1932

Abstract

The cytoplasm of bacterial cells is a highly crowded cellular compartment that possesses considerable osmotic potential. As a result, and owing to the semipermeable nature of the cytoplasmic membrane and the semielastic properties of the cell wall, osmotically driven water influx will generate turgor, a hydrostatic pressure considered critical for growth and viability. Both increases and decreases in the external osmolarity inevitably trigger water fluxes across the cytoplasmic membrane, thus impinging on the degree of cellular hydration, molecular crowding, magnitude of turgor, and cellular integrity. Here, we assess mechanisms that permit the perception of osmotic stress by bacterial cells and provide an overview of the systems that allow them to genetically and physiologically cope with this ubiquitous environmental cue. We highlight recent developments implicating the secondary messenger c-di-AMP in cellular adjustment to osmotic stress and the role of osmotic forces in the life of bacteria-assembled in biofilms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115504
2019-09-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115504.html?itemId=/content/journals/10.1146/annurev-micro-020518-115504&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akai M, Onai K, Morishita M, Mino H, Shijuku T et al. 2012. Aquaporin AqpZ is involved in cell volume regulation and sensitivity to osmotic stress in Synechocystis sp. strain PCC 6803. J. Bacteriol. 194:6828–36
    [Google Scholar]
  2. 2. 
    Altendorf K, Siebers A, Epstein W 1992. The KDP ATPase of Escherichia coli. Ann. N. Y. Acad. Sci 671:228–43
    [Google Scholar]
  3. 3. 
    Arnaouteli S, Ferreira AS, Schor M, Morris RJ, Bromley KM et al. 2017. Bifunctionality of a biofilm matrix protein controlled by redox state. PNAS 114:E6184–91
    [Google Scholar]
  4. 4. 
    Arnaouteli S, MacPhee CE, Stanley-Wall NR 2016. Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34:7–12
    [Google Scholar]
  5. 5. 
    Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW, Bai G 2014. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae. J. Bacteriol 196:614–23
    [Google Scholar]
  6. 6. 
    Bass RB, Strop P, Barclay M, Rees DC 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–87
    [Google Scholar]
  7. 7. 
    Bay DC, Turner RJ. 2012. Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J. Bacteriol. 194:5941–48
    [Google Scholar]
  8. 8. 
    Becker M, Krämer R. 2015. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur. Biophys. J. 44:577–88
    [Google Scholar]
  9. 9. 
    Boer M, Anishkin A, Sukharev S 2011. Adaptive MscS gating in the osmotic permeability response in E. coli: the question of time. Biochemistry 50:4087–96
    [Google Scholar]
  10. 10. 
    Bolen DW, Baskakov IV. 2001. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310:955–63
    [Google Scholar]
  11. 11. 
    Booth IR. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359–78
    [Google Scholar]
  12. 12. 
    Booth IR. 2014. Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18:16–22
    [Google Scholar]
  13. 13. 
    Booth IR, Blount P. 2012. The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J. Bacteriol. 194:4802–9
    [Google Scholar]
  14. 14. 
    Booth IR, Higgins CF. 1990. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress. ? FEMS Microbiol. Rev. 6:239–46
    [Google Scholar]
  15. 15. 
    Börngen K, Battle AR, Möker N, Morbach S, Marin K et al. 2010. The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim. Biophys. Acta Biomembr. 1798:2141–49
    [Google Scholar]
  16. 16. 
    Bott M, Brocker M. 2012. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl. Microbiol. Biotechnol. 94:1131–50
    [Google Scholar]
  17. 17. 
    Bremer E, Krämer R. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. Bacterial Stress Responses G Storz, R Hengge-Aronis 79–97 Washington, DC: ASM
    [Google Scholar]
  18. 18. 
    Brewster JL, Gustin MC. 2014. Hog1: 20 years of discovery and impact. Sci. Signal. 7:re7
    [Google Scholar]
  19. 19. 
