1932

Abstract

Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012420-081224
2020-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012420-081224.html?itemId=/content/journals/10.1146/annurev-micro-012420-081224&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. PNAS 99:14887–92
    [Google Scholar]
  2. 2. 
    Abdel-Wahab NM, Scharf S, Ozkaya FC, Kurtan T, Mandi A et al. 2019. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. . Planta Med 85:503–12
    [Google Scholar]
  3. 3. 
    Adnani N, Rajski SR, Bugni TS 2017. Symbiosis-inspired approaches to antibiotic discovery. Nat. Prod. Rep. 34:784–814
    [Google Scholar]
  4. 4. 
    Aguda AH, Lavallee V, Cheng P, Bott TM, Meimetis LG et al. 2016. Affinity crystallography: a new approach to extracting high-affinity enzyme inhibitors from natural extracts. J. Nat. Prod. 79:1962–70
    [Google Scholar]
  5. 5. 
    Almeida C, Silva Pereira C, Gonzalez-Menendez V, Bills G, Pascual J et al. 2018. Unveiling concealed functions of endosymbiotic bacteria harbored in the ascomycete Stachylidium bicolor. Appl. Environ. Microbiol 84:e00660–18
    [Google Scholar]
  6. 6. 
    Andolfi A, Cimmino A, Cantore PL, Iacobellis NS, Evidente A 2008. Bioactive and structural metabolites of Pseudomonas and Burkholderia species causal agents of cultivated mushrooms diseases. Perspect. Med. Chem. 2:81–112
    [Google Scholar]
  7. 7. 
    Aschenbrenner IA, Cernava T, Berg G, Grube M 2016. Understanding microbial multi-species symbioses. Front. Microbiol. 7:180
    [Google Scholar]
  8. 8. 
    Bachtiar EW, Bachtiar BM, Jarosz LM, Amir LR, Sunarto H et al. 2014. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation. Front. Cell. Infect. Microbiol. 4:94
    [Google Scholar]
  9. 9. 
    Baldeweg F, Kage H, Schieferdecker S, Allen C, Hoffmeister D, Nett M 2017. Structure of ralsolamycin, the interkingdom morphogen from the crop plant pathogen Ralstonia solanacearum. Org. Lett 19:4868–71
    [Google Scholar]
  10. 10. 
    Baltz RH. 2008. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 8:557–63
    [Google Scholar]
  11. 11. 
    Bamford CV, d'Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77:3696–704
    [Google Scholar]
  12. 12. 
    Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. 2015. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev 80:1–43 Erratum. 2016. Microbiol. Mol. Biol. Rev. 80:iii
    [Google Scholar]
  13. 13. 
    Barke J, Seipke RF, Gruschow S, Heavens D, Drou N et al. 2010. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. . BMC Biol 8:109
    [Google Scholar]
  14. 14. 
    Beemelmanns C, Ramadhar TR, Kim KH, Klassen JL, Cao S et al. 2017. Macrotermycins A-D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39. Org. Lett. 19:1000–3
    [Google Scholar]
  15. 15. 
    Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL 2014. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 32:1180–204
    [Google Scholar]
  16. 16. 
    Bianciotto V, Bonfante P. 2002. Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–71
    [Google Scholar]
  17. 17. 
    Blodgett JA, Oh DC, Cao S, Currie CR, Kolter R, Clardy J 2010. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. PNAS 107:11692–97
    [Google Scholar]
  18. 18. 
    Bonfante P. 2003. Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol. Bull. 204:215–20
    [Google Scholar]
  19. 19. 
    Bonfante P, Desiro A. 2017. Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME J 11:1727–35
    [Google Scholar]
  20. 20. 
    Boon C, Deng Y, Wang LH, He Y, Xu JL et al. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2:27–36
    [Google Scholar]
  21. 21. 
    Braga D, Last D, Hasan M, Guo H, Leichnitz D et al. 2019. Metabolic pathway rerouting in Paraburkholderia rhizoxinica evolved long-overlooked derivatives of coenzyme F420. ACS Chem. Biol. 14:2088–94
    [Google Scholar]
  22. 22. 
