1932

Abstract

Two strains of good fortune in my career were to stumble upon the Watson–Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-012520-073029
2020-09-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-012520-073029.html?itemId=/content/journals/10.1146/annurev-micro-012520-073029&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adhya S, Gottesman M, De Crombrugghe B 1974. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. PNAS 71:2534–38
    [Google Scholar]
  2. 2. 
    Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA 2015. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4:e08504
    [Google Scholar]
  3. 3. 
    Bird JG, Strobel EJ, Roberts JW 2016. A universal transcription pause sequence is an element of initiation factor σ70-dependent pausing. Nucleic Acids Res 44:6732–40
    [Google Scholar]
  4. 4. 
    Blattner FR, Dahlberg JE. 1972. RNA synthesis startpoints in bacteriophage λ: Are the promoter and operator transcribed. Nat. New Biol. 237:227–32
    [Google Scholar]
  5. 5. 
    Brennan CA, Dombroski AJ, Platt T 1987. Transcription termination factor rho is an RNA-DNA helicase. Cell 48:945–52
    [Google Scholar]
  6. 6. 
    Burgess RR, Travers AA, Dunn JJ, Bautz EK 1969. Factor stimulating transcription by RNA polymerase. Nature 221:43–46
    [Google Scholar]
  7. 7. 
    Capecchi MR, Gussin GN. 1965. Suppression in vitro: identification of a serine-sRNA as a “nonsense” suppressor. Science 149:417–22
    [Google Scholar]
  8. 8. 
    Craig NL, Roberts JW. 1980. E. coli recA protein-directed cleavage of phage λ repressor requires polynucleotide. Nature 283:26–30
    [Google Scholar]
  9. 9. 
    Crick FH, Barnett L, Brenner S, Watts-Tobin RJ 1961. General nature of the genetic code for proteins. Nature 192:1227–32
    [Google Scholar]
  10. 10. 
    Deighan P, Diez CM, Leibman M, Hochschild A, Nickels BE 2008. The bacteriophage λ Q antiterminator protein contacts the β-flap domain of RNA polymerase. PNAS 105:15305–10
    [Google Scholar]
  11. 11. 
    Franklin NC. 1974. Altered reading of genetic signals fused to the N operon of bacteriophage λ: genetic evidence for modification of polymerase by the protein product of the N gene. J. Mol. Biol. 89:33–48
    [Google Scholar]
  12. 12. 
    Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage λ. Microbiol. Rev. 48:299–325
    [Google Scholar]
  13. 13. 
    Friedman DI, Wilgus GS, Mural RJ 1973. Gene N regulator function of phage λimmun21: evidence that a site of N action differs from a site of N recognition. J. Mol. Biol. 81:505–16
    [Google Scholar]
  14. 14. 
    Goff CG. 1974. Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase α polypeptides induced by bacteriophage T4 infection. J. Biol. Chem. 249:6181–90
    [Google Scholar]
  15. 15. 
    Goldman SR, Nair NU, Wells CD, Nickels BE, Hochschild A 2015. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo. eLife 4:e10514
    [Google Scholar]
  16. 16. 
    Grayhack EJ, Roberts JW. 1982. The phage λ Q gene product: activity of a transcription antiterminator in vitro. Cell 30:637–48
    [Google Scholar]
  17. 17. 
    Grayhack EJ, Yang XJ, Lau LF, Roberts JW 1985. Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site. Cell 42:259–69
    [Google Scholar]
  18. 18. 
    Greenblatt J, Nodwell JR, Mason SW 1993. Transcriptional antitermination. Nature 364:401–6
    [Google Scholar]
  19. 19. 
    Greenblatt J, Schleif R. 1971. Arabinose C protein: regulation of the arabinose operon in vitro. Nat. New Biol. 233:166–70
    [Google Scholar]
  20. 20. 
    Hart CM, Roberts JW. 1994. Deletion analysis of the lambda tR1 termination region: effect of sequences near the transcript release sites, and the minimum length of rho-dependent transcripts. J. Mol. Biol. 237:255–65
    [Google Scholar]
  21. 21. 
    Hatoum A, Roberts J. 2008. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Mol. Microbiol. 68:17–28
    [Google Scholar]
  22. 22. 
    Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC et al. 2006. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 125:1083–94
    [Google Scholar]
  23. 23. 
