1932

Abstract

RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115907
2019-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115907.html?itemId=/content/journals/10.1146/annurev-micro-020518-115907&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adamson DN, Lim HN. 2013. Rapid and robust signaling in the CsrA cascade via RNA-protein interactions and feedback regulation. PNAS 110:13120–25
    [Google Scholar]
  2. 2. 
    Altegoer F, Rensing SA, Bange G 2016. Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. PNAS 113:10168–73
    [Google Scholar]
  3. 3. 
    Amster-Choder O. 2005. The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr. Opin. Microbiol. 8:127–34
    [Google Scholar]
  4. 4. 
    Amster-Choder O, Houman F, Wright A 1989. Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli. Cell 58:847–55
    [Google Scholar]
  5. 5. 
    Amster-Choder O, Wright A. 1992. Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. Science 257:1395–98
    [Google Scholar]
  6. 6. 
    Amster-Choder O, Wright A. 1997. BglG, the response regulator of the Escherichia coli bgl operon, is phosphorylated on a histidine residue. J. Bacteriol. 179:5621–24
    [Google Scholar]
  7. 7. 
    Antson AA, Dodson EJ, Dodson G, Greaves RB, Chen X et al. 1999. Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401:235–42
    [Google Scholar]
  8. 8. 
    Antson AA, Otridge J, Brzozowski AM, Dodson EJ, Dodson GG et al. 1995. The structure of the trp RNA attenuation protein. Nature 374:693–700
    [Google Scholar]
  9. 9. 
    Arnaud M, Débarbouillé M, Rapoport G, Saier MH Jr, Reizer J 1996. In vitro reconstitution of transcriptional antitermination by the SacT and SacY proteins of Bacillus subtilis. J. Biol. Chem 271:18966–72
    [Google Scholar]
  10. 10. 
    Arthur DC, Edwards RA, Tsutakawa S, Tainer JA, Frost LS, Glover JM 2011. Mapping interactions between the RNA chaperone FinO and its RNA targets. Nucleic Acids Res 39:4450–63
    [Google Scholar]
  11. 11. 
    Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F et al. 2016. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. PNAS 113:8813–18
    [Google Scholar]
  12. 12. 
    Aymerich S, Steinmetz M. 1992. Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. PNAS 89:10410–14
    [Google Scholar]
  13. 13. 
    Babitzke P. 2004. Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Curr. Opin. Microbiol. 7:132–39
    [Google Scholar]
  14. 14. 
    Babitzke P, Baker CS, Romeo T 2009. Regulation of translation initiation by RNA binding proteins. Annu. Rev. Microbiol. 63:27–44
    [Google Scholar]
  15. 15. 
    Babitzke P, Bear DG, Yanofsky C 1995. TRAP, the trp RNA-binding attenuation protein of Bacillus subtilis, is a toroid-shaped molecule that binds transcripts containing GAG or UAG repeats separated by two nucleotides. PNAS 92:7916–20
    [Google Scholar]
  16. 16. 
    Babitzke P, Romeo T. 2007. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10:156–63
    [Google Scholar]
  17. 17. 
    Babitzke P, Stults JT, Shire SJ, Yanofsky C 1994. TRAP, the trp RNA-binding attenuation protein of Bacillus subtilis, is a multisubunit complex that appears to recognize G/UAG repeats in the trpEDCFBA and trpG transcripts. J. Biol. Chem. 269:16597–604
    [Google Scholar]
  18. 18. 
    Babitzke P, Yanofsky C. 1993. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. PNAS 90:133–37
    [Google Scholar]
  19. 19. 
    Babitzke P, Yealy J, Campanelli D 1996. Interaction of the trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis with RNA: effects of the number of GAG repeats, the nucleotides separating adjacent repeats, and RNA secondary structure. J. Bacteriol. 178:5159–63
    [Google Scholar]
  20. 20. 
    Bachem S, Stülke J. 1998. Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J. Bacteriol. 180:5319–26
    [Google Scholar]
  21. 21. 
    Bae W, Jones PG, Inouye M 1997. CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J. Bacteriol. 179:7081–88
    [Google Scholar]
  22. 22. 
    Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P 2002. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol. Microbiol 44:1599–610
    [Google Scholar]
  23. 23. 
    Belogurov GA, Artsimovitch I. 2015. Regulation of transcript elongation. Annu. Rev. Microbiol. 69:49–69
    [Google Scholar]
  24. 24. 
    Bertani B, Ruiz N. 2018. Function and biogenesis of lipopolysaccharides. EcoSal Plus 8: https://doi.org/10.1128/ecosalplus.ESP-0001-2018
    [Crossref] [Google Scholar]
  25. 25. 
    Bhatt S, Edwards AN, Nguyen HT, Merlin D, Romeo T, Kalman D 2009. The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect. Immun 77:3552–68
    [Google Scholar]
  26. 26. 
    Bonner ER, D'Elia JN, Billips BK, Switzer RL 2001. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. Nucleic Acids Res 29:4851–65
    [Google Scholar]
  27. 27. 
    Brencic A, McFarland KA, McManus HR, Castang S, Mogno I et al. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434–45
    [Google Scholar]
  28. 28. 
    Camacho MI, Alvarez AF, Chavez RG, Romeo T, Merino E, Georgellis D 2015. Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J. Bacteriol. 197:983–91
    [Google Scholar]
  29. 29. 
    Chander P, Halbig KM, Miller JK, Fields CJ, Bonner HK et al. 2005. Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides. J. Bacteriol. 187:1773–82
    [Google Scholar]
  30. 30. 
    Chaulk SG, Smith-Frieday MN, Arthur DC, Culham DE, Edwards RA et al. 2011. ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. Biochemistry 50:3095–106
    [Google Scholar]
  31. 31. 
    Chavez RG, Alvarez AF, Romeo T, Georgellis D 2010. The physiological stimulus for the BarA sensor kinase. J. Bacteriol 192:2009–12
    [Google Scholar]
  32. 32. 
    Declerck N, Vincent F, Hoh F, Aymerich S, van Tilbeurgh H 1999. RNA recognition by transcriptional antiterminators of the BglG/SacY family: functional and structural comparison of the CAT domain from SacY and LicT. J. Mol. Biol. 294:389–402
    [Google Scholar]
  33. 33. 
    Du H, Babitzke P. 1998. trp-RNA binding attenuation protein-mediated long-distance RNA refolding regulates translation of trpE in Bacillus subtilis. J. Biol. Chem 273:20494–503
    [Google Scholar]
  34. 34. 
    Du H, Tarpey R, Babitzke P 1997. The trp-RNA binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J. Bacteriol 179:2582–86
    [Google Scholar]
  35. 35. 
    Du H, Yakhnin AV, Dharmaraj S, Babitzke P 2000. trp RNA-binding attenuation protein-5′ stem-loop RNA interaction is required for proper transcription attenuation control of the Bacillus subtilis trpEDCFBA operon. J. Bacteriol. 182:1819–27
    [Google Scholar]
  36. 36. 
    Dubey AK, Baker CS, Romeo T, Babitzke P 2005. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11:1579–87
    [Google Scholar]
  37. 37. 
    Dugar G, Svensson SL, Bischler T, Wäldchen S, Reinhardt R et al. 2016. The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. Nat. Commun 7:11667
    [Google Scholar]
  38. 38. 
    Durand S, Condon C. 2018. RNases and helicases in gram-positive bacteria. Microbiol. Spectr. 6:RWR-0003–2017
    [Google Scholar]
  39. 39. 
    Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FH 2014. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature 509:588–92
    [Google Scholar]
  40. 40. 
    Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K et al. 2011. Circuitry linking the Csr and stringent response global regulatory systems. Mol. Microbiol. 80:1561–80
    [Google Scholar]
  41. 41. 
    Fakhry CT, Kulkarni P, Chen P, Kulkarni R, Zarringhalam K 2017. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach. BMC Genom 18:645
    [Google Scholar]
  42. 42. 
    Fang L, Hou Y, Inouye M 1998. Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J. Bacteriol 180:90–95
    [Google Scholar]
  43. 43. 
    Figueroa-Bossi N, Schwartz A, Guillemardet B, D'Heygère F, Bossi L, Boudvillain M 2014. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination. Genes Dev 28:1239–51
    [Google Scholar]
  44. 44. 