    Buda R, Liu Y, Yang J, Hegde S, Stevenson K et al. 2016. Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. PNAS 113:E5838–46
    [Google Scholar]
  20. 20. 
    Cagliero C, Jin DJ. 2012. Dissociation and re-association of RNA polymerase with DNA during osmotic stress response in Escherichia coli. Nucleic Acids Res 41:315–26
    [Google Scholar]
  21. 21. 
    Cairns LS, Hobley L, Stanley-Wall NR 2014. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol. Microbiol. 93:587–98
    [Google Scholar]
  22. 22. 
    Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P 1995. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli.. J. Biol. Chem 270:29063–66
    [Google Scholar]
  23. 23. 
    Cantor RS. 1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76:2625–39
    [Google Scholar]
  24. 24. 
    Capp MW, Pegram LM, Saecker RM, Kratz M, Riccardi D et al. 2009. Interactions of the osmolyte glycine betaine with molecular surfaces in water: thermodynamics, structural interpretation, and prediction of m-values. Biochemistry 48:10372–79
    [Google Scholar]
  25. 25. 
    Cayley DS, Guttman HJ, Record MT Jr 2000. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78:1748–64
    [Google Scholar]
  26. 26. 
    Cayley S, Lewis BA, Record MT Jr 1992. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 174:1586–95
    [Google Scholar]
  27. 27. 
    Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–26
    [Google Scholar]
  28. 28. 
    Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J 2018. A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26:175–85
    [Google Scholar]
  29. 29. 
    Commichau FM, Heidemann JL, Ficner R, Stülke J 2019. Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J. Bacteriol. 201:e00462–18
    [Google Scholar]
  30. 30. 
    Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A 2013. Systematic identification of conserved bacterial c-di-AMP receptor proteins. PNAS 110:9084–89
    [Google Scholar]
  31. 31. 
    Corrigan RM, Gründling A. 2013. Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11:513–24
    [Google Scholar]
  32. 32. 
    Cox CD, Bavi N, Martinac B 2018. Bacterial mechanosensors. Annu. Rev. Physiol. 80:71–93A state-of-the-art overview on the significance of mechanosensitive channels.
    [Google Scholar]
  33. 33. 
    Csonka LN. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53:121–47
    [Google Scholar]
  34. 34. 
    Culham DE, Marom D, Boutin R, Garner J, Ozturk TN et al. 2018. Dual role of the C-terminal domain in osmosensing by bacterial osmolyte transporter ProP. Biophys. J. 115:2152–66
    [Google Scholar]
  35. 35. 
    Czech L, Poehl S, Hub P, Stoeveken N, Bremer E 2018. Tinkering with osmotically controlled transcription allows enhanced production and excretion of ectoine and hydroxyectoine from a microbial cell factory. Appl. Environ. Microbiol. 84:e01772–17
    [Google Scholar]
  36. 36. 
    Czech L, Stöveken N, Bremer E 2016. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb. Cell Fact. 15:126
    [Google Scholar]
  37. 37. 
    da Costa MS, Santos H, Galinski EA 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol 61:117–53
    [Google Scholar]
  38. 38. 
    Dai X, Zhu M. 2018. High osmolarity modulates bacterial cell size through reducing initiation volume in Escherichia coli. mSphere 3:e00430–18
    [Google Scholar]
  39. 39. 
    Dai X, Zhu M, Warren M, Balakrishnan R, Okano H et al. 2018. Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. mBio 9:e02375–17
    [Google Scholar]
  40. 40. 
    Delamarche C, Thomas D, Rolland JP, Froger A, Gouranton J et al. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181:4193–97
    [Google Scholar]
  41. 41. 
    Delcour AH, Martinac B, Adler J, Kung C 1989. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56:631–36
    [Google Scholar]
  42. 42. 
    Deng Y, Sun M, Shaevitz JW 2011. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107:158101
    [Google Scholar]
  43. 43. 