    Herskowitz I, Signer ER. 1970. A site essential for expression of all late genes in bacteriophage λ. J. Mol. Biol. 47:545–56
    [Google Scholar]
  24. 24. 
    Horvitz HR. 1974. Control by bacteriophage T4 of two sequential phosphorylations of the alpha subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 90:727–38
    [Google Scholar]
  25. 25. 
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  26. 26. 
    Kainz M, Roberts J. 1992. Structure of transcription elongation complexes in vivo. Science 255:838–41
    [Google Scholar]
  27. 27. 
    Krupp F, Said N, Huang YH, Loll B, Burger J et al. 2019. Structural basis for the action of an all-purpose transcription anti-termination factor. Mol. Cell 74:143–57.e5
    [Google Scholar]
  28. 28. 
    Larson MH, Greenleaf WJ, Landick R, Block SM 2008. Applied force reveals mechanistic and energetic details of transcription termination. Cell 132:971–82
    [Google Scholar]
  29. 29. 
    Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D et al. 2014. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 344:1042–47
    [Google Scholar]
  30. 30. 
    Lau LF, Roberts JW, Wu R 1983. RNA polymerase pausing and transcript release at the λtR1 terminator in vitro. J. Biol. Chem. 258:9391–97
    [Google Scholar]
  31. 31. 
    Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A et al. 2018. Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol. Cell 71:911–22.e4
    [Google Scholar]
  32. 32. 
    Lin LL, Little JW. 1989. Autodigestion and RecA-dependent cleavage of Ind mutant LexA proteins. J. Mol. Biol. 210:439–52
    [Google Scholar]
  33. 33. 
    Little JW, Edmiston SH, Pacelli LZ, Mount DW 1980. Cleavage of the Escherichia coli lexA protein by the recA protease. PNAS 77:3225–29
    [Google Scholar]
  34. 34. 
    Lowery-Goldhammer C, Richardson JP. 1974. An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. PNAS 71:2003–7
    [Google Scholar]
  35. 35. 
    Lwoff A, Siminovitch L, Kjeldgaard N 1950. Induction de la production de bactériophages chez une bactérie lysogène. Ann. Inst. Pasteur 79:815–59
    [Google Scholar]
  36. 36. 
    Mooney RA, Landick R. 2003. Tethering σ70 to RNA polymerase reveals high in vivo activity of σ factors and σ70-dependent pausing at promoter-distal locations. Genes Dev 17:2839–51
    [Google Scholar]
  37. 37. 
    Nickels BE, Roberts CW, Roberts JW, Hochschild A 2006. RNA-mediated destabilization of the σ70 region 4/β flap interaction facilitates engagement of RNA polymerase by the Q antiterminator. Mol. Cell 24:457–68
    [Google Scholar]
  38. 38. 
    Park JS, Marr MT, Roberts JW 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757–67
    [Google Scholar]
  39. 39. 
    Park JS, Roberts JW. 2006. Role of DNA bubble rewinding in enzymatic transcription termination. PNAS 103:4870–75
    [Google Scholar]
  40. 40. 
    Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R 2012. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26:2621–33
    [Google Scholar]
  41. 41. 
    Phizicky EM, Roberts JW. 1981. Induction of SOS functions: regulation of proteolytic activity of E. coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell 25:259–67
    [Google Scholar]
  42. 42. 
    Radman M. 1975. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–67
    [Google Scholar]
  43. 43. 
    Richardson JP, Grimley C, Lowery C 1975. Transcription termination factor rho activity is altered in Escherichia coli with suA gene mutations. PNAS 72:1725–28
    [Google Scholar]
  44. 44. 
    Ring BZ, Roberts JW. 1994. Function of a nontranscribed DNA strand site in transcription elongation. Cell 78:317–24
    [Google Scholar]
  45. 45. 
    Ring BZ, Yarnell WS, Roberts JW 1996. Function of E. coli RNA polymerase σ factor σ70 in promoter-proximal pausing. Cell 86:485–93
    [Google Scholar]
  46. 46. 
    Roberts CW, Roberts JW. 1996. Base-specific recognition of the nontemplate strand of promoter DNA by E. coli RNA polymerase. Cell 86:495–501
    [Google Scholar]
  47. 47. 