    Giuliodori AM, Di Pietro FD, Marzi S, Masquida B, Wagner R et al. 2010. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol. Cell 37:21–33
    [Google Scholar]
  45. 45. 
    Glover JM, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS 2015. The FinO family of bacterial RNA chaperones. Plasmid 78:79–87
    [Google Scholar]
  46. 46. 
    Goldstein J, Pollitt NS, Inouye M 1990. Major cold shock protein of Escherichia coli. PNAS 87:283–87
    [Google Scholar]
  47. 47. 
    Gollnick P, Babitzke P. 2002. Transcription attenuation. Biochim. Biophys. Acta Gene Struct. Expr. 1577:240–50
    [Google Scholar]
  48. 48. 
    Gonzalez GM, Durica-Mitic S, Hardwick SW, Moncrieffe MC, Resch M et al. 2017. Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism. Nucleic Acids Res 45:10845–60
    [Google Scholar]
  49. 49. 
    Gonzalez GM, Hardwick SW, Maslen SL, Skehel JM, Holmqvist E et al. 2017. Structure of the Escherichia coli ProQ RNA-binding protein. RNA 23:696–711
    [Google Scholar]
  50. 50. 
    Göpel Y, Khan MA, Görke B 2014. Ménage à trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein, and a small RNA mimic. RNA Biol 11:433–42
    [Google Scholar]
  51. 51. 
    Göpel Y, Khan MA, Görke B 2016. Domain swapping between homologous bacterial small RNAs dissects processing and Hfq binding determinants and uncovers an aptamer for conditional RNase E cleavage. Nucleic Acids Res 44:824–37
    [Google Scholar]
  52. 52. 
    Göpel Y, Papenfort K, Reichenbach B, Vogel J, Görke B 2013. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev 27:552–64
    [Google Scholar]
  53. 53. 
    Gopinath SC, Balasundaresan D, Kumarevel T, Misono TS, Mizuno H, Kumar PK 2008. Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP. Nucleic Acids Res 36:3463–73
    [Google Scholar]
  54. 54. 
    Görke B, Rak B. 1999. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370–79
    [Google Scholar]
  55. 55. 
    Gudapaty S, Suzuki K, Wang X, Babitzke P, Romeo T 2001. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J. Bacteriol 183:6017–27
    [Google Scholar]
  56. 56. 
    Henkin TM. 2014. The T box riboswitch: a novel regulatory RNA that utilizes tRNA as its ligand. Biochim. Biophys. Acta Gene Regul. Mech. 1839:959–63
    [Google Scholar]
  57. 57. 
    Heroven AK, Sest M, Pisano F, Scheb-Wetzel M, Steinmann R et al. 2012. Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence. Front. Cell. Infect. Microbiol. 2:158
    [Google Scholar]
  58. 58. 
    Holmqvist E, Li L, Bischler T, Barquist L, Vogel J 2018. Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol. Cell 70:971–82
    [Google Scholar]
  59. 59. 
    Holmqvist E, Wright PR, Li L, Bischler T, Barquist L et al. 2016. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35:991–1011
    [Google Scholar]
  60. 60. 
    Hör J, Gorski SA, Vogel J 2018. Bacterial RNA biology on a genome scale. Mol. Cell 70:785–99
    [Google Scholar]
  61. 61. 
    Hübner S, Declerck N, Diethmaier C, Le Coq D, Aymerich S, Stülke J 2011. Prevention of cross-talk in conserved regulatory systems: identification of specificity determinants in RNA-binding anti-termination proteins of the BglG family. Nucleic Acids Res 39:4360–72
    [Google Scholar]
  62. 62. 
    Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol. Microbiol. 78:158–72
    [Google Scholar]
  63. 63. 
    Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J et al. 2008. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. J. Bacteriol. 190:3670–80
    [Google Scholar]
  64. 64. 
    Janssen KH, Diaz MR, Gode CJ, Wolfgang MC, Yahr TL 2018. RsmV, a small noncoding regulatory RNA in Pseudomonas aeruginosa that sequesters RsmA and RsmF from target mRNAs. J. Bacteriol. 200:e00277–18
    [Google Scholar]
  65. 65. 