    Devaux L, Sleiman D, Mazzuoli MV, Gominet M, Lanotte P et al. 2018. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus. PLOS Genet 14:e1007342
    [Google Scholar]
  44. 44. 
    Dinnbier U, Limpinsel E, Schmid R, Bakker EP 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150:348–57
    [Google Scholar]
  45. 45. 
    Du Y, Shi WW, He YX, Yang YH, Zhou CZ, Chen Y 2011. Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem. J. 436:283–89
    [Google Scholar]
  46. 46. 
    Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR et al. 2012. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels 6:272–81
    [Google Scholar]
  47. 47. 
    Erickson HP. 2017. How bacterial cell division might cheat turgor pressure—a unified mechanism of septal division in Gram-positive and Gram-negative bacteria. BioEssays 39:81700045
    [Google Scholar]
  48. 48. 
    Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:563–75
    [Google Scholar]
  49. 49. 
    Foo YH, Gao Y, Zhang H, Kenney LJ 2015. Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. Prog. Biophys. Mol. Biol. 118:119–29
    [Google Scholar]
  50. 50. 
    Forrest LR, Krämer R, Ziegler C 2011. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta Bioenerg. 1807:167–88
    [Google Scholar]
  51. 51. 
    Fujisawa M, Ito M, Krulwich TA 2007. Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. PNAS 104:13289–94
    [Google Scholar]
  52. 52. 
    Gao A, Serganov A. 2014. Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat. Chem. Biol. 10:787–92
    [Google Scholar]
  53. 53. 
    Glaasker E, Konings WN, Poolman B 1996. Glycine betaine fluxes in Lactobacillus plantarum during osmostasis and hyper- and hypo-osmotic shock. J. Biol. Chem. 271:10060–65
    [Google Scholar]
  54. 54. 
    Gralla JD, Huo YX. 2008. Remodeling and activation of Escherichia coli RNA polymerase by osmolytes. Biochemistry 47:13189–96
    [Google Scholar]
  55. 55. 
    Grammann K, Volke A, Kunte HJ 2002. New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J. Bacteriol. 184:3078–85
    [Google Scholar]
  56. 56. 
    Güler G, Gärtner RM, Ziegler C, Mäntele W 2015. Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy. J. Biol. Chem. 291:4295–307
    [Google Scholar]
  57. 57. 
    Gunde-Cimerman N, Plemenitas A, Oren A 2018. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42:353–75
    [Google Scholar]
  58. 58. 
    Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T et al. 2017. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci. Signal 10: eaal 3011
    [Google Scholar]
  59. 59. 
    Gundlach J, Krüger L, Herzberg C, Turdiev A, Poehlein A et al. 2019. Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J. Biol. Chem. 294:9605–14
    [Google Scholar]
  60. 60. 
    Haselwandter CA, MacKinnon R. 2018. Piezo's membrane footprint and its contribution to mechanosensitivity. eLife 7:e41968
    [Google Scholar]
  61. 61. 
    Hengge-Aronis R. 1996. Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol 21:887–93
    [Google Scholar]
  62. 62. 
    Hill AE, Shachar-Hill B, Shachar-Hill Y 2004. What are aquaporins for?. J. Membr. Biol. 197:1–32
    [Google Scholar]
  63. 63. 
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39:649–69
    [Google Scholar]
  64. 64. 
    Hoffmann T, Bremer E. 2017. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol. Chem 398:193–214
    [Google Scholar]
  65. 65. 
    Hoffmann T, von Blohn C, Stanek A, Moses S, Barzantny S, Bremer E 2012. Synthesis, release, and recapture of the compatible solute proline by osmotically stressed Bacillus subtilis cells. Appl. Environ. Microbiol. 78:5753–62
    [Google Scholar]
  66. 66. 
    Hoffmann T, Wensing A, Brosius M, Steil L, Völker U, Bremer E 2013. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J. Bacteriol. 195:510–22
    [Google Scholar]
  67. 67. 