    Roberts JW. 1969. Promoter mutation in vitro. Nature 223:480–82
    [Google Scholar]
  48. 48. 
    Roberts JW. 1969. Termination factor for RNA synthesis. Nature 224:1168–74
    [Google Scholar]
  49. 49. 
    Roberts JW. 2019. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431:4030–39
    [Google Scholar]
  50. 50. 
    Roberts JW, Devoret R. 1983. Lysogenic induction. Lambda II RW Hendrix, JW Roberts, RW Stahl, RA Weisberg 123–44 Cold Spring Harbor, NY: Cold Spring Harb. Lab.
    [Google Scholar]
  51. 51. 
    Roberts JW, Roberts CW. 1975. Proteolytic cleavage of bacteriophage lambda repressor in induction. PNAS 72:147–51
    [Google Scholar]
  52. 52. 
    Roberts JW, Roberts CW, Craig NL 1978. Escherichia coli recA gene product inactivates phage λ repressor. PNAS 75:4714–18
    [Google Scholar]
  53. 53. 
    Roberts JW, Roberts CW, Mount DW 1977. Inactivation and proteolytic cleavage of phage λ repressor in vitro in an ATP-dependent reaction. PNAS 74:2283–87
    [Google Scholar]
  54. 54. 
    Roberts JW, Steitz JE. 1967. The reconstitution of infective bacteriophage R17. PNAS 58:1416–21
    [Google Scholar]
  55. 55. 
    Santangelo TJ, Roberts JW. 2004. Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol. Cell 14:117–26
    [Google Scholar]
  56. 56. 
    Sassanfar M, Roberts JW. 1990. Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J. Mol. Biol. 212:79–96
    [Google Scholar]
  57. 57. 
    Selby CP, Sancar A. 1993. Molecular mechanism of transcription-repair coupling. Science 260:53–58
    [Google Scholar]
  58. 58. 
    Shankar S, Hatoum A, Roberts JW 2007. A transcription antiterminator constructs a NusA-dependent shield to the emerging transcript. Mol. Cell 27:914–27
    [Google Scholar]
  59. 59. 
    Shi J, Gao X, Tian T, Yu Z, Gao B et al. 2019. Structural basis of Q-dependent transcription antitermination. Nat. Commun. 10:2925
    [Google Scholar]
  60. 60. 
    Skordalakes E, Berger JM. 2006. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination factor. Cell 127:553–64
    [Google Scholar]
  61. 61. 
    Strobel EJ, Roberts JW. 2015. Two transcription pause elements underlie a σ70-dependent pause cycle. PNAS 112:E4374–80
    [Google Scholar]
  62. 62. 
    Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR et al. 2014. Interactions between RNA polymerase and the “core recognition element” counteract pausing. Science 344:1285–89
    [Google Scholar]
  63. 63. 
    Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM 1987. Molecular Biology of the Gene Menlo Park, CA: Benjamin Cummings. , 4th ed..
  64. 64. 
    Witkin EM. 1967. The radiation sensitivity of Escherichia coli B: a hypothesis relating filament formation and prophage induction. PNAS 57:1275–79
    [Google Scholar]
  65. 65. 
    Yang XJ, Goliger JA, Roberts JW 1989. Specificity and mechanism of antitermination by Q proteins of bacteriophages λ and 82. J. Mol. Biol. 210:453–60
    [Google Scholar]
  66. 66. 
    Yang XJ, Roberts JW. 1989. Gene Q antiterminator proteins of Escherichia coli phages 82 and λ suppress pausing by RNA polymerase at a ρ-dependent terminator and at other sites. PNAS 86:5301–5
    [Google Scholar]
  67. 67. 
    Yarnell WS, Roberts JW. 1999. Mechanism of intrinsic transcription termination and antitermination. Science 284:611–15
    [Google Scholar]
  68. 68. 
    Yin Z, Kaelber JT, Ebright RH 2019. Structural basis of Q-dependent antitermination. PNAS 116:18384–90
    [Google Scholar]
  69. 69. 
    Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98:811–24
    [Google Scholar]
  70. 70. 
    Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX et al. 2012. Structural basis of transcription initiation. Science 338:1076–80
    [Google Scholar]
/content/journals/10.1146/annurev-micro-012520-073029
Loading
/content/journals/10.1146/annurev-micro-012520-073029
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error