    Jerome LJ, Frost LS. 1999. In vitro analysis of the interaction between the FinO protein and FinP antisense RNA of F-like conjugative plasmids. J. Biol. Chem. 274:10356–62
    [Google Scholar]
  66. 66. 
    Jiang W, Hou Y, Inouye M 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272:196–202
    [Google Scholar]
  67. 67. 
    Jones PG, VanBogelen RA, Neidhardt FC 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol 169:2092–95
    [Google Scholar]
  68. 68. 
    Jørgensen CM, Fields CJ, Chander P, Watt D, Burgner JW 2nd et al. 2008. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein—characterization and regulation by uridine and guanosine nucleotides. FEBS J 275:655–70
    [Google Scholar]
  69. 69. 
    Jørgensen MG, Thomason MK, Havelund J, Valentin-Hansen P, Storz G 2013. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 27:1132–45
    [Google Scholar]
  70. 70. 
    Kalamorz F, Reichenbach B, März W, Rak B, Görke B 2007. Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol. Microbiol 65:1518–33
    [Google Scholar]
  71. 71. 
    Katsowich N, Elbaz N, Pal RR, Mills E, Kobi S et al. 2017. Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria. Science 355:735–39
    [Google Scholar]
  72. 72. 
    Kavita K, de Mets F, Gottesman S 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42:53–61
    [Google Scholar]
  73. 73. 
    Kumar PKR, Mizuno H. 2014. Metal ion-dependent anti-termination of transcriptional regulation of ribonucleoprotein complexes. Biophys. Rev. 6:215–26
    [Google Scholar]
  74. 74. 
    Kumarevel T, Fujimoto Z, Karthe P, Oda M, Mizuno H, Kumar PK 2004. Crystal structure of activated HutP: an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis. Structure 12:1269–80
    [Google Scholar]
  75. 75. 
    Kumarevel T, Gopinath SC, Nishikawa S, Mizuno H, Kumar PK 2004. Identification of important chemical groups of the hut mRNA for HutP interactions that regulate the hut operon in Bacillus subtilis. Nucleic Acids Res 32:3904–12
    [Google Scholar]
  76. 76. 
    Kumarevel T, Mizuno H, Kumar PK 2005. Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and l-histidine ligand. Nature 434:183–91
    [Google Scholar]
  77. 77. 
    Leng Y, Vakulskas CA, Zere TR, Pickering BS, Watnick PI et al. 2016. Regulation of CsrB/C sRNA decay by EIIAGlc of the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol. Microbiol. 99:627–39
    [Google Scholar]
  78. 78. 
    Lindner C, Galinier A, Hecker M, Deutscher J 1999. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol. Microbiol. 31:995–1006
    [Google Scholar]
  79. 79. 
    Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L et al. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem 272:17502–10
    [Google Scholar]
  80. 80. 
    Liu MY, Romeo T. 1997. The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J. Bacteriol. 179:4639–42
    [Google Scholar]
  81. 81. 
    Lu Y, Switzer RL. 1996. Transcriptional attenuation of the Bacillus subtilis pyr operon by the PyrR regulatory protein and uridine nucleotides in vitro. J. Bacteriol. 178:7206–11
    [Google Scholar]
  82. 82. 
    Lu Y, Turner RJ, Switzer RL 1995. Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression. J. Bacteriol. 177:1315–25
    [Google Scholar]
  83. 83. 
    Lu Y, Turner RJ, Switzer RL 1996. Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon. PNAS 93:14462–67
    [Google Scholar]
  84. 84. 
    Manival X, Yang Y, Strub MP, Kochoyan M, Steinmetz M, Aymerich S 1997. From genetic to structural characterization of a new class of RNA-binding domain within the SacY/BglG family of antiterminator proteins. EMBO J 16:5019–29
    [Google Scholar]
  85. 85. 
    McAdams NM, Gollnick P. 2014. The Bacillus subtilis TRAP protein can induce transcription termination in the leader region of the tryptophan biosynthetic (trp) operon independent of the trp attenuator RNA. PLOS ONE