    Brameyer S, Bode HB, Heermann R 2015. Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol 23:521–23
    [Google Scholar]
  23. 23. 
    Bratovanov EV, Ishida K, Heinze B, Pidot SJ, Stinear TP et al. 2020. Genome mining and heterologous expression reveal two distinct families of lasso peptides highly conserved in endofungal bacteria. ACS Chem. Biol. 15:51169–76 https://doi.org/10.1021/acschembio.9b00805
    [Crossref] [Google Scholar]
  24. 24. 
    Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG 2018. Secondary metabolism in the lichen symbiosis. Chem. Soc. Rev. 47:1730–60
    [Google Scholar]
  25. 25. 
    Caraballo-Rodriguez AM, Dorrestein PC, Pupo MT 2017. Molecular inter-kingdom interactions of endophytes isolated from Lychnophora ericoides. Sci. Rep 7:5373
    [Google Scholar]
  26. 26. 
    Carrion VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M et al. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–12
    [Google Scholar]
  27. 27. 
    Chai X, Youn UJ, Sun D, Dai J, Williams P et al. 2014. Herbicidin congeners, undecose nucleosides from an organic extract of Streptomyces sp. L-9-10. J. Nat. Prod. 77:227–33
    [Google Scholar]
  28. 28. 
    Cheenpracha S, Vidor NB, Yoshida WY, Davies J, Chang LC 2010. Coumabiocins A–F, aminocoumarins from an organic extract of Streptomyces sp. L-4-4. J. Nat. Prod. 73:880–84
    [Google Scholar]
  29. 29. 
    Chin-A-Woeng TF, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV 2001. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant Microbe Interact. 14:1006–15
    [Google Scholar]
  30. 30. 
    Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ et al. 2016. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol. 12:1004–6
    [Google Scholar]
  31. 31. 
    Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M et al. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. PNAS 92:4197–201
    [Google Scholar]
  32. 32. 
    Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA 2013. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. . Infect. Immun 81:189–200
    [Google Scholar]
  33. 33. 
    Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J 2001. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod. 64:1444–46
    [Google Scholar]
  34. 34. 
    Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol 65:896–906
    [Google Scholar]
  35. 35. 
    Cugini C, Morales DK, Hogan DA 2010. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 156:3096–107
    [Google Scholar]
  36. 36. 
    Davies J. 2006. Are antibiotics naturally antibiotics. J. Ind. Microbiol. Biotechnol. 33:496–99
    [Google Scholar]
  37. 37. 
    Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ 2005. Uncialamycin, a new enediyne antibiotic. Org. Lett. 7:5233–36
    [Google Scholar]
  38. 38. 
    de Bekker C, Ohm RA, Evans HC, Brachmann A, Hughes DP 2017. Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Sci. Rep. 7:12508
    [Google Scholar]
  39. 39. 
    de Boer W. 2017. Upscaling of fungal-bacterial interactions: from the lab to the field. Curr. Opin. Microbiol. 37:35–41
    [Google Scholar]
  40. 40. 
    De Sordi L, Muhlschlegel FA 2009. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9:990–99
    [Google Scholar]
  41. 41. 
    Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E 2016. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl. Microbiol. Biotechnol. 100:5215–29
    [Google Scholar]
  42. 42. 
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M et al. 2018. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42:335–52
    [Google Scholar]
  43. 43. 
    Deveau A, Brule C, Palin B, Champmartin D, Rubini P et al. 2010. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ. Microbiol. Rep. 2:560–68
    [Google Scholar]
  44. 44. 
    Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M et al. 2016. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol. Ecol. 92:fiw107
    [Google Scholar]
  45. 45. 
    Dhodary B, Schilg M, Wirth R, Spiteller D 2018. Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chem. Eur. J. 24:4445–52
    [Google Scholar]
  46. 46. 
    Dixon EF, Hall RA. 2015. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell. Microbiol. 17:1431–41
    [Google Scholar]
  47. 47. 
    Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J et al. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158:1402–14
    [Google Scholar]
  48. 48. 
    Donia MS, Fischbach MA. 2015. Human microbiota: small molecules from the human microbiota. Science 349:1254766
    [Google Scholar]
  49. 49. 
