1932

Abstract

Bacteria have evolved intricate secretion machineries for the successful delivery of large molecules across their cell envelopes. Such specialized secretion systems allow a variety of bacteria to thrive in specific host environments. In mycobacteria, type VII secretion systems (T7SSs) are dedicated protein transport machineries that fulfill diverse and crucial roles, ranging from metabolite uptake to immune evasion and subversion to conjugation. Since the discovery of mycobacterial T7SSs about 15 y ago, genetic, structural, and functional studies have provided insight into the roles and functioning of these secretion machineries. Here, we focus on recent advances in the elucidation of the structure and mechanism of mycobacterial T7SSs in protein secretion. As many of these systems are essential for mycobacterial growth or virulence, they provide opportunities for the development of novel therapies to combat a number of relevant mycobacterial diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012420-081657
2020-09-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012420-081657.html?itemId=/content/journals/10.1146/annurev-micro-012420-081657&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J et al. 2007. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5:883–91
    [Google Scholar]
  2. 2. 
    Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW et al. 2009. PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol. Microbiol. 73:329–40
    [Google Scholar]
  3. 3. 
    Akpe San Roman S, Facey PD, Fernandez-Martinez L, Rodriguez C, Vallin C et al. 2010. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. . Microbiology 156:1719–29
    [Google Scholar]
  4. 4. 
    Arbing MA, Kaufmann M, Phan T, Chan S, Cascio D, Eisenberg D 2010. The crystal structure of the Mycobacterium tuberculosis Rv3019c-Rv3020c ESX complex reveals a domain-swapped heterotetramer. Protein Sci 19:1692–703
    [Google Scholar]
  5. 5. 
    Arechaga I, Pena A, Zunzunegui S, del Carmen Fernandez-Alonso M, Rivas G, de la Cruz F 2008. ATPase activity and oligomeric state of TrwK, the VirB4 homologue of the plasmid R388 type IV secretion system. J. Bacteriol. 190:5472–79
    [Google Scholar]
  6. 6. 
    Ates LS. 2020. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol. Microbiol. 113:14–21
    [Google Scholar]
  7. 7. 
    Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD et al. 2018. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat. Microbiol 3:181–88
    [Google Scholar]
  8. 8. 
    Ates LS, Ummels R, Commandeur S, van de Weerd R, Sparrius M et al. 2015. Essential role of the ESX-5 secretion system in outer membrane permeability of pathogenic mycobacteria. PLOS Genet 11:e1005190
    [Google Scholar]
  9. 9. 
    Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJ et al. 2016. The ESX-5 system of pathogenic mycobacteria is involved in capsule integrity and virulence through its substrate PPE10. PLOS Pathog 12:e1005696
    [Google Scholar]
  10. 10. 
    Baptista C, Barreto HC, Sao-Jose C 2013. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. . PLOS ONE 8:e67840
    [Google Scholar]
  11. 11. 
    Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R et al. 2017. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat. Microbiol. 2:17047
    [Google Scholar]
  12. 12. 
    Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLOS Pathog 5:e1000507
    [Google Scholar]
  13. 13. 
    Bonemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A 2009. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28:315–25
    [Google Scholar]
  14. 14. 
    Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R et al. 2012. Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol. Microbiol. 83:1195–209
    [Google Scholar]
  15. 15. 
    Bottai D, Groschel MI, Brosch R 2017. Type VII secretion systems in Gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404:235–65
    [Google Scholar]
  16. 16. 
    Brennan PJ, Goren MB. 1979. Structural studies on the type-specific antigens and lipids of the Mycobacterium avium Mycobacterium intracellulare Mycobacterium scrofulaceum serocomplex: Mycobacterium intracellulare serotype 9. J. Biol. Chem. 254:4205–11
    [Google Scholar]
  17. 17. 
    Brodin P, Majlessi L, Marsollier L, de Jonge MI, Bottai D et al. 2006. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun. 74:88–98
    [Google Scholar]
  18. 18. 
    Bunduc CM, Ummels R, Bitter W, Houben ENG 2020. Species-specific secretion of ESX-5 type VII substrates is determined by the linker 2 of EccC5. Mol. Microbiol. In press
    [Google Scholar]
  19. 19. 