    Hohmann S. 2015. An integrated view on a eukaryotic osmoregulation system. Curr. Genet. 61:373–82
    [Google Scholar]
  68. 68. 
    Horn C, Sohn-Bösser L, Breed J, Welte W, Schmitt L, Bremer E 2006. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 357:592–606
    [Google Scholar]
  69. 69. 
    Huynh TN, Choi PH, Sureka K, Ledvina HE, Campillo J et al. 2016. Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC. Mol. Microbiol. 102:233–43
    [Google Scholar]
  70. 70. 
    Ito M, Morino M, Krulwich TA 2017. Mrp antiporters have important roles in diverse bacteria and archaea. Front. Microbiol. 8:2325
    [Google Scholar]
  71. 71. 
    Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR 2018. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110:863–78
    [Google Scholar]
  72. 72. 
    Karasawa A, Erkens GB, Berntsson RP, Otten R, Schuurman-Wolters GK et al. 2011. Cystathionine beta-synthase (CBS) domains 1 and 2 fulfill different roles in ionic strength sensing of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 286:37280–91
    [Google Scholar]
  73. 73. 
    Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch. Microbiol. 170:319–30
    [Google Scholar]
  74. 74. 
    Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS 2015. Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J. Biol. Chem. 290:16393–402
    [Google Scholar]
  75. 75. 
    Koshy C, Schweikhard ES, Gartner RM, Perez C, Yildiz O, Ziegler C 2013. Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J 32:3096–105
    [Google Scholar]
  76. 76. 
    Krulwich TA, Sachs G, Padan E 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9:330–43
    [Google Scholar]
  77. 77. 
    Kung C. 2005. A possible unifying principle for mechanosensation. Nature 436:647–54
    [Google Scholar]
  78. 78. 
    Lee AG. 2003. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta Biomembr. 1612:1–40
    [Google Scholar]
  79. 79. 
    Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–37
    [Google Scholar]
  80. 80. 
    Lycklama a Nijeholt JA, Vietrov R, Schuurman-Wolters GK, Poolman B 2018. Energy coupling efficiency in the type I ABC transporter GlnPQ. J. Mol. Biol 430:853–66
    [Google Scholar]
  81. 81. 
    Marin K, Krämer R. 2007. Amino acid transport systems in biotechnologically relevant bacteria. Amino Acid Biosynthesis—Pathways, Regulation and Metabolic Engineering VF Wendisch 290–325 Heidelberg: Springer
    [Google Scholar]
  82. 82. 
    Martinac B, Adler J, Kung C 1990. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–63
    [Google Scholar]
  83. 83. 
    Maximov S, Ott V, Belkoura L, Krämer R 2014. Stimulus analysis of BetP activation under in vivo conditions. Biochim. Biophys. Acta Biomembr. 1838:1288–95
    [Google Scholar]
  84. 84. 
    Mikkat S, Hagemann M. 2000. Molecular analysis of the ggtBCD gene cluster of Synechocystis sp. strain PCC6803 encoding subunits of an ABC transporter for osmoprotective compounds. Arch. Microbiol. 174:273–82
    [Google Scholar]
  85. 85. 
    Moe P, Blount P. 2005. Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44:12239–44
    [Google Scholar]
  86. 86. 
    Möker N, Krämer J, Unden G, Krämer R, Morbach S 2007. In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum. J. Bacteriol 189:3645–49
    [Google Scholar]
  87. 87. 
    Möker N, Reihlen P, Krämer R, Morbach S 2007. Osmosensing properties of the histidine protein kinase MtrB from Corynebacterium glutamicum. J. Biol. Chem 282:27666–77
    [Google Scholar]
  88. 88. 
    Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR 2013. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9:834–39
    [Google Scholar]
  89. 89. 
    Novak JF, Stirnberg M, Roenneke B, Marin K 2011. A novel mechanism of osmosensing, a salt-dependent protein-nucleic acid interaction in the cyanobacterium Synechocystis species PCC 6803. J. Biol. Chem. 286:3235–41
    [Google Scholar]
  90. 90. 