    Dose B, Niehs SP, Scherlach K, Florez LV, Kaltenpoth M, Hertweck C 2018. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem. Biol. 13:2414–20
    [Google Scholar]
  50. 50. 
    Fisch KM, Silva Pereira C, Genilloud O, Almeida C, Schaberle TF 2017. Draft genome sequence of Burkholderia contaminans 293K04B, an endosymbiont of the sponge-derived fungus Stachylidium bicolor. . Genome Announc 5:e01142–17
    [Google Scholar]
  51. 51. 
    Fischer D, Gessner G, Fill TP, Barnett R, Tron K et al. 2019. Disruption of membrane integrity by the bacterium-derived antifungal jagaricin. Antimicrob. Agents Chemother. 63:e00707–19
    [Google Scholar]
  52. 52. 
    Fischer J, Muller SY, Netzker T, Jager N, Gacek-Matthews A et al. 2018. Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. eLife 7:e40969
    [Google Scholar]
  53. 53. 
    Florez LV, Biedermann PH, Engl T, Kaltenpoth M 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32:904–36
    [Google Scholar]
  54. 54. 
    Florez LV, Kaltenpoth M. 2017. Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia. Environ. . Microbiol 19:3674–88
    [Google Scholar]
  55. 55. 
    Florez LV, Scherlach K, Gaube P, Ross C, Sitte E et al. 2017. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. 8:15172
    [Google Scholar]
  56. 56. 
    Florez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC et al. 2018. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat. Commun. 9:2478
    [Google Scholar]
  57. 57. 
    Frank M, Ozkaya FC, Muller WEG, Hamacher A, Kassack MU et al. 2019. Cryptic secondary metabolites from the sponge-associated fungus Aspergillus ochraceus. Mar. Drugs 17:E99
    [Google Scholar]
  58. 58. 
    Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A 2011. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75:583–609
    [Google Scholar]
  59. 59. 
    Fritsche K, van den Berg M, de Boer W, van Beek TA, Raaijmakers JM et al. 2014. Biosynthetic genes and activity spectrum of antifungal polyynes from Collimonas fungivorans Ter331. Environ. Microbiol. 16:1334–45
    [Google Scholar]
  60. 60. 
    Garbeva P, Hordijk C, Gerards S, de Boer W 2014. Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol. . Ecol 87:639–49
    [Google Scholar]
  61. 61. 
    Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G et al. 2012. The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–45
    [Google Scholar]
  62. 62. 
    Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O 2005. Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54:401–15
    [Google Scholar]
  63. 63. 
    Graham CE, Cruz MR, Garsin DA, Lorenz MC 2017. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. . PNAS 114:4507–12
    [Google Scholar]
  64. 64. 
    Graupner K, Scherlach K, Bretschneider T, Lackner G, Roth M et al. 2012. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen. Angew. Chem. Int. Ed. Engl. 51:13173–77
    [Google Scholar]
  65. 65. 
    Grube M, Berg G. 2009. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol. Rev. 23:72–85
    [Google Scholar]
  66. 66. 
    Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM et al. 2017. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168:517–26.e18
    [Google Scholar]
  67. 67. 
    Haas D, Defago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307–19
    [Google Scholar]
  68. 68. 
    Haeder S, Wirth R, Herz H, Spiteller D 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. . PNAS 106:4742–46
    [Google Scholar]
  69. 69. 
    Hassani MA, Duran P, Hacquard S 2018. Microbial interactions within the plant holobiont. Microbiome 6:58
    [Google Scholar]
  70. 70. 
    Heine D, Holmes NA, Worsley SF, Santos ACA, Innocent TM et al. 2018. Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat. Commun. 9:2208
    [Google Scholar]
  71. 71. 
    Helfrich EJ, Reiter S, Piel J 2014. Recent advances in genome-based polyketide discovery. Curr. Opin. Biotechnol. 29:107–15
    [Google Scholar]
  72. 72. 
    Hogan DA, Vik A, Kolter R 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:1212–23
    [Google Scholar]
  73. 73. 
    Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J 2012. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. PNAS 109:5886–91
    [Google Scholar]
  74. 74. 
    Kai K. 2018. Bacterial quorum sensing in symbiotic and pathogenic relationships with hosts. Biosci. Biotechnol. Biochem. 82:363–71
    [Google Scholar]
  75. 75. 
