1932

Abstract

Mg2+ is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg2+, bacteria adopt two main strategies: They increase the abundance and activity of Mg2+ importers and decrease the abundance of Mg2+-chelating ATP and rRNA. These changes reduce regulated proteolysis by ATP-dependent proteases and protein synthesis in a systemic fashion. In many bacterial species, the transcriptional regulator PhoP controls expression of proteins mediating these changes. The 5′ leader region of some mRNAs responds to low cytoplasmic Mg2+ or to disruptions in translation of open reading frames in the leader regions by furthering expression of the associated coding regions, which specify proteins mediating survival when the cytoplasmic Mg2+ concentration is low. Microbial species often utilize similar adaptation strategies to cope with low cytoplasmic Mg2+ despite relying on different genes to do so.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115606
2021-10-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-020518-115606.html?itemId=/content/journals/10.1146/annurev-micro-020518-115606&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams P, Fowler R, Kinsella N, Howell G, Farris M et al. 2001. Proteomic detection of PhoPQ- and acid-mediated repression of Salmonella motility. Proteomics 1:597–607
    [Google Scholar]
  2. 2. 
    Adams PG, Lamoureux L, Swingle KL, Mukundan H, Montano GA. 2014. Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. Biophys. J. 106:2395–407
    [Google Scholar]
  3. 3. 
    Akanuma G, Kobayashi A, Suzuki S, Kawamura F, Shiwa Y et al. 2014. Defect in the formation of 70S ribosomes caused by lack of ribosomal protein L34 can be suppressed by magnesium. J. Bacteriol. 196:3820–30
    [Google Scholar]
  4. 4. 
    Alix E, Blanc-Potard AB 2008. Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27:546–57
    [Google Scholar]
  5. 5. 
    Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. 2011. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol. Microbiol. 82:145–63
    [Google Scholar]
  6. 6. 
    Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215–37
    [Google Scholar]
  7. 7. 
    Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U et al. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–72
    [Google Scholar]
  8. 8. 
    Baek J, Lee J, Yoon K, Lee H. 2017. Identification of unannotated small genes in Salmonella. G3 7:983–89
    [Google Scholar]
  9. 9. 
    Barchiesi J, Castelli ME, Di Venanzio G, Colombo MI, Garcia Vescovi E. 2012. The PhoP/PhoQ system and its role in Serratia marcescens pathogenesis. J. Bacteriol. 194:2949–61
    [Google Scholar]
  10. 10. 
    Battesti A, Gottesman S. 2013. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr. Opin. Microbiol. 16:140–47
    [Google Scholar]
  11. 11. 
    Began J, Cordier B, Brezinova J, Delisle J, Hexnerova R et al. 2020. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J 39:e102935
    [Google Scholar]
  12. 12. 
    Blanc-Potard A-B, Groisman EA. 2021. How pathogens feel and overcome magnesium limitation when in host tissues. Trends Microbiol. 29:98–106
    [Google Scholar]
  13. 13. 
    Bougdour A, Cunning C, Baptiste PJ, Elliott T, Gottesman S. 2008. Multiple pathways for regulation of σS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68:298–313
    [Google Scholar]
  14. 14. 
    Bray MS, Lenz TK, Haynes JW, Bowman JC, Petrov AS et al. 2018. Multiple prebiotic metals mediate translation. PNAS 115:12164–69
    [Google Scholar]
  15. 15. 
    Brown S, Santa Maria JP Jr., Walker S. 2013. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67:313–36
    [Google Scholar]
  16. 16. 
    Bruna RE, Kendra CG, Groisman EA, Pontes MH. 2021. Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis. PNAS 118:11e2021370118
    [Google Scholar]
  17. 17. 
    Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A et al. 2017. Intrinsic ribosome destabilization underlies translation and provides an organism with a strategy of environmental sensing. Mol. Cell 68:528–39.e5
    [Google Scholar]
  18. 18. 
    Chamnongpol S, Groisman EA. 2002. Mg2+ homeostasis and avoidance of metal toxicity. Mol. Microbiol. 44:561–71
    [Google Scholar]
  19. 19. 
    Chen HD, Groisman EA. 2013. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu. Rev. Microbiol. 67:83–112
    [Google Scholar]
  20. 20. 
    Choi E, Choi S, Nam D, Park S, Han Y et al. 2017. Elongation factor P restricts Salmonella’s growth by controlling translation of a Mg2+ transporter gene during infection. Sci. Rep. 7:42098
    [Google Scholar]
  21. 21. 