    Oren A. 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63:334–48A comprehensive treatment of energetic constraints faced by salt-stressed cells.
    [Google Scholar]
  91. 91. 
    Oswald C, Smits SH, Höing M, Sohn-Bösser L, Dupont L et al. 2008. Crystal structures of the choline/acetylcholine substrate-binding protein ChoX from Sinorhizobium meliloti in the liganded and unliganded-closed states. J. Biol. Chem. 283:32848–59
    [Google Scholar]
  92. 92. 
    Özcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Krämer R 2007. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J. Bacteriol 189:7485–96
    [Google Scholar]
  93. 93. 
    Pade N, Hagemann M. 2014. Salt acclimation of cyanobacteria and their application in biotechnology. Life 5:25–49
    [Google Scholar]
  94. 94. 
    Parish T. 2014. Two-component regulatory systems of mycobacteria. Microbiol. Spectr. 2:MGM2–00102013
    [Google Scholar]
  95. 95. 
    Perez C, Faust B, Mehdipour AR, Francesconi KA, Forrest LR, Ziegler C 2014. Substrate-bound outward-open state of the betaine transporter BetP provides insights into Na+ coupling. Nat. Commun. 5:4231
    [Google Scholar]
  96. 96. 
    Perez C, Koshy C, Yildiz O, Ziegler C 2012. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490:126–30
    [Google Scholar]
  97. 97. 
    Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B 2002. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–48
    [Google Scholar]
  98. 98. 
    Peter H, Weil B, Burkovski A, Kramer R, Morbach S 1998. Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP. J. Bacteriol. 180:6005–12
    [Google Scholar]
  99. 99. 
    Pham HT, Nhiep NTH, Vu TNM, Huynh TN, Zhu Y et al. 2018. Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLOS Genet 14:e1007574
    [Google Scholar]
  100. 100. 
    Pittelkow M, Tschapek B, Smits SH, Schmitt L, Bremer E 2011. The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J. Mol. Biol. 411:53–67
    [Google Scholar]
  101. 101. 
    Pliotas C, Dahl AC, Rasmussen T, Mahendran KR, Smith TK et al. 2015. The role of lipids in mechanosensation. Nat. Struct. Mol. Biol. 22:991–98
    [Google Scholar]
  102. 102. 
    Poolman B, Spitzer JJ, Wood JM 2004. Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim. Biophys. Acta Biomembr. 1666:88–104
    [Google Scholar]
  103. 103. 
    Powl AM, East JM, Lee AG 2005. Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873–83
    [Google Scholar]
  104. 104. 
    Record MT Jr, Zhang W, Anderson CF. 1998. Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv. Protein Chem. 51:281–353
    [Google Scholar]
  105. 105. 
    Ren A, Patel DJ. 2014. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol. 10:780–86
    [Google Scholar]
  106. 106. 
    Ressl S, van Scheltinga ACT, Vonrhein C, Ott V, Ziegler C 2009. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52
    [Google Scholar]
  107. 107. 
    Riederer EA, Focke PJ, Georgieva ER, Akyuz N, Matulef K et al. 2018. A facile approach for the in vitro assembly of multimeric membrane transport proteins. eLife 7:e36478
    [Google Scholar]
  108. 108. 
    Roesser M, Müller V. 2001. Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3:743–54
    [Google Scholar]
  109. 109. 
    Rojas ER, Huang KC. 2017. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42:62–70Thought-provoking overview on the generation of turgor and its role in cell growth.
    [Google Scholar]
  110. 110. 
    Romantsov T, Culham DE, Caplan T, Garner J, Hodges RS, Wood JM 2017. ProP-ProP and ProP-phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP in Escherichia coli. Mol. Microbiol 103:469–82
    [Google Scholar]
  111. 111. 
