1932

Abstract

Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012420-080905
2020-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012420-080905.html?itemId=/content/journals/10.1146/annurev-micro-012420-080905&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR et al. 2013. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio 5:e00986–13
    [Google Scholar]
  2. 2. 
    Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B et al. 2003. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–81
    [Google Scholar]
  3. 3. 
    Bastiaans E, Aanen DK, Debets AJ, Hoekstra RF, Lestrade B, Maas MF 2014. Regular bottlenecks and restrictions to somatic fusion prevent the accumulation of mitochondrial defects in Neurospora. Philos. Trans. R. Soc. Lond. B 369:20130448
    [Google Scholar]
  4. 4. 
    Bastiaans E, Debets AJ, Aanen DK 2015. Experimental demonstration of the benefits of somatic fusion and the consequences for allorecognition. Evolution 69:1091–99
    [Google Scholar]
  5. 5. 
    Bastiaans E, Debets AJ, Aanen DK, van Diepeningen AD, Saupe SJ, Paoletti M 2014. Natural variation of heterokaryon incompatibility gene het-c in Podospora anserina reveals diversifying selection. Mol. Biol. Evol. 31:962–74
    [Google Scholar]
  6. 6. 
    Bastiaans E, Debets AJM, Aanen DK 2016. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 7:11435
    [Google Scholar]
  7. 7. 
    Beadle GW, Coonradt VL. 1944. Heterocaryosis in Neurospora crassa. Genetics 29:291–308
    [Google Scholar]
  8. 8. 
    Bennett RJ, Turgeon BG. 2016. Fungal sex: the Ascomycota. Microbiol. Spectr. 4: https://doi.org/10.1128/microbiolspec.FUNK-0005-2016
    [Crossref] [Google Scholar]
  9. 9. 
    Boehm T. 2006. Quality control in self/nonself discrimination. Cell 125:845–58
    [Google Scholar]
  10. 10. 
    Brennwald P, Kearns B, Champion K, Keranen S, Bankaitis V, Novick P 1994. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79:245–58
    [Google Scholar]
  11. 11. 
    Cao P, Wall D. 2019. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria. Nat. Commun. 10:3073
    [Google Scholar]
  12. 12. 
    Cao P, Wei X, Awal RP, Muller R, Wall D 2019. A highly polymorphic receptor governs many distinct self-recognition types within the Myxococcales order. mBio 10:e02751–18
    [Google Scholar]
  13. 13. 
    Cardarelli L, Saak C, Gibbs KA 2015. Two proteins form a heteromeric bacterial self-recognition complex in which variable subdomains determine allele-restricted binding. mBio 6:e00251
    [Google Scholar]
  14. 14. 
    Chen H, Fink GR. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–61
    [Google Scholar]
  15. 15. 
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. PNAS 101:5048–52
    [Google Scholar]
  16. 16. 
    Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, Nuss DL 2012. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics 190:113–27
    [Google Scholar]
  17. 17. 
    Clutton-Brock TH, O'Riain MJ, Brotherton PN, Gaynor D, Kansky R et al. 1999. Selfish sentinels in cooperative mammals. Science 284:1640–44
    [Google Scholar]
  18. 18. 
    Cortesi P, Milgroom MG. 1998. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl. Environ. Microbiol 64:2988–94
    [Google Scholar]
  19. 19. 
    Coustou V, Deleu C, Saupe S, Begueret J 1997. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. PNAS 94:9773–78
    [Google Scholar]
  20. 20. 
    Czárán T, Hoekstra RF, Aanen DK 2014. Selection against somatic parasitism can maintain allorecognition in fungi. Fungal Genet. Biol. 73:128–37
    [Google Scholar]
  21. 21. 
    Daskalov A, Gladieux P, Heller J, Glass NL 2019. Programmed cell death in Neurospora crassa is controlled by the allorecognition determinant rcd-1. Genetics 213:1387–400
    [Google Scholar]
  22. 22. 
    Daskalov A, Habenstein B, Sabate R, Berbon M, Martinez D et al. 2016. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. PNAS 113:2720–25
    [Google Scholar]
  23. 23. 