    Choi E, Lee KY, Shin D. 2012. The MgtR regulatory peptide negatively controls expression of the MgtA Mg2+ transporter in Salmonella enterica serovar Typhimurium. Biochem. Biophys. Res. Commun. 417:318–23
    [Google Scholar]
  22. 22. 
    Choi J, Groisman EA. 2016. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol. Microbiol. 101:1024–38
    [Google Scholar]
  23. 23. 
    Choi J, Groisman EA. 2020. Salmonella expresses foreign genes during infection by degrading their silencer. PNAS 117:8074–82
    [Google Scholar]
  24. 24. 
    Choi S, Choi E, Cho YJ, Nam D, Lee J, Lee EJ 2019. The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages. Nat. Commun. 10:3326
    [Google Scholar]
  25. 25. 
    Choudhary PK, Sigel RK. 2014. Mg2+-induced conformational changes in the btuB riboswitch from E. coli. RNA 20:36–45
    [Google Scholar]
  26. 26. 
    Christensen DG, Orr JS, Rao CV, Wolfe AJ. 2017. Increasing growth yield and decreasing acetylation in Escherichia coli by optimizing the carbon-to-magnesium ratio in peptide-based media. Appl. Environ. Microbiol. 83:e03034-16
    [Google Scholar]
  27. 27. 
    Cian MB, Giordano NP, Masilamani R, Minor KE, Dalebroux ZD. 2019. Salmonella enterica serovar Typhimurium uses PbgA/YejM to regulate lipopolysaccharide assembly during bacteremia. Infect. Immunity 88:e00758-19
    [Google Scholar]
  28. 28. 
    Cromie MJ, Groisman EA. 2010. Promoter and riboswitch control of the Mg2+ transporter MgtA from Salmonella enterica. J. Bacteriol. 192:604–7
    [Google Scholar]
  29. 29. 
    Cromie MJ, Shi Y, Latifi T, Groisman EA. 2006. An RNA sensor for intracellular Mg2+. Cell 125:71–84
    [Google Scholar]
  30. 30. 
    Csonka LN, Leisinger 2007. Biosynthesis of proline. EcoSal Plus 2007. https://doi.org/10.1128/ecosalplus.3.6.1.4
    [Crossref]
  31. 31. 
    Cunrath O, Bumann D. 2019. Host resistance factor SLC11A1 restricts Salmonella growth through magnesium deprivation. Science 366:995–99
    [Google Scholar]
  32. 32. 
    Dann CE3rd, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC 2007. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–92
    [Google Scholar]
  33. 33. 
    Daw CC, Ramachandran K, Enslow BT, Maity S, Bursic B et al. 2020. Lactate elicits ER-mitochondrial Mg2+ dynamics to integrate cellular metabolism. Cell 183:474–89.e17
    [Google Scholar]
  34. 34. 
    Dixon SJ, Stockwell BR. 2014. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10:9–17
    [Google Scholar]
  35. 35. 
    Foster AW, Osman D, Robinson NJ. 2014. Metal preferences and metallation. J. Biol. Chem. 289:28095–103
    [Google Scholar]
  36. 36. 
    Foster JW, Spector MP. 1986. Phosphate starvation regulon of Salmonella typhimurium. J. Bacteriol. 166:666–69
    [Google Scholar]
  37. 37. 
    Gaal T, Bartlett MS, Ross W, Turnbough CL, Gourse RL. 1997. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278:2092–97
    [Google Scholar]
  38. 38. 
    Gall AR, Datsenko KA, Figueroa-Bossi N, Bossi L, Masuda I et al. 2016. Mg2+ regulates transcription of mgtA in Salmonella Typhimurium via translation of proline codons during synthesis of the MgtL peptide. PNAS 113:15096–101
    [Google Scholar]
  39. 39. 
    Gao X, Yeom J, Groisman EA. 2019. The expanded specificity and physiological role of a widespread N-degron recognin. PNAS 116:18629–37
    [Google Scholar]
  40. 40. 
    Garcia Vescovi E, Soncini FC, Groisman EA 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165–74
    [Google Scholar]
  41. 41. 
    Gardner SG, McCleary WR. 2019. Control of the phoBR regulon in Escherichia coli. EcoSal Plus 8: https://doi.org/10.1128/ecosalplus.ESP-0006-2019
    [Crossref] [Google Scholar]
  42. 42. 