    Kai K, Sogame M, Sakurai F, Nasu N, Fujita M 2018. Collimonins A-D, unstable polyynes with antifungal or pigmentation activities from the fungus-feeding bacterium Collimonas fungivorans Ter331. Org. Lett. 20:3536–40
    [Google Scholar]
  76. 76. 
    Kaltenpoth M, Flórez LV. 2020. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65:145–70
    [Google Scholar]
  77. 77. 
    Kamdem RST, Wang H, Wafo P, Ebrahim W, Ozkaya FC et al. 2017. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 124:132–36
    [Google Scholar]
  78. 78. 
    Kameoka H, Tsutsui I, Saito K, Kikuchi Y, Handa Y et al. 2019. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids. Nat. Microbiol. 4:1654–60
    [Google Scholar]
  79. 79. 
    Kampa A, Gagunashvili AN, Gulder TA, Morinaka BI, Daolio C et al. 2013. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. PNAS 110:E3129–37
    [Google Scholar]
  80. 80. 
    Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG et al. 2019. Massively parallel screening of synthetic microbial communities. PNAS 116:12804–9
    [Google Scholar]
  81. 81. 
    Kellogg JJ, Raja HA. 2017. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 16:271–93
    [Google Scholar]
  82. 82. 
    Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M et al. 2014. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chem. Sci. 5:4333–38
    [Google Scholar]
  83. 83. 
    Klepzig KD, Wilkens RT. 1997. Competitive interactions among symbiotic fungi of the southern pine beetle. Appl. Environ. Microbiol. 63:621–27
    [Google Scholar]
  84. 84. 
    Kousser C, Clark C, Sherrington S, Voelz K, Hall RA 2019. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci. Rep. 9:5714
    [Google Scholar]
  85. 85. 
    Krause J, Geginat G, Tammer I 2015. Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms. PLOS ONE 10:e0135404
    [Google Scholar]
  86. 86. 
    Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C et al. 2010. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6:261–63
    [Google Scholar]
  87. 87. 
    Lackner G, Moebius N, Hertweck C 2011. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 5:252–61
    [Google Scholar]
  88. 88. 
    Lackner G, Moebius N, Partida-Martinez L, Hertweck C 2011. Complete genome sequence of Burkholderia rhizoxinica, an endosymbiont of Rhizopus microsporus. J. Bacteriol 193:783–84
    [Google Scholar]
  89. 89. 
    Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C 2011. Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genom 12:210
    [Google Scholar]
  90. 90. 
    Lastovetsky OA, Gaspar ML, Mondo SJ, LaButti KM, Sandor L et al. 2016. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. PNAS 113:15102–7
    [Google Scholar]
  91. 91. 
    Leone MR, Lackner G, Silipo A, Lanzetta R, Molinaro A, Hertweck C 2010. An unusual galactofuranose lipopolysaccharide that ensures the intracellular survival of toxin-producing bacteria in their fungal host. Angew. Chem. Int. Ed. 49:7476–80
    [Google Scholar]
  92. 92. 
    Li Q, Ren Y, Fu X 2019. Inter-kingdom signaling between gut microbiota and their host. Cell. Mol. Life Sci. 76:2383–89
    [Google Scholar]
  93. 93. 
    Lincoln SP, Fermor TR, Tindall BJ 1999. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. . Int. J. Syst. Bacteriol 49:Part 41577–89
    [Google Scholar]
  94. 94. 
    Louis P, Hold GL, Flint HJ 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12:661–72
    [Google Scholar]
  95. 95. 
    Marmann A, Aly AH, Lin W, Wang B, Proksch P 2014. Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs 12:1043–65
    [Google Scholar]
  96. 96. 
    Mazzola M, Freilich S. 2017. Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology 107:256–63
    [Google Scholar]
  97. 97. 
    McAlester G, O'Gara F, Morrissey JP 2008. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J. Med. Microbiol 57:563–69
    [Google Scholar]
  98. 98. 
    Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH et al. 2011. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. . ISME J 5:1494–504
    [Google Scholar]
  99. 99. 