    Daskalov A, Heller J, Herzog S, Fleissner A, Glass NL 2017. Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. Microbiol. Spectr. 5: https://doi.org/10.1128/microbiolspec.FUNK-0015-2016
    [Crossref] [Google Scholar]
  24. 24. 
    Dawe AL, Nuss DL. 2013. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission. Adv. Virus Res. 86:109–47
    [Google Scholar]
  25. 25. 
    Dawkins R. 1976. The Selfish Gene New York: Oxford Univ. Press
  26. 26. 
    De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB et al. 2005. Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–59
    [Google Scholar]
  27. 27. 
    Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ 2012. High natural prevalence of a fungal prion. PNAS 109:10432–37
    [Google Scholar]
  28. 28. 
    Debets AJM, Griffiths AJF. 1998. Polymorphism of het-genes prevents resource plundering in Neurospora crassa. Mycol. Res 102:1343–49
    [Google Scholar]
  29. 29. 
    Debets F, Yang X, Griffiths AJ 1994. Vegetative incompatibility in Neurospora: its effect on horizontal transfer of mitochondrial plasmids and senescence in natural populations. Curr. Genet. 26:113–19
    [Google Scholar]
  30. 30. 
    Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M et al. 2017. The Neurospora transcription factor ADV-1 transduces light signals and temporal information to control rhythmic expression of genes involved in cell fusion. G3 7:129–42
    [Google Scholar]
  31. 31. 
    Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S 2014. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLOS Genet 10:e1004762
    [Google Scholar]
  32. 32. 
    Diggle SP, Griffin AS, Campbell GS, West SA 2007. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450:411–14
    [Google Scholar]
  33. 33. 
    Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A et al. 2014. Diversity and variability of NOD-like receptors in fungi. Genome Biol. Evol. 6:3137–58
    [Google Scholar]
  34. 34. 
    Espagne E, Balhadere P, Penin ML, Barreau C, Turcq B 2002. HET-E and HET-D belong to a new subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus Podospora anserina. Genetics 161:71–81
    [Google Scholar]
  35. 35. 
    Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY et al. 2018. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 28:421–30
    [Google Scholar]
  36. 36. 
    Fan R, Cockerton HM, Armitage AD, Bates H, Cascant-Lopez E et al. 2018. Vegetative compatibility groups partition variation in the virulence of Verticillium dahliae on strawberry. PLOS ONE 13:e0191824
    [Google Scholar]
  37. 37. 
    Fernandez-Busquets X, Kornig A, Bucior I, Burger MM, Anselmetti D 2009. Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the Cambrian explosion. Mol. Biol. Evol. 26:2551–61
    [Google Scholar]
  38. 38. 
    Fischer MS, Glass NL. 2019. Communicate and fuse: how filamentous fungi establish and maintain an interconnected mycelial network. Front. Microbiol. 10:619
    [Google Scholar]
  39. 39. 
    Fischer MS, Jonkers W, Glass NL 2019. Integration of self and non-self recognition modulates asexual cell-to-cell communication in Neurospora crassa. Genetics 211:1255–67
    [Google Scholar]
  40. 40. 
    Fischer MS, Wu VW, Lee JE, O'Malley RC, Glass NL 2018. Regulation of cell-to-cell communication and cell wall integrity by a network of MAP kinase pathways and transcription factors in Neurospora crassa. Genetics 209:489–506
    [Google Scholar]
  41. 41. 
    Fleissner A, Diamond S, Glass NL 2009. The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfertilization functions. Genetics 181:497–510
    [Google Scholar]
  42. 42. 
    Fleissner A, Leeder AC, Roca MG, Read ND, Glass NL 2009. Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. PNAS 106:19387–92
    [Google Scholar]
  43. 43. 
    Gardner A, West SA. 2010. Greenbeards. Evolution 64:25–38
    [Google Scholar]
  44. 44. 
    Garnjobst L, Wilson JF. 1956. Heterocaryosis and protoplasmic incompatibility in Neurospora crassa. PNAS 42:613–18
    [Google Scholar]
  45. 45. 
    Ghabrial SA, Suzuki N. 2009. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 47:353–84
    [Google Scholar]
  46. 46. 
    Gibbs KA, Greenberg EP. 2011. Territoriality in Proteus: advertisement and aggression. Chem. Rev. 111:188–94
    [Google Scholar]
  47. 47. 