    Gesteland RF. 1966. Unfolding of Escherichia coli ribosomes by removal of magnesium. J. Mol. Biol. 18:356–71
    [Google Scholar]
  43. 43. 
    Gottesman ME, Chudaev M, Mustaev A. 2020. Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis. FEBS J 287:5439–63
    [Google Scholar]
  44. 44. 
    Gottesman S. 2019. Trouble is coming: signaling pathways that regulate general stress responses in bacteria. J. Biol. Chem. 294:11685–700
    [Google Scholar]
  45. 45. 
    Groisman EA. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:1835–42
    [Google Scholar]
  46. 46. 
    Groisman EA. 2016. Feedback control of two-component regulatory systems. Annu. Rev. Microbiol. 70:103–24
    [Google Scholar]
  47. 47. 
    Groisman EA, Chiao E, Lipps CJ, Heffron F. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. PNAS 86:7077–81
    [Google Scholar]
  48. 48. 
    Groisman EA, Hollands K, Kriner MA, Lee EJ, Park SY, Pontes MH. 2013. Bacterial Mg2+ homeostasis, transport, and virulence. Annu. Rev. Genet. 47:625–46
    [Google Scholar]
  49. 49. 
    Groisman EA, Kayser J, Soncini FC. 1997. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J. Bacteriol. 179:7040–45
    [Google Scholar]
  50. 50. 
    Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13:298–309
    [Google Scholar]
  51. 51. 
    Henkin TM, Yanofsky C. 2002. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24:700–7
    [Google Scholar]
  52. 52. 
    Hicks DB, Wang Z, Wei Y, Kent R, Guffanti AA et al. 2003. A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. PNAS 100:10213–18
    [Google Scholar]
  53. 53. 
    Hollands K, Proshkin S, Sklyarova S, Epshtein V, Mironov A et al. 2012. Riboswitch control of Rho-dependent transcription termination. PNAS 109:5376–81
    [Google Scholar]
  54. 54. 
    Hollands K, Sevostiyanova A, Groisman EA. 2014. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. PNAS 111:E1999–2007
    [Google Scholar]
  55. 55. 
    Hsieh YJ, Wanner BL. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13:198–203
    [Google Scholar]
  56. 56. 
    Jahnen-Dechent W, Ketteler M 2012. Magnesium basics. Clin. Kidney J. 5:i3–14
    [Google Scholar]
  57. 57. 
    Kier LD, Weppelman RM, Ames BN. 1979. Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J. Bacteriol. 138:155–61
    [Google Scholar]
  58. 58. 
    Klein DJ, Moore PB, Steitz TA. 2004. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10:1366–79
    [Google Scholar]
  59. 59. 
    Koprivnjak T, Mlakar V, Swanson L, Fournier B, Peschel A, Weiss JP. 2006. Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. J. Bacteriol. 188:3622–30
    [Google Scholar]
  60. 60. 
    Korth MM, Sigel RK. 2012. Unusually high-affinity Mg2+ binding at the AU-rich sequence within the antiterminator hairpin of a Mg2+ riboswitch. Chem. Biodivers. 9:2035–49
    [Google Scholar]
  61. 61. 
    Kriner MA, Groisman EA. 2015. The bacterial transcription termination factor Rho coordinates Mg2+ homeostasis with translational signals. J. Mol. Biol. 427:3834–49
    [Google Scholar]
  62. 62. 
    Kriner MA, Groisman EA. 2017. RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader. Nucleic Acids Res 45:631–42
    [Google Scholar]
  63. 63. 
    Kriner MA, Sevostyanova A, Groisman EA. 2016. Learning from the leaders: gene regulation by the transcription termination factor Rho. Trends Biochem. Sci. 41:690–99
    [Google Scholar]
  64. 64. 
    Lam NH, Ma Z, Ha BY. 2014. Electrostatic modification of the lipopolysaccharide layer: competing effects of divalent cations and polycationic or polyanionic molecules. Soft Matter 10:7528–44
    [Google Scholar]
  65. 65. 
    Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. 2005. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69:101–23
    [Google Scholar]
  66. 66. 
    Lee EJ, Choi J, Groisman EA. 2014. Control of a Salmonella virulence operon by proline-charged tRNAPro. PNAS 111:3140–45
    [Google Scholar]
  67. 67. 