    Romeo Y, Bouvier J, Gutierrez C 2007. Osmotic regulation of transcription in Lactococcus lactis: ionic strength-dependent binding of the BusR repressor to the busA promoter. FEBS Lett 581:3387–90
    [Google Scholar]
  112. 112. 
    Rowe I, Anishkin A, Kamaraju K, Yoshimura K, Sukharev S 2014. The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding. J. Gen. Physiol. 143:543–57
    [Google Scholar]
  113. 113. 
    Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S 2017. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. PNAS 114:1584–88
    [Google Scholar]
  114. 114. 
    Rübenhagen R, Morbach S, Krämer R 2001. The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20:5412–20
    [Google Scholar]
  115. 115. 
    Rubinstein SM, Kolodkin-Gal I, McLoon A, Chai L, Kolter R et al. 2012. Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Mol. Microbiol 86:426–36
    [Google Scholar]
  116. 116. 
    Saum SH, Pfeiffer F, Palm P, Rampp M, Schuster SC et al. 2013. Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride-dependent bacterium Halobacillus halophilus. Environ. Microbiol 15:1619–33
    [Google Scholar]
  117. 117. 
    Schiefner A, Breed J, Bösser L, Kneip S, Gade J et al. 2004. Cation-π interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J. Biol. Chem 279:5588–96First report on the architecture of a glycine-betaine-binding pocket.
    [Google Scholar]
  118. 118. 
    Schiefner A, Holtmann G, Diederichs K, Welte W, Bremer E 2004. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem 279:48270–81
    [Google Scholar]
  119. 119. 
    Schiller D, Ott V, Krämer R, Morbach S 2006. Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum. J. Biol. Chem 281:7737–4746
    [Google Scholar]
  120. 120. 
    Schramke H, Tostevin F, Heermann R, Gerland U, Jung K 2016. A dual-sensing receptor confers robust cellular homeostasis. Cell Rep 16:213–21
    [Google Scholar]
  121. 121. 
    Schuster CF, Bellows LE, Tosi T, Campeotto I, Corrigan RM et al. 2016. The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus. Sci. Signal 9:ra81Structural insights into the mode of c-di-AMP binding by the ATPase of the OpuC transporter.
    [Google Scholar]
  122. 122. 
    Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S et al. 2012. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. PNAS 109:1116–21Pioneering study pointing to the connection between high osmolality and expansion of biofilms.
    [Google Scholar]
  123. 123. 
    Sevin DC, Stählin JN, Pollak GR, Kuehne A, Sauer U 2016. Global metabolic responses to salt stress in fifteen species. PLOS ONE 11:e0148888
    [Google Scholar]
  124. 124. 
    Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49–71
    [Google Scholar]
  125. 125. 
    Spitzer J, Poolman B. 2009. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence. Microbiol. Mol. Biol. Rev. 73:371–88
    [Google Scholar]
  126. 126. 
    Stadmiller SS, Gorensek-Benitez AH, Guseman AJ, Pielak GJ 2017. Osmotic shock induced protein destabilization in living cells and its reversal by glycine betaine. J. Mol. Biol. 429:1155–61
    [Google Scholar]
  127. 127. 
    Stock AM, Robinson VL, Goudreau PN 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183–215
    [Google Scholar]
  128. 128. 
    Strahl H, Errington J. 2017. Bacterial membranes: structure, domains, and function. Annu. Rev. Microbiol. 71:519–38
    [Google Scholar]
  129. 129. 
    Street TO, Bolen DW, Rose GD 2006. A molecular mechanism for osmolyte-induced protein stability. PNAS 103:13997–4002
    [Google Scholar]
  130. 130. 
    Sukharev S, Durell SR, Guy HR 2001. Structural models of the MscL gating mechanism. Biophys. J. 81:917–36
    [Google Scholar]
  131. 131. 
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C 1994. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–68
    [Google Scholar]
  132. 132. 
    Tanghe A, Van Dijck P, Thevelein JM 2006. Why do microorganisms have aquaporins. ? Trends Microbiol 14:78–85
    [Google Scholar]
  133. 133. 