    Mevers E, Chouvenc T, Su NY, Clardy J 2017. Chemical interaction among termite-associated microbes. J. Chem. Ecol. 43:1078–85
    [Google Scholar]
  100. 100. 
    Miao V, Coeffet-LeGal MF, Brown D, Sinnemann S, Donaldson G, Davies J 2001. Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–55
    [Google Scholar]
  101. 101. 
    Milshteyn A, Colosimo DA, Brady SF 2018. Accessing bioactive natural products from the human microbiome. Cell Host Microbe 23:725–36
    [Google Scholar]
  102. 102. 
    Molloy EM, Hertweck C. 2017. Antimicrobial discovery inspired by ecological interactions. Curr. Opin. Microbiol. 39:121–27
    [Google Scholar]
  103. 103. 
    Mowat E, Rajendran R, Williams C, McCulloch E, Jones B et al. 2010. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol. Lett. 313:96–102
    [Google Scholar]
  104. 104. 
    Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17:371–82
    [Google Scholar]
  105. 105. 
    Nai C, Meyer V. 2018. From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology. Trends Microbiol 26:538–54
    [Google Scholar]
  106. 106. 
    Netzker T, Fischer J, Weber J, Mattern DJ, Konig CC et al. 2015. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 6:299
    [Google Scholar]
  107. 107. 
    Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S 2013. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 30:1490–508
    [Google Scholar]
  108. 108. 
    Niehs SP, Dose B, Scherlach K, Pidot SJ, Stinear TP, Hertweck C 2019. Genome mining reveals endopyrroles from a nonribosomal peptide assembly line triggered in fungal-bacterial symbiosis. ACS Chem. Biol. 14:1811–18
    [Google Scholar]
  109. 109. 
    Niehs SP, Dose B, Scherlach K, Roth M, Hertweck C 2018. Genomics-driven discovery of a symbiont-specific cyclopeptide from bacteria residing in the rice seedling blight fungus. ChemBioChem 19:2167–72
    [Google Scholar]
  110. 110. 
    Niehs SP, Scherlach K, Hertweck C 2018. Genomics-driven discovery of a linear lipopeptide promoting host colonization by endofungal bacteria. Org. Biomol. Chem. 16:8345–52
    [Google Scholar]
  111. 111. 
    Noel A, Ferron S, Rouaud I, Gouault N, Hurvois JP, Tomasi S 2017. Isolation and structure identification of novel brominated diketopiperazines from Nocardia ignorata—a lichen-associated actinobacterium. Molecules 22:E371
    [Google Scholar]
  112. 112. 
    Nogueira F, Sharghi S, Kuchler K, Lion T 2019. Pathogenetic impact of bacterial-fungal interactions. Microorganisms 7:459
    [Google Scholar]
  113. 113. 
    Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F et al. 2011. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. PNAS 108:14282–87
    [Google Scholar]
  114. 114. 
    Oh DC, Jensen PR, Kauffman CA, Fenical W 2005. Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg. Med. Chem. 13:5267–73
    [Google Scholar]
  115. 115. 
    Oh DC, Poulsen M, Currie CR, Clardy J 2009. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5:391–93
    [Google Scholar]
  116. 116. 
    Oh DC, Scott JJ, Currie CR, Clardy J 2009. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org. Lett. 11:633–36
    [Google Scholar]
  117. 117. 
    Ohshima S, Sato Y, Fujimura R, Takashima Y, Hamada M et al. 2016. Mycoavidus cysteinexigens gen. nov., sp. nov., an endohyphal bacterium isolated from a soil isolate of the fungus Mortierella elongata. . Int. J. Syst. Evol. Microbiol 66:2052–57
    [Google Scholar]
  118. 118. 
    Okada BK, Seyedsayamdost MR. 2017. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41:19–33
    [Google Scholar]
  119. 119. 
    Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C 2007. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. . Int. J. Syst. Evol. Microbiol 57:2583–90
    [Google Scholar]
  120. 120. 
    Partida-Martinez LP, Hertweck C. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–88
    [Google Scholar]
  121. 121. 
    Polke M, Leonhardt I, Kurzai O, Jacobsen ID 2018. Farnesol signalling in Candida albicans—more than just communication. Crit. Rev. Microbiol. 44:230–43
    [Google Scholar]
  122. 122. 