    Lee EJ, Groisman EA. 2012. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature 486:271–75
    [Google Scholar]
  68. 68. 
    Lee EJ, Groisman EA. 2012. Tandem attenuators control expression of the Salmonella mgtCBR virulence operon. Mol. Microbiol. 86:212–24
    [Google Scholar]
  69. 69. 
    Lee EJ, Pontes MH, Groisman EA. 2013. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell 154:146–56
    [Google Scholar]
  70. 70. 
    Ling J, Reynolds N, Ibba M. 2009. Aminoacyl-tRNA synthesis and translational quality control. Ann. Rev. Microbiol. 63:61–78
    [Google Scholar]
  71. 71. 
    Maguire ME, Cowan JA. 2002. Magnesium chemistry and biochemistry. Biometals 15:203–10
    [Google Scholar]
  72. 72. 
    Mahmoud SA, Chien P. 2018. Regulated proteolysis in bacteria. Annu. Rev. Biochem. 87:677–96
    [Google Scholar]
  73. 73. 
    Majdalani N, Hernandez D, Gottesman S. 2002. Regulation and mode of action of the second small RNA activator of RpoS translation. Mol. Microbiol. 46:813–26
    [Google Scholar]
  74. 74. 
    Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A et al. 2016. Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164:747–56
    [Google Scholar]
  75. 75. 
    McCarthy BJ. 1962. The effects of magnesium starvation on the ribosome content of Escherichia coli. Biochim. Biophys. Acta Nucleic Acids Rel. Subj. 55:880–89
    [Google Scholar]
  76. 76. 
    McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A et al. 2019. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2+. Nucleic Acids Res 47:6478–87
    [Google Scholar]
  77. 77. 
    Meers JL, Tempest DW. 1970. The influence of growth-limiting substrate and medium NaCl concentration on the synthesis of magnesium-binding sites in the walls of Bacillus subtilis var. niger. J. Gen. Microbiol. 63:325–31
    [Google Scholar]
  78. 78. 
    Moomaw AS, Maguire ME. 2008. The unique nature of Mg2+ channels. Physiology 23:275–85
    [Google Scholar]
  79. 79. 
    Nikonorova IA, Kornakov NV, Dmitriev SE, Vassilenko KS, Ryazanov AG. 2014. Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA. Nucleic Acids Res 42:12779–88
    [Google Scholar]
  80. 80. 
    Park H, McGibbon LC, Potts AH, Yakhnin H, Romeo T, Babitzke P. 2017. Translational repression of the RpoS antiadapter IraP by CsrA is mediated by translational coupling to a short upstream open reading frame. mBio 8:e01355-17
    [Google Scholar]
  81. 81. 
    Park M, Nam D, Kweon DH, Shin D. 2018. ATP reduction by MgtC and Mg2+ homeostasis by MgtA and MgtB enables Salmonella to accumulate RpoS upon low cytoplasmic Mg2+ stress. Mol. Microbiol. 110:283–95
    [Google Scholar]
  82. 82. 
    Park S-Y, Cromie MJ, Lee EJ, Groisman EA. 2010. An mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 142:737–48
    [Google Scholar]
  83. 83. 
    Park SY, Groisman EA. 2014. Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol. Microbiol. 91:135–44
    [Google Scholar]
  84. 84. 
    Park SY, Pontes MH, Groisman EA. 2015. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium. PNAS 112:1850–55
    [Google Scholar]
  85. 85. 
    Payandeh J, Pfoh R, Pai EF. 2013. The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta Biomembr. 1828:2778–92
    [Google Scholar]
  86. 86. 
    Perez JC, Groisman EA 2009. Transcription factor function and promoter architecture govern the evolution of bacterial regulons. PNAS 106:4319–24
    [Google Scholar]
  87. 87. 
    Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. 2009. Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. PLOS Genet 5:e1000428
    [Google Scholar]
  88. 88. 
    Pisat NP, Pandey A, MacDiarmid CW. 2009. MNR2 regulates intracellular magnesium storage in Saccharomyces cerevisiae. Genetics 183:873–84
    [Google Scholar]
  89. 89. 
    Pontes MH, Groisman EA. 2018. Protein synthesis controls phosphate homeostasis. Genes Dev 32:79–92
    [Google Scholar]
  90. 90. 