    Gibbs KA, Urbanowski ML, Greenberg EP 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321:256–59
    [Google Scholar]
  48. 48. 
    Glass NL, Dementhon K. 2006. Non-self recognition and programmed cell death in filamentous fungi. Curr. Opin. Microbiol. 9:553–58
    [Google Scholar]
  49. 49. 
    Glass NL, Grotelueschen J, Metzenberg RL 1990. Neurospora crassa A mating-type region. PNAS 87:4912–16
    [Google Scholar]
  50. 50. 
    Glass NL, Jacobson DJ, Shiu PK 2000. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu. Rev. Genet. 34:165–86
    [Google Scholar]
  51. 51. 
    Glass NL, Kaneko I. 2003. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell 2:1–8
    [Google Scholar]
  52. 52. 
    Goddard MR, Godfray HC, Burt A 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–40
    [Google Scholar]
  53. 53. 
    Gonçalves AP, Chow KM, Cea-Sánchez S, Glass NL 2020. WHI-2 regulates intercellular communication via a MAP kinase signaling complex. Front. Microbiol. 10:3162
    [Google Scholar]
  54. 54. 
    Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL 2017. Regulated forms of cell death in fungi. Front. Microbiol. 8:1837
    [Google Scholar]
  55. 55. 
    Gonçalves AP, Heller J, Span EA, Rosenfield G, Do HP et al. 2019. Allorecognition upon fungal cell-cell contact determines social cooperation and impacts the acquisition of multicellularity. Curr. Biol. 29:3006–17.e3
    [Google Scholar]
  56. 56. 
    Goryachev AB, Lichius A, Wright GD, Read ND 2012. Excitable behavior can explain the “ping-pong” mode of communication between cells using the same chemoattractant. BioEssays 34:259–66
    [Google Scholar]
  57. 57. 
    Gould SJ, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15
    [Google Scholar]
  58. 58. 
    Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S et al. 2010. The mechanism of prion inhibition by HET-S. Mol. Cell 38:889–99
    [Google Scholar]
  59. 59. 
    Hall C, Welch J, Kowbel DJ, Glass NL 2010. Evolution and diversity of a fungal self/nonself recognition locus. PLOS ONE 5:e14055
    [Google Scholar]
  60. 60. 
    Hamilton WD. 1964. The genetical evolution of social behaviour. II. J. Theor. Biol. 7:17–52
    [Google Scholar]
  61. 61. 
    Heller J, Clavé C, Gladieux P, Saupe SJ, Glass NL 2018. NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. PNAS 115:E2292–301
    [Google Scholar]
  62. 62. 
    Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL 2016. Characterization of greenbeard genes involved in long-distance kind discrimination in a microbial eukaryote. PLOS Biol 14:e1002431
    [Google Scholar]
  63. 63. 
    Hemsworth GR, Henrissat B, Davies GJ, Walton PH 2014. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10:122–26
    [Google Scholar]
  64. 64. 
    Hickey PC, Jacobson D, Read ND, Louise Glass NL 2002. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet. Biol 37:109–19
    [Google Scholar]
  65. 65. 
    Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK et al. 2014. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. PNAS 111:15072–77
    [Google Scholar]
  66. 66. 
    Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G 2011. Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333:467–70
    [Google Scholar]
  67. 67. 
    Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL et al. 2016. Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 19:849–64
    [Google Scholar]
  68. 68. 
    Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B et al. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:2982–92
    [Google Scholar]
  69. 69. 
    Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y et al. 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365:793–99
    [Google Scholar]
  70. 70. 
    Jacobson DJ, Beurkens K, Klomparens KL 1998. Microscopic and ultrastructural examination of vegetative incompatibility in partial diploids heterozygous at het loci in Neurospora crassa. Fungal Genet. Biol 23:45–56
    [Google Scholar]
  71. 71. 
    Jones JD, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  72. 72. 
    Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F et al. 2014. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLOS Genet 10:e1004783
    [Google Scholar]
  73. 73. 
    Kaneko I, Dementhon K, Xiang Q, Glass NL 2006. Nonallelic interactions between het-c and a polymorphic locus, pin-c, are essential for nonself recognition and programmed cell death in Neurospora crassa. Genetics 172:1545–55
    [Google Scholar]
  74. 74. 