    Raaijmakers JM, Mazzola M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 50:403–24
    [Google Scholar]
  123. 123. 
    Raaijmakers JM, Vlami M, de Souza JT 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–47
    [Google Scholar]
  124. 124. 
    Rajendran G, Mistry S, Desai AJ, Archana G 2007. Functional expression of Escherichia coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of Fe3+: ferrichrome as iron source. Arch. Microbiol. 187:257–64
    [Google Scholar]
  125. 125. 
    Reece E, Doyle S, Greally P, Renwick J, McClean S 2018. Aspergillus fumigatus inhibits Pseudomonas aeruginosa in co-culture: implications of a mutually antagonistic relationship on virulence and inflammation in the CF airway. Front. Microbiol. 9:1205
    [Google Scholar]
  126. 126. 
    Rella A, Yang MW, Gruber J, Montagna MT, Luberto C et al. 2012. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species. Mycopathologia 173:451–61
    [Google Scholar]
  127. 127. 
    Romero D, Traxler MF, Lopez D, Kolter R 2011. Antibiotics as signal molecules. Chem. Rev. 111:5492–505
    [Google Scholar]
  128. 128. 
    Salvioli A, Ghignone S, Novero M, Navazio L, Venice F et al. 2016. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–44
    [Google Scholar]
  129. 129. 
    Sass G, Ansari SR, Dietl AM, Deziel E, Haas H, Stevens DA 2019. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. . PLOS ONE 14:e0216085
    [Google Scholar]
  130. 130. 
    Sass G, Nazik H, Penner J, Shah H, Ansari SR et al. 2017. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J. Bacteriol. 200:e00345–17
    [Google Scholar]
  131. 131. 
    Sass G, Nazik H, Penner J, Shah H, Ansari SR et al. 2019. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med. Mycol. 57:S228–32
    [Google Scholar]
  132. 132. 
    Scherlach K, Busch B, Lackner G, Paszkowski U, Hertweck C 2012. Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew. Chem. Int. Ed. 51:9615–18
    [Google Scholar]
  133. 133. 
    Scherlach K, Graupner K, Hertweck C 2013. Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu. Rev. Microbiol. 67:375–97
    [Google Scholar]
  134. 134. 
    Scherlach K, Hertweck C. 2009. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7:1753–60
    [Google Scholar]
  135. 135. 
    Scherlach K, Hertweck C. 2018. Mediators of mutualistic microbe-microbe interactions. Nat. Prod. Rep. 35:303–8
    [Google Scholar]
  136. 136. 
    Scherlach K, Lackner G, Graupner K, Pidot S, Bretschneider T, Hertweck C 2013. Biosynthesis and mass spectrometric imaging of tolaasin, the virulence factor of brown blotch mushroom disease. ChemBioChem 14:2439–43
    [Google Scholar]
  137. 137. 
    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T 2017. Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–97
    [Google Scholar]
  138. 138. 
    Schmitt I, Partida-Martinez LP, Winkler R, Voigt K, Einax E et al. 2008. Evolution of host resistance in a toxin-producing bacterial-fungal alliance. ISME J 2:632–41
    [Google Scholar]
  139. 139. 
    Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR 2008. Bacterial protection of beetle-fungus mutualism. Science 322:63
    [Google Scholar]
  140. 140. 
    Deleted in proof
  141. 141. 
    Singh BN, Upreti DK, Gupta VK, Dai XF, Jiang Y 2017. Endolichenic fungi: a hidden reservoir of next generation biopharmaceuticals. Trends Biotechnol 35:808–13
    [Google Scholar]
  142. 142. 
    Spraker JE, Sanchez LM, Lowe TM, Dorrestein PC, Keller NP 2016. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. ISME J 10:2317–30
    [Google Scholar]
  143. 143. 
    Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J et al. 2018. Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. mBio 9:e00820–18
    [Google Scholar]
  144. 144. 
    Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H et al. 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–92
    [Google Scholar]
  145. 145. 
    Stocker-Worgotter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25:188–200
    [Google Scholar]
  146. 146. 