    Pontes MH, Sevostyanova A, Groisman EA. 2015. When too much ATP is bad for protein synthesis. J. Mol. Biol. 427:2586–94
    [Google Scholar]
  91. 91. 
    Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C. 2011. Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLOS Genet 7:e1002349
    [Google Scholar]
  92. 92. 
    Pontes MH, Yeom J, Groisman EA. 2016. Reducing ribosome biosynthesis promotes translation during low Mg2+ stress. Mol. Cell 64:480–92
    [Google Scholar]
  93. 93. 
    Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H et al. 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol. Cell 26:165–74
    [Google Scholar]
  94. 94. 
    Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700
    [Google Scholar]
  95. 95. 
    Rajagopal M, Walker S. 2017. Envelope structures of gram-positive bacteria. Curr. Top. Microbiol. Immunol. 404:1–44
    [Google Scholar]
  96. 96. 
    Ramesh A, Winkler WC 2010. Magnesium-sensing riboswitches in bacteria. RNA Biol 7:77–83
    [Google Scholar]
  97. 97. 
    Rodnina MV. 2018. Translation in prokaryotes. Cold Spring Harb. Perspect. Biol. 10:a032664
    [Google Scholar]
  98. 98. 
    Romeo T, Babitzke P. 2018. Global regulation by CsrA and its RNA antagonists. Microbiol. Spectr. 6: https://doi.org/10.1128/microbiolspec.RWR-0009-2017
    [Crossref] [Google Scholar]
  99. 99. 
    Roy S, Hennelly SP, Lammert H, Onuchic JN, Sanbonmatsu KY. 2019. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch. Nucleic Acids Res 47:3158–70
    [Google Scholar]
  100. 100. 
    Rudat AK, Pokhrel A, Green TJ, Gray MJ. 2018. Mutations in Escherichia coli polyphosphate kinase that lead to dramatically increased in vivo polyphosphate levels. J. Bacteriol. 200:e00697-17
    [Google Scholar]
  101. 101. 
    Salvail H, Groisman EA. 2020. The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLOS Genet 16:e1008722
    [Google Scholar]
  102. 102. 
    Sarmientos P, Sylvester JE, Contente S, Cashel M. 1983. Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell 32:1337–46
    [Google Scholar]
  103. 103. 
    Schellhorn HE. 2020. Function, evolution, and composition of the RpoS regulon in Escherichia coli. Front. Microbiol. 11:560099
    [Google Scholar]
  104. 104. 
    Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A et al. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310:827–34
    [Google Scholar]
  105. 105. 
    Senior AE. 1990. The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19:7–41
    [Google Scholar]
  106. 106. 
    Sevostyanova A, Groisman EA. 2015. An RNA motif advances transcription by preventing Rho-dependent termination. PNAS 112:E6835–43
    [Google Scholar]
  107. 107. 
    Shin D, Groisman EA. 2005. Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo. J. Biol. Chem. 280:4089–94
    [Google Scholar]
  108. 108. 
    Shin JH, Wakeman CA, Goodson JR, Rodionov DA, Freedman BG et al. 2014. Transport of magnesium by a bacterial Nramp-related gene. PLOS Genet 10:e1004429
    [Google Scholar]
  109. 109. 
    Soncini FC, García Véscovi E, Groisman EA 1995. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J. Bacteriol. 177:4364–71
    [Google Scholar]
  110. 110. 
    Spinelli SV, Pontel LB, Garcia Vescovi E, Soncini FC 2008. Regulation of magnesium homeostasis in Salmonella: Mg2+ targets the mgtA transcript for degradation by RNase E. FEMS Microbiol. Lett. 280:226–34
    [Google Scholar]
  111. 111. 
    Subramani S, Perdreau-Dahl H, Morth JP. 2016. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 5:e11407
    [Google Scholar]
  112. 112. 
    Thomas KJ3rd, Rice CV 2014. Revised model of calcium and magnesium binding to the bacterial cell wall. Biometals 27:1361–70
    [Google Scholar]
  113. 113. 
    Thomas KJ3rd, Rice CV. 2015. Equilibrium binding behavior of magnesium to wall teichoic acid. Biochim. Biophys. Acta Biomembr. 1848:1981–87
    [Google Scholar]
  114. 114. 
    Tokuyama K, Toya Y, Matsuda F, Cress BF, Koffas MAG, Shimizu H. 2019. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli. Metab. Eng. 52:215–23
    [Google Scholar]
  115. 115. 