    Burggraaf MJ, Speer A, Meijers AS, Ummels R, van der Sar AM et al. 2019. Type VII secretion substrates of pathogenic mycobacteria are processed by a surface protease. mBio 10:e01951–19
    [Google Scholar]
  20. 20. 
    Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T 2016. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2:16183
    [Google Scholar]
  21. 21. 
    Champion PA, Champion MM, Manzanillo P, Cox JS 2009. ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol. Microbiol. 73:950–62
    [Google Scholar]
  22. 22. 
    Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS 2006. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. . Science 313:1632–36
    [Google Scholar]
  23. 23. 
    Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59:451–85
    [Google Scholar]
  24. 24. 
    Clark RR, Judd J, Lasek-Nesselquist E, Montgomery SA, Hoffmann JG et al. 2018. Direct cell-cell contact activates SigM to express the ESX-4 secretion system in Mycobacterium smegmatis. . PNAS 115:E6595–603
    [Google Scholar]
  25. 25. 
    Cole ST. 2016. Inhibiting Mycobacterium tuberculosis within and without. Philos. Trans. R. Soc. Lond. B. 371:20150506
    [Google Scholar]
  26. 26. 
    Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–44
    [Google Scholar]
  27. 27. 
    Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK et al. 2017. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. PNAS 114:1371–76
    [Google Scholar]
  28. 28. 
    Daffe M, Draper P. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131–203
    [Google Scholar]
  29. 29. 
    Daffe M, Etienne G. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 79:153–69
    [Google Scholar]
  30. 30. 
    Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM et al. 2012. General secretion signal for the mycobacterial type VII secretion pathway. PNAS 109:11342–47
    [Google Scholar]
  31. 31. 
    Daleke MH, van der Woude AD, Parret AH, Ummels R, de Groot AM et al. 2012. Specific chaperones for the type VII protein secretion pathway. J. Biol. Chem. 287:31939–47
    [Google Scholar]
  32. 32. 
    Damen MPM, Phan TH, Ummels R, Rubio-Canalejas A, Bitter W, Houben ENG 2020. Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system. J. Biol. Chem. 295:5960–69
    [Google Scholar]
  33. 33. 
    Danilchanka O, Sun J, Pavlenok M, Maueroder C, Speer A et al. 2014. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. PNAS 111:6750–55
    [Google Scholar]
  34. 34. 
    de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D et al. 2007. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J. Bacteriol. 189:6028–34
    [Google Scholar]
  35. 35. 
    Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE 2006. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem 281:3866–75
    [Google Scholar]
  36. 36. 
    Dulberger CL, Rubin EJ, Boutte CC 2020. The mycobacterial cell envelope—a moving target. Nat. Rev. Microbiol. 18:47–59
    [Google Scholar]
  37. 37. 
    Durand E, Oomen C, Waksman G 2010. Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J. Bacteriol. 192:2315–23
    [Google Scholar]
  38. 38. 
    Ekiert DC, Cox JS. 2014. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. PNAS 111:14758–63
    [Google Scholar]
  39. 39. 
    Elliott SR, Tischler AD. 2016. Phosphate starvation: a novel signal that triggers ESX-5 secretion in Mycobacterium tuberculosis. Mol. Microbiol 100:510–26
    [Google Scholar]
  40. 40. 
    Famelis N, Rivera-Calzada A, Degliesposti G, Wingender M, Mietrach N et al. 2019. Architecture of the mycobacterial type VII secretion system. Nature 576:321–25
    [Google Scholar]
  41. 41. 
    Fishbein S, van Wyk N, Warren RM, Sampson SL 2015. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol. Microbiol. 96:901–16
    [Google Scholar]
  42. 42. 
    Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM et al. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. PNAS 102:10676–81
    [Google Scholar]
  43. 43. 
    Fyans JK, Bignell D, Loria R, Toth I, Palmer T 2013. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol. . Plant Pathol 14:119–30
    [Google Scholar]
  44. 44. 
    Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ 2004. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 53:1677–93
    [Google Scholar]
  45. 45. 
    Gaur A, Sharma VK, Shree S, Rai N, Ramachandran R 2017. Characterization of EccA3, a CbbX family ATPase from the ESX-3 secretion pathway of M. tuberculosis. Biochim. Biophys. . Acta Proteins Proteom 1865:715–24
    [Google Scholar]
  46. 46. 
    Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM 2006. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6:95
    [Google Scholar]
  47. 47. 
    Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E et al. 2001. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–41
    [Google Scholar]
  48. 48. 
    Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM 2016. Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354:347–50
    [Google Scholar]
  49. 49. 
    Gray TA, Derbyshire KM. 2018. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol. Microbiol. 108:601–13
    [Google Scholar]
  50. 50. 
    Groschel MI, Sayes F, Simeone R, Majlessi L, Brosch R 2016. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 14:677–91
    [Google Scholar]
  51. 51. 
    Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M et al. 2017. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:421–24
    [Google Scholar]
  52. 52. 
    Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA, Hayes CS 2012. A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett 586:132–36
    [Google Scholar]
  53. 53. 
    Houben D, Demangel C, van Ingen J, Perez J, Baldeon L et al. 2012. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell. Microbiol. 14:1287–98
    [Google Scholar]
  54. 54. 
    Houben EN, Bestebroer J, Ummels R, Wilson L, Piersma SR et al. 2012. Composition of the type VII secretion system membrane complex. Mol. Microbiol. 86:472–84
    [Google Scholar]
  55. 55. 
    Houben EN, Korotkov KV, Bitter W 2014. Take five—type VII secretion systems of Mycobacteria. Biochim. Biophys. Acta Mol. Cell Res 1843:1707–16
    [Google Scholar]
  56. 56. 
    Ilghari D, Lightbody KL, Veverka V, Waters LC, Muskett FW et al. 2011. Solution structure of the Mycobacterium tuberculosis EsxG.EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J. Biol. Chem. 286:29993–30002
    [Google Scholar]
  57. 57. 
    Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J et al. 2019. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem. J. 476:1995–2016
    [Google Scholar]
  58. 58. 
    Koo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ 2008. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10:1866–78
    [Google Scholar]
  59. 59. 
    Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC et al. 2014. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol. Microbiol. 94:367–82
    [Google Scholar]
  60. 60. 
    Korotkova N, Piton J, Wagner JM, Boy-Rottger S, Japaridze A et al. 2015. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J. Struct. Biol 191:236–44
    [Google Scholar]
  61. 61. 
    Korycka-Machala M, Pawelczyk J, Borowka P, Dziadek B, Brzostek A et al. 2020. PPE51 is involved in the uptake of disaccharides by Mycobacterium tuberculosis. . Cells 9:3E603
    [Google Scholar]
  62. 62. 
    Laencina L, Dubois V, Le Moigne V, Viljoen A, Majlessi L et al. 2018. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. PNAS 115:E1002–11
    [Google Scholar]
  63. 63. 
    Lemassu A, Ortalo-Magne A, Bardou F, Silve G, Laneelle MA, Daffe M 1996. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142:Part 61513–20
    [Google Scholar]
  64. 64. 
    Lou Y, Rybniker J, Sala C, Cole ST 2017. EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol. Microbiol. 103:26–38
    [Google Scholar]
  65. 65. 
    Luthra A, Mahmood A, Arora A, Ramachandran R 2008. Characterization of Rv3868, an essential hypothetical protein of the ESX-1 secretion system in Mycobacterium tuberculosis. J. Biol. Chem 283:36532–41
    [Google Scholar]
  66. 66. 
    MacGurn JA, Raghavan S, Stanley SA, Cox JS 2005. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol. Microbiol 57:1653–63
    [Google Scholar]
  67. 67. 
    Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R et al. 2007. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 189:730–40
    [Google Scholar]
  68. 68. 
    Majlessi L, Prados-Rosales R, Casadevall A, Brosch R 2015. Release of mycobacterial antigens. Immunol. Rev. 264:25–45
    [Google Scholar]
  69. 69. 
    Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Lowe J 2006. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23:457–69
    [Google Scholar]
  70. 70. 
    McLaughlin B, Chon JS, MacGurn JA, Carlsson F, Cheng TL et al. 2007. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLOS Pathog 3:e105
    [Google Scholar]
  71. 71. 
    Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van Pittius NC 2016. The plasmid-mediated evolution of the mycobacterial ESX (Type VII) secretion systems. BMC Evol. Biol. 16:62
    [Google Scholar]
  72. 72. 