    Straight PD, Kolter R. 2009. Interspecies chemical communication in bacterial development. Annu. Rev. Microbiol. 63:99–118
    [Google Scholar]
  147. 147. 
    Suzuki MT, Parrot D, Berg G, Grube M, Tomasi S 2015. Lichens as natural sources of biotechnologically relevant bacteria. Appl. Microbiol. Biotechnol. 100:583–95
    [Google Scholar]
  148. 148. 
    Takahashi M, Iwasaki S, Kobayashi H, Okuda S 1987. Studies on macrocyclic lactone antibiotics: XI. Anti-mitotic and anti-tubulin activity of new antitumor antibiotics, rhizoxin and its homologues. J. Antibiot. 40:66–72
    [Google Scholar]
  149. 149. 
    Tang WHW, Li DY, Hazen SL 2018. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 16:137–54
    [Google Scholar]
  150. 150. 
    Tarkka MT, Feldhahn L, Kruger D, Arnold N, Buscot F, Wubet T 2015. Draft genome sequence of Streptomyces sp. strain 150FB, a mushroom mycoparasite antagonist. Genome Announc 3:e01441–14
    [Google Scholar]
  151. 151. 
    Thongkongkaew T, Ding W, Bratovanov E, Oueis E, Garci AAMA et al. 2018. Two types of threonine-tagged lipopeptides synergize in host colonization by pathogenic Burkholderia species. ACS Chem. Biol. 13:1370–79
    [Google Scholar]
  152. 152. 
    Tourneroche A, Lami R, Hubas C, Blanchet E, Vallet M et al. 2019. Bacterial-fungal interactions in the kelp endomicrobiota drive autoinducer-2 quorum sensing. Front. Microbiol. 10:1693
    [Google Scholar]
  153. 153. 
    Ueda K, Beppu T. 2017. Antibiotics in microbial coculture. J. Antibiot. 70:361–65
    [Google Scholar]
  154. 154. 
    Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal PK et al. 2017. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ. . Microbiol 19:2964–83
    [Google Scholar]
  155. 155. 
    Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M 2013. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci. Rep. 3:3250
    [Google Scholar]
  156. 156. 
    Van der Voort M, Meijer HJ, Schmidt Y, Watrous J, Dekkers E et al. 2015. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front. Microbiol. 6:693
    [Google Scholar]
  157. 157. 
    van Leeuwen PT, van der Peet JM, Bikker FJ, Hoogenkamp MA, Oliveira Paiva AM et al. 2016. Interspecies interactions between Clostridium difficile and Candida albicans. . mSphere 1:e00187–16
    [Google Scholar]
  158. 158. 
    Vazquez-Castellanos JF, Biclot A, Vrancken G, Huys GR, Raes J 2019. Design of synthetic microbial consortia for gut microbiota modulation. Curr. Opin. Pharmacol. 49:52–59
    [Google Scholar]
  159. 159. 
    Vinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA et al. 2017. Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci. Rep. 7:14330
    [Google Scholar]
  160. 160. 
    Wang Y, Wang L, Zhuang Y, Kong F, Zhang C, Zhu W 2014. Phenolic polyketides from the co-cultivation of marine-derived Penicillium sp. WC-29–5 and Streptomyces fradiae 007. Mar. Drugs 12:2079–88
    [Google Scholar]
  161. 161. 
    Wang ZR, Li G, Ji LX, Wang HH, Gao H et al. 2019. Induced production of steroids by co-cultivation of two endophytes from Mahonia fortunei. . Steroids 145:1–4
    [Google Scholar]
  162. 162. 
    Wargo MJ, Hogan DA. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9:359–64
    [Google Scholar]
  163. 163. 
    Yurkov A, Kruger D, Begerow D, Arnold N, Tarkka MT 2012. Basidiomycetous yeasts from Boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb. . Ecol 63:295–303
    [Google Scholar]
  164. 164. 
    Zhang L, Niaz SI, Khan D, Wang Z, Zhu Y et al. 2017. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Mar. Drugs 15:E35
    [Google Scholar]
  165. 165. 
    Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D et al. 2016. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–16
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012420-081224
Loading
/content/journals/10.1146/annurev-micro-012420-081224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error