    Tu X, Latifi T, Bougdour A, Gottesman S, Groisman EA. 2006. The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. PNAS 103:13503–8
    [Google Scholar]
  116. 116. 
    Vaara M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56:395–411
    [Google Scholar]
  117. 117. 
    van Ooyen AJJ, Gruber M, Jørgensen P. 1976. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell 8:123–28
    [Google Scholar]
  118. 118. 
    Varshavsky A. 2004. ‘Spalog’ and ‘sequelog’: neutral terms for spatial and sequence similarity. Curr. Biol. 14:R181–83
    [Google Scholar]
  119. 119. 
    Vernon WB. 1988. The role of magnesium in nucleic-acid and protein metabolism. Magnesium 7:234–48
    [Google Scholar]
  120. 120. 
    Vinothkumar KR, Henderson R 2010. Structures of membrane proteins. Q. Rev. Biophys. 43:65–158
    [Google Scholar]
  121. 121. 
    Wakeman CA, Goodson JR, Zacharia VM, Winkler WC. 2014. Assessment of the requirements for magnesium transporters in Bacillus subtilis. J. Bacteriol. 196:1206–14
    [Google Scholar]
  122. 122. 
    Wang H, Yin X, Wu Orr M, Dambach M, Curtis R, Storz G. 2017. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. PNAS 114:5689–94
    [Google Scholar]
  123. 123. 
    Wessling-Resnick M. 2015. Nramp1 and other transporters involved in metal withholding during infection. J. Biol. Chem. 290:18984–90
    [Google Scholar]
  124. 124. 
    Weston J. 2009. Biochemistry of Magnesium Chichester, UK: John Wiley
  125. 125. 
    Wilkins AS. 1972. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J. Bacteriol. 110:616–23
    [Google Scholar]
  126. 126. 
    Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. 2002. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol. Microbiol. 45:423–38
    [Google Scholar]
  127. 127. 
    Yeom J, Gao X, Groisman EA. 2018. Reduction in adaptor amounts establishes degradation hierarchy among protease substrates. PNAS 115:E4483–92
    [Google Scholar]
  128. 128. 
    Yeom J, Groisman EA. 2019. Activator of one protease transforms into inhibitor of another in response to nutritional signals. Genes Dev 33:1280–92
    [Google Scholar]
  129. 129. 
    Yeom J, Groisman EA. 2021. Low cytoplasmic magnesium increases the specificity of the Lon and ClpAP proteases. J. Bacteriol 203:14e0014321
    [Google Scholar]
  130. 130. 
    Yeom J, Groisman EA. 2021. Reduced ATP-dependent proteolysis of functional proteins during nutrient limitation speeds the return of microbes to a growth state. Sci. Sig. 14:eabc4235
    [Google Scholar]
  131. 131. 
    Yeom J, Pontes MH, Choi J, Groisman EA. 2018. A protein that controls the onset of a Salmonella virulence program. EMBO J 37:e96977
    [Google Scholar]
  132. 132. 
    Yeom J, Shao Y, Groisman EA. 2020. Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. PNAS 117:20235–43
    [Google Scholar]
  133. 133. 
    Yeom J, Wayne KJ, Groisman EA. 2017. Sequestration from protease adaptor confers differential stability to protease substrate. Mol. Cell 66:234–46.e5
    [Google Scholar]
  134. 134. 
    Yin X, Wu Orr M, Wang H, Hobbs EC, Shabalina SA, Storz G 2019. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol. Microbiol. 111:131–44
    [Google Scholar]
  135. 135. 
    Zere TR, Vakulskas CA, Leng Y, Pannuri A, Potts AH et al. 2015. Genomic targets and features of BarA-UvrY (-SirA) signal transduction systems. PLOS ONE 10:e0145035
    [Google Scholar]
  136. 136. 
    Zhao G, Kong W, Weatherspoon-Griffin N, Clark-Curtiss J, Shi Y 2011. Mg2+ facilitates leader peptide translation to induce riboswitch-mediated transcription termination. EMBO J 30:1485–96
    [Google Scholar]
  137. 137. 
    Zwir I, Latifi T, Perez JC, Huang H, Groisman EA. 2012. The promoter architectural landscape of the Salmonella PhoP regulon. Mol. Microbiol. 84:463–85
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115606
Loading
/content/journals/10.1146/annurev-micro-020518-115606
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error