    Ohol YM, Goetz DH, Chan K, Shiloh MU, Craik CS, Cox JS 2010. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210–20
    [Google Scholar]
  73. 73. 
    Ortalo-Magne A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffe M 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:Part 71609–20
    [Google Scholar]
  74. 74. 
    Pallen MJ. 2002. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system. Trends Microbiol 10:209–12
    [Google Scholar]
  75. 75. 
    Phan TH, Houben ENG. 2018. Bacterial secretion chaperones: the mycobacterial type VII case. FEMS Microbiol. Lett. 365:fny197
    [Google Scholar]
  76. 76. 
    Phan TH, Ummels R, Bitter W, Houben EN 2017. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems. Sci. Rep. 7:42704
    [Google Scholar]
  77. 77. 
    Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G et al. 2018. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLOS Pathog 14:e1007247
    [Google Scholar]
  78. 78. 
    Poulsen C, Panjikar S, Holton SJ, Wilmanns M, Song YH 2014. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLOS ONE 9:e89313
    [Google Scholar]
  79. 79. 
    Poweleit N, Czudnochowski N, Nakagawa R, Trinidad D, Murphy KC et al. 2019. The structure of the endogenous ESX-3 secretion system. eLife 8:e52983
    [Google Scholar]
  80. 80. 
    Pyle E, Guo C, Hofmann T, Schmidt C, Ribiero O et al. 2019. Protein-lipid interactions stabilize the oligomeric state of BOR1p from Saccharomyces cerevisiae. Anal. . Chem 91:13071–79
    [Google Scholar]
  81. 81. 
    Pym AS, Brodin P, Brosch R, Huerre M, Cole ST 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol 46:709–17
    [Google Scholar]
  82. 82. 
    Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G et al. 2005. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–98
    [Google Scholar]
  83. 83. 
    Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I 2002. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70:3371–81
    [Google Scholar]
  84. 84. 
    Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A et al. 2015. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161:501–12
    [Google Scholar]
  85. 85. 
    Rybniker J, Chen JM, Sala C, Hartkoorn RC, Vocat A et al. 2014. Anticytolytic screen identifies inhibitors of mycobacterial virulence protein secretion. Cell Host Microbe 16:538–48
    [Google Scholar]
  86. 86. 
    Sampson SL. 2011. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin. Dev. Immunol. 2011:497203
    [Google Scholar]
  87. 87. 
    Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K et al. 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLOS Pathog 6:e1000794
    [Google Scholar]
  88. 88. 
    Serafini A, Boldrin F, Palu G, Manganelli R 2009. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J. Bacteriol. 191:6340–44
    [Google Scholar]
  89. 89. 
    Serafini A, Pisu D, Palu G, Rodriguez GM, Manganelli R 2013. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. . PLOS ONE 8:e78351
    [Google Scholar]
  90. 90. 
    Shukla A, Pallen M, Anthony M, White SA 2010. The homodimeric GBS1074 from Streptococcus agalactiae. Acta Crystallogr. Sect. F 66:1421–25
    [Google Scholar]
  91. 91. 
    Siegrist MS, Steigedal M, Ahmad R, Mehra A, Dragset MS et al. 2014. Mycobacterial Esx-3 requires multiple components for iron acquisition. mBio 5:e01073–14
    [Google Scholar]
  92. 92. 
    Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY et al. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. PNAS 106:18792–97
    [Google Scholar]
  93. 93. 
    Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L et al. 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLOS Pathog 8:e1002507
    [Google Scholar]
  94. 94. 
    Smith J, Manoranjan J, Pan M, Bohsali A, Xu J et al. 2008. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 76:5478–87
    [Google Scholar]
  95. 95. 
    Solomonson M, Huesgen PF, Wasney GA, Watanabe N, Gruninger RJ et al. 2013. Structure of the mycosin-1 protease from the mycobacterial ESX-1 protein type VII secretion system. J. Biol. Chem. 288:17782–90
    [Google Scholar]
  96. 96. 
    Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko EV et al. 2015. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 23:571–83
    [Google Scholar]
  97. 97. 
    Speer A, Sun J, Danilchanka O, Meikle V, Rowland JL et al. 2015. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol. Microbiol. 97:881–97
    [Google Scholar]
  98. 98. 