    Karadge UB, Gosto M, Nicotra ML 2015. Allorecognition proteins in an invertebrate exhibit homophilic interactions. Curr. Biol. 25:2845–50
    [Google Scholar]
  75. 75. 
    Karangwa P, Mostert D, Ndayihanzamaso P, Dubois T, Niere B et al. 2018. Genetic diversity of Fusarium oxysporum f. sp. cubense in East and Central Africa. Plant Dis 102:552–60
    [Google Scholar]
  76. 76. 
    Kerényi Z, Oláh B, Jeney A, Hornok L, Leslie JF 2006. The homologue of het-c of Neurospora crassa lacks vegetative compatibility function in Fusarium proliferatum. Appl. Environ. Microbiol 72:6527–32
    [Google Scholar]
  77. 77. 
    Knoll AH. 2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet Sci. 39:217–39
    [Google Scholar]
  78. 78. 
    Kundert P, Shaulsky G. 2019. Cellular allorecognition and its roles in Dictyostelium development and social evolution. Int. J. Dev. Biol. 63:383–93
    [Google Scholar]
  79. 79. 
    Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC 2011. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 334:1548–51
    [Google Scholar]
  80. 80. 
    Lafontaine DL, Smith ML. 2012. Diverse interactions mediate asymmetric incompatibility by the het-6 supergene complex in Neurospora crassa. Fungal Genet. Biol 49:65–73
    [Google Scholar]
  81. 81. 
    Leeder AC, Palma-Guerrero J, Glass NL 2011. The social network: deciphering fungal language. Nat. Rev. Microbiol. 9:440–51
    [Google Scholar]
  82. 82. 
    Leslie JF. 1993. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 31:127–50
    [Google Scholar]
  83. 83. 
    Little K, Gibbs KA. 2019. Analysis of Proteus mirabilis social behaviors on surfaces. Methods Mol. Biol. 2021:45–59
    [Google Scholar]
  84. 84. 
    MacLean RC, Gudelj I. 2006. Resource competition and social conflict in experimental populations of yeast. Nature 441:498
    [Google Scholar]
  85. 85. 
    Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ 2002. Amyloid aggregates of the HET-s prion protein are infectious. PNAS 99:7402–7
    [Google Scholar]
  86. 86. 
    Maddi A, Dettman A, Fu C, Seiler S, Free SJ 2012. WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLOS ONE 7:e42374
    [Google Scholar]
  87. 87. 
    Maree AF, Hogeweg P. 2001. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. PNAS 98:3879–83
    [Google Scholar]
  88. 88. 
    Metzenberg RL, Glass NL. 1990. Mating type and mating strategies in Neurospora. BioEssays 12:53–59
    [Google Scholar]
  89. 89. 
    Milgroom MG, Smith ML, Drott MT, Nuss DL 2018. Balancing selection at nonself recognition loci in the chestnut blight fungus, Cryphonectria parasitica, demonstrated by trans-species polymorphisms, positive selection, and even allele frequencies. Heredity 121:511–23
    [Google Scholar]
  90. 90. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  91. 91. 
    Mori N, Katayama T, Saito R, Iwashita K, Maruyama JI 2019. Inter-strain expression of sequence-diverse HET domain genes severely inhibits growth of Aspergillus oryzae. Biosci. Biotechnol. Biochem 83:1557–69
    [Google Scholar]
  92. 92. 
    Mylyk OM. 1975. Heterokaryon incompatibility genes in Neurospora crassa detected using duplication-producing chromosome rearrangements. Genetics 80:107–24
    [Google Scholar]
  93. 93. 
    Newmeyer D. 1970. A suppressor of the heterokaryon-incompatibility associated with mating type in Neurospora crassa. Can. J. Genet. Cytol 12:914–26
    [Google Scholar]
  94. 94. 
    Nicotra ML. 2019. Invertebrate allorecognition. Curr. Biol. 29:R463–67
    [Google Scholar]
  95. 95. 
    Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J et al. 2009. A hypervariable invertebrate allodeterminant. Curr. Biol. 19:583–89
    [Google Scholar]
  96. 96. 