    Teichmann L, Chen C, Hoffmann T, Smits SHJ, Schmitt L, Bremer E 2017. From substrate specificity to promiscuity: hybrid ABC transporters for osmoprotectants. Mol. Microbiol. 104:761–80
    [Google Scholar]
  134. 134. 
    van den Berg J, Boersma AJ, Poolman B 2017. Microorganisms maintain crowding homeostasis. Nat. Rev. Microbiol. 15:309–18
    [Google Scholar]
  135. 135. 
    van der Heide T, Stuart MC, Poolman B 2001. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 20:7022–32An instructive description of stimulus analysis in an osmosensing system.
    [Google Scholar]
  136. 136. 
    Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R 2013. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11:157–68
    [Google Scholar]
  137. 137. 
    Walton TA, Idigo CA, Herrera N, Rees DC 2015. MscL: channeling membrane tension. Pflugers Arch 467:15–25
    [Google Scholar]
  138. 138. 
    Whatmore AM, Chudek JA, Reed RH 1990. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol 136:2527–35
    [Google Scholar]
  139. 139. 
    Whatmore AM, Reed RH. 1990. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol. 136:2521–26
    [Google Scholar]
  140. 140. 
    Whiteley AT, Garelis NE, Peterson BN, Choi PH, Tong L et al. 2017. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol. Microbiol. 104:212–33
    [Google Scholar]
  141. 141. 
    Winkelman JT, Bree AC, Bate AR, Eichenberger P, Gourse RL, Kearns DB 2013. RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. Mol. Microbiol 88:984–97
    [Google Scholar]
  142. 142. 
    Wood JM. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63:230–62Probably the basic review on bacterial osmoregulation.
    [Google Scholar]
  143. 143. 
    Wood JM. 2006. Osmosensing by bacteria. Sci. STKE 2006.pe43
    [Google Scholar]
  144. 144. 
    Wood JM. 2011. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu. Rev. Microbiol. 65:215–38A comprehensive update on the relation of osmoregulation and cellular homeostasis.
    [Google Scholar]
  145. 145. 
    Wood JM, Bremer E, Csonka LN, Krämer R, Poolman B et al. 2001. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 130:437–60
    [Google Scholar]
  146. 146. 
    Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL 2017. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 8:327
    [Google Scholar]
  147. 147. 
    Ye RG, Verkman AS. 1989. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824–29
    [Google Scholar]
  148. 148. 
    Yuan J, Jin F, Glatter T, Sourjik V 2017. Osmosensing by the bacterial PhoQ/PhoP two-component system. PNAS 114:E10792–98
    [Google Scholar]
  149. 149. 
    Zaccai G, Bagyan I, Combet J, Cuello GJ, Deme B et al. 2016. Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane. Sci. Rep. 6:31434
    [Google Scholar]
  150. 150. 
    Zarrella TM, Metzger DW, Bai G 2018. Stress suppressor screening leads to detection of regulation of cyclic di-AMP homeostasis by a Trk family effector protein in Streptococcus pneumoniae. J. Bacteriol 200:e00045–18
    [Google Scholar]
  151. 151. 
    Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A 2018. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J. Biol. Chem. 293:3180–200
    [Google Scholar]
  152. 152. 
    Zhou HX, Rivas G, Minton AP 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97Expert insight into the complex issue of macromolecular crowding in the cell.
    [Google Scholar]
  153. 153. 
    Ziegler C, Bremer E, Krämer R 2010. The BCCT family of carriers: from physiology to crystal structure. Mol. Microbiol. 78:13–34In-depth analysis of structural and functional aspects of a major class of osmoregulated transporters.
    [Google Scholar]
  154. 154. 
    Zschiedrich CP, Keidel V, Szurmant H 2016. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428:3752–75
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115504
Loading
/content/journals/10.1146/annurev-micro-020518-115504
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error