    Stanley SA, Raghavan S, Hwang WW, Cox JS 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. PNAS 100:13001–6
    [Google Scholar]
  99. 99. 
    Stephan J, Bender J, Wolschendorf F, Hoffmann C, Roth E et al. 2005. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol. Microbiol. 58:714–30
    [Google Scholar]
  100. 100. 
    Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D 2006. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. . PNAS 103:8060–65
    [Google Scholar]
  101. 101. 
    Sun D, Liu Q, He Y, Wang C, Wu F et al. 2013. The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability. Protein Cell 4:921–31
    [Google Scholar]
  102. 102. 
    Sysoeva TA, Zepeda-Rivera MA, Huppert LA, Burton BM 2014. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. . PNAS 111:7653–58
    [Google Scholar]
  103. 103. 
    Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilcheze C et al. 2016. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. PNAS 113:E348–57
    [Google Scholar]
  104. 104. 
    Tuukkanen AT, Freire D, Chan S, Arbing MA, Reed RW et al. 2019. Structural variability of EspG chaperones from mycobacterial ESX-1, ESX-3, and ESX-5 type VII secretion systems. J. Mol. Biol. 431:289–307
    [Google Scholar]
  105. 105. 
    Ummels R, Abdallah AM, Kuiper V, Aajoud A, Sparrius M et al. 2014. Identification of a novel conjugative plasmid in mycobacteria that requires both type IV and type VII secretion. mBio 5:e01744–14
    [Google Scholar]
  106. 106. 
    van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M et al. 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–98
    [Google Scholar]
  107. 107. 
    van Winden VJ, Ummels R, Piersma SR, Jimenez CR, Korotkov KV et al. 2016. Mycosins are required for the stabilization of the ESX-1 and ESX-5 type VII secretion membrane complexes. mBio 7:e01471–16
    [Google Scholar]
  108. 108. 
    van Winden VJC, Bunduc CM, Ummels R, Bitter W, Houben ENG 2020. A chimeric EccB-MycP fusion protein is functional and a stable component of the ESX-5 type VII secretion system membrane complex. J. Mol. Biol. 432:1265–78
    [Google Scholar]
  109. 109. 
    van Winden VJC, Damen MPM, Ummels R, Bitter W, Houben ENG 2019. Protease domain and transmembrane domain of the type VII secretion mycosin protease determine system-specific functioning in mycobacteria. J. Biol. Chem. 294:4806–14
    [Google Scholar]
  110. 110. 
    van Winden VJC, Houben ENG, Braunstein M 2019. Protein export into and across the atypical diderm cell envelope of mycobacteria. Microbiol. Spectr. 7:4 https://doi.org/10.1128/microbiolspec.GPP3-0043-2018
    [Crossref] [Google Scholar]
  111. 111. 
    Wagner JM, Chan S, Evans TJ, Kahng S, Kim J et al. 2016. Structures of EccB1 and EccD1 from the core complex of the mycobacterial ESX-1 type VII secretion system. BMC Struct. Biol. 16:5
    [Google Scholar]
  112. 112. 
    Wagner JM, Evans TJ, Chen J, Zhu H, Houben EN et al. 2013. Understanding specificity of the mycosin proteases in ESX/type VII secretion by structural and functional analysis. J. Struct. Biol. 184:115–28
    [Google Scholar]
  113. 113. 
    Wagner JM, Evans TJ, Korotkov KV 2014. Crystal structure of the N-terminal domain of EccA1 ATPase from the ESX-1 secretion system of Mycobacterium tuberculosis. . Proteins 82:159–63
    [Google Scholar]
  114. 114. 
    Wang Q, Boshoff HIM, Harrison JR, Ray PC, Green SR et al. 2020. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. . Science 367:1147–51
    [Google Scholar]
  115. 115. 
    Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ et al. 2017. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. eLife 6:e26938
    [Google Scholar]
  116. 116. 
    World Health Organ 2019. Global Tuberculosis Report 2019 Geneva: World Health Organ.
  117. 117. 
    Zhang XL, Li DF, Fleming J, Wang LW, Zhou Y et al. 2015. Core component EccB1 of the Mycobacterium tuberculosis type VII secretion system is a periplasmic ATPase. FASEB J 29:4804–14
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012420-081657
Loading
/content/journals/10.1146/annurev-micro-012420-081657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error