    Nydam ML, Stephenson EE, Waldman CE, De Tomaso AW 2017. Balancing selection on allorecognition genes in the colonial ascidian Botryllus schlosseri. Dev. Comp. Immunol 69:60–74
    [Google Scholar]
  97. 97. 
    Padder SA, Prasad R, Shah AH 2018. Quorum sensing: a less known mode of communication among fungi. Microbiol. Res. 210:51–58
    [Google Scholar]
  98. 98. 
    Palma-Guerrero J, Leeder AC, Welch J, Glass NL 2014. Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa. Mol. Microbiol 92:164–82
    [Google Scholar]
  99. 99. 
    Palma-Guerrero J, Zhao J, Gonçalves AP, Starr TL, Glass NL 2015. Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in Neurospora crassa. Eukaryot. Cell 14:265–77
    [Google Scholar]
  100. 100. 
    Paoletti M. 2016. Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick. Fungal Biol. Rev. 30:152–62
    [Google Scholar]
  101. 101. 
    Paoletti M, Saupe SJ. 2009. Fungal incompatibility: evolutionary origin in pathogen defense. BioEssays 31:1201–10
    [Google Scholar]
  102. 102. 
    Park G, Colot HV, Collopy PD, Krystofova S, Crew C et al. 2011. High-throughput production of gene replacement mutants in Neurospora crassa. Methods Mol. Biol 722:179–89
    [Google Scholar]
  103. 103. 
    Perkins DD. 1975. The use of duplication-generating rearrangements for studying heterokaryon incompatibility genes in Neurospora. Genetics 80:87–105
    [Google Scholar]
  104. 104. 
    Perkins DD, Newmeyer D, Taylor CW, Bennett DC 1969. New markers and map sequences in Neurospora crassa, with a description of mapping by duplication coverage, and of multiple translocation stocks for testing linkage. Genetica 40:247–78
    [Google Scholar]
  105. 105. 
    Pontecorvo G. 1956. The parasexual cycle in fungi. Annu. Rev. Microbiol. 10:393–400
    [Google Scholar]
  106. 106. 
    Queller DC. 2011. Expanded social fitness and Hamilton's rule for kin, kith, and kind. PNAS 108:10792–99
    [Google Scholar]
  107. 107. 
    Rankin DJ, Bargum K, Kokko H 2007. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22:643–51
    [Google Scholar]
  108. 108. 
    Richard F, Glass NL, Pringle A 2012. Cooperation among germinating spores facilitates the growth of the fungus. Neurospora crassa. Biol. Lett. 8:419–22
    [Google Scholar]
  109. 109. 
    Richman A. 2000. Evolution of balanced genetic polymorphism. Mol. Ecol. 9:1953–63
    [Google Scholar]
  110. 110. 
    Riley MA, Wertz JE. 2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56:117–37
    [Google Scholar]
  111. 111. 
    Roper M, Ellison C, Taylor JW, Glass NL 2011. Nuclear and genome dynamics in multinucleate ascomycete fungi. Curr. Biol. 21:R786–93
    [Google Scholar]
  112. 112. 
    Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA et al. 2010. Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr. Biol. 20:1122–27
    [Google Scholar]
  113. 113. 
    Rosengarten RD, Nicotra ML. 2011. Model systems of invertebrate allorecognition. Curr. Biol. 21:R82–92
    [Google Scholar]
  114. 114. 
    Saupe S, Descamps C, Turcq B, Begueret J 1994. Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. PNAS 91:5927–31
    [Google Scholar]
  115. 115. 
    Saupe SJ. 2000. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64:489–502
    [Google Scholar]
  116. 116. 
    Saupe SJ. 2011. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin. Cell Dev. Biol. 22:460–68
    [Google Scholar]
  117. 117. 
    Saupe S. 2020. Amyloid signaling in filamentous fungi and bacteria. Annu. Rev. Microbiol.74673–91
    [Google Scholar]
  118. 118. 
    Scofield VL, Schlumpberger JM, West LA, Weissman IL 1982. Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295:499–502
    [Google Scholar]
  119. 119. 
    Selosse MA, Taschen E, Giraud T 2013. Do black truffles avoid sexual harassment by linking mating type and vegetative incompatibility. New Phytol 199:10–13
    [Google Scholar]
  120. 120. 
    Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ et al. 2012. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLOS Biol 10:e1001451
    [Google Scholar]
  121. 121. 
