e77620
    [Google Scholar]
  104. 104. 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A et al. 2016. A lipolytic lecithin:cholesterol acyltransferase secreted by Toxoplasma facilitates parasite replication and egress. J. Biol. Chem. 291:83725–46
    [Google Scholar]
  105. 105. 
    Rajendran E, Hapuarachchi SV, Miller CM, Fairweather SJ, Cai Y et al. 2017. Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nat. Commun. 8:14455
    [Google Scholar]
  106. 106. 
    Rastogi S, Cygan AM, Boothroyd JC 2019. Translocation of effector proteins into host cells by Toxoplasma gondii. Curr. Opin. Microbiol 52:130–38
    [Google Scholar]
  107. 107. 
    Reese ML, Boothroyd JC. 2009. A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole. Traffic 10:101458–70
    [Google Scholar]
  108. 108. 
    Romano JD, Coppens I. 2013. Host organelle hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog. Dis. 69:272–86
    [Google Scholar]
  109. 109. 
    Romano JD, Nolan SJ, Porter C, Ehrenman K, Hartman EJ et al. 2017. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network. J. Cell Biol. 216:124235–54
    [Google Scholar]
  110. 110. 
    Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I 2013. Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol. Biol. Cell 24:121974–95
    [Google Scholar]
  111. 111. 
    Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA et al. 2011. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J. Exp. Med. 208:1195–212
    [Google Scholar]
  112. 112. 
    Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE 2010. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature 463:7281632–36
    [Google Scholar]
  113. 113. 
    Saeij JPJ, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC 2007. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445:7125324–27
    [Google Scholar]
  114. 114. 
    Sakura T, Sindikubwabo F, Oesterlin LK, Bousquet H, Slomianny C et al. 2016. A critical role for Toxoplasma gondii vacuolar protein sorting VPS9 in secretory organelle biogenesis and host infection. Sci. Rep. 6:38842
    [Google Scholar]
  115. 115. 
    Sangaré LO, Alayi TD, Westermann B, Hovasse A, Sindikubwabo F et al. 2016. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection. Nat. Commun. 7:11191
    [Google Scholar]
  116. 116. 
    Sangaré LO, Ólafsson EB, Wang Y, Yang N, Julien L et al. 2019. In vivo CRISPR screen identifies TgWIP as a Toxoplasma modulator of dendritic cell migration. Cell Host Microbe 26:4478–92.e8
    [Google Scholar]
  117. 117. 
    Schwab JC, Beckers CJ, Joiner KA 1994. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. PNAS 91:2509–13
    [Google Scholar]
  118. 118. 
    Shastri AJ, Marino ND, Franco M, Lodoen MB, Boothroyd JC 2014. GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response. Infect. Immun. 82:62595–605
    [Google Scholar]
  119. 119. 
    Sibley LD, Niesman IR, Asai T, Takeuchi T 1994. Toxoplasma gondii: secretion of a potent nucleoside triphosphate hydrolase into the parasitophorous vacuole. Exp. Parasitol. 79:3301–11
    [Google Scholar]
  120. 120. 
    Sidik SM, Huet D, Ganesan SM, Huynh M-H, Wang T et al. 2016. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166:61423–35.e12
    [Google Scholar]
  121. 121. 
    Silhavy TJ, Kahne D, Walker S 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:5a000414
    [Google Scholar]
  122. 122. 
    Sinai A, Webster P, Joiner K 1997. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J. Cell Sci. 110:2117–28
    [Google Scholar]
  123. 123. 
    Sloves P-J, Delhaye S, Mouveaux T, Werkmeister E, Slomianny C et al. 2012. Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host Microbe 11:5515–27
    [Google Scholar]
  124. 124. 
    Stedman TT, Sussmann AR, Joiner KA 2003. Toxoplasma gondii Rab6 mediates a retrograde pathway for sorting of constitutively secreted proteins to the Golgi complex. J. Biol. Chem. 278:75433–43
    [Google Scholar]
  125. 125. 
    Suarez C, Lentini G, Ramaswamy R, Maynadier M, Aquilini E et al. 2019. A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nat. Commun. 10:14041
    [Google Scholar]
  126. 126. 
    Suss-Toby E, Zimmerberg J, Ward GE 1996. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. PNAS 93:168413–18
    [Google Scholar]
  127. 126a. 
    Venugopal K, Chehade S, Werkmeister E, Barois N, Periz Jet al 2020. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLOS Pathog 16:5e1008106
    [Google Scholar]
  128. 127. 
    Venugopal K, Marion S. 2018. Secretory organelle trafficking in Toxoplasma gondii: a long story for a short travel. Int. J. Med. Microbiol. 308:7751–60
    [Google Scholar]
  129. 128. 
    Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE et al. 2008. Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes Infect 10:14–151440–49
    [Google Scholar]
  130. 129. 
    Wang Y, Cirelli KM, Barros PDC, Sangare LO, Butty V et al. 2019. Three Toxoplasma gondii dense granule proteins are required for induction of Lewis rat macrophage pyroptosis. mBio 10:1e02388–18
    [Google Scholar]
  131. 130. 
    Wang Y, Sangaré LO, Paredes-Santos TC, Krishnamurthy S, Hassan MA et al. 2019. A genome-wide loss-of-function screen identifies Toxoplasma gondii genes that determine fitness in interferon gamma-activated murine macrophages. bioRxiv867705
    [Google Scholar]
  132. 131. 
    Weidner JM, Barragan A. 2014. Tightly regulated migratory subversion of immune cells promotes the dissemination of Toxoplasma gondii. Int. J. Parasitol 44:285–90
    [Google Scholar]
/content/journals/10.1146/annurev-micro-011720-122318
Loading
/content/journals/10.1146/annurev-micro-011720-122318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error