    Shiu PK, Glass NL. 1999. Molecular characterization of tol, a mediator of mating-type-associated vegetative incompatibility in Neurospora crassa. Genetics 151:545–55
    [Google Scholar]
  122. 122. 
    Simonin A, Palma-Guerrero J, Fricker M, Glass NL 2012. Physiological significance of network organization in fungi. Eukaryot. Cell 11:1345–52
    [Google Scholar]
  123. 123. 
    Snoussi M, Talledo JP, Del Rosario NA, Mohammadi S, Ha BY et al. 2018. Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife 7:e38174
    [Google Scholar]
  124. 124. 
    Span EA, Marletta MA. 2015. The framework of polysaccharide monooxygenase structure and chemistry. Curr. Opin. Struct. Biol. 35:93–99
    [Google Scholar]
  125. 125. 
    Strassmann JE, Queller DC. 2011. Evolution of cooperation and control of cheating in a social microbe. PNAS 108:Suppl. 210855–62
    [Google Scholar]
  126. 126. 
    Teichert I, Steffens EK, Schnass N, Franzel B, Krisp C et al. 2014. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLOS Genet 10:e1004582
    [Google Scholar]
  127. 127. 
    Tipping MJ, Gibbs KA. 2019. Peer pressure from a Proteus mirabilis self-recognition system controls participation in cooperative swarm motility. PLOS Pathog 15:e1007885
    [Google Scholar]
  128. 128. 
    Turcq B, Deleu C, Denayrolles M, Begueret J 1991. Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol. Gen. Genet. 228:265–69
    [Google Scholar]
  129. 129. 
    Uehling J, Deveau A, Paoletti M 2017. Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLOS Pathog. 13:e1006578
    [Google Scholar]
  130. 130. 
    Van der Nest MA, Olson A, Lind M, Velez H, Dalman K et al. 2014. Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet. Biol. 64:45–57
    [Google Scholar]
  131. 131. 
    van Diepeningen AD, Debets AJ, Hoekstra RF 1997. Heterokaryon incompatibility blocks virus transfer among natural isolates of black Aspergilli. Curr. Genet. 32:209–17
    [Google Scholar]
  132. 132. 
    Vos M, Velicer GJ. 2009. Evolution of social conflict in the bacterium Myxococcus xanthus: centimeter versus global scale populations. Curr. Biol. 19:1763–67
    [Google Scholar]
  133. 133. 
    Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F et al. 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365:799–803
    [Google Scholar]
  134. 134. 
    Weichert M, Lichius A, Priegnitz BE, Brandt U, Gottschalk J et al. 2016. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion. PNAS 113:11877–82
    [Google Scholar]
  135. 135. 
    White CE, Winans SC. 2007. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos. Trans. R. Soc. Lond. B 362:1135–48
    [Google Scholar]
  136. 136. 
    Wielgoss S, Fiegna F, Rendueles O, Yu YN, Velicer GJ 2018. Kin discrimination and outer membrane exchange in Myxococcus xanthus: a comparative analysis among natural isolates. Mol. Ecol. 27:3146–58
    [Google Scholar]
  137. 137. 
    Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC 2004. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118:619–33
    [Google Scholar]
  138. 138. 
    Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL 2007. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130:1134–45
    [Google Scholar]
  139. 139. 
    Wu J, Saupe SJ, Glass NL 1998. Evidence for balancing selection operating at the het-c heterokaryon incompatibility locus in a group of filamentous fungi. PNAS 95:12398–403
    [Google Scholar]
  140. 140. 
    Zhang D-X, Nuss DL. 2016. Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes. PNAS 113:2062–67
    [Google Scholar]
  141. 141. 
    Zhang D-X, Spiering MJ, Dawe AL, Nuss DL 2014. Vegetative incompatibility loci with dedicated roles in allorecognition restrict mycovirus transmission in chestnut blight fungus. Genetics 197:701–14
    [Google Scholar]
  142. 142. 
    Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C et al. 2015. Identification of allorecognition loci in Neurospora crassa by genomics and evolutionary approaches. Mol. Biol. Evol. 32:2417–32
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012420-080905
Loading
/content/journals/10.1146/annurev-micro-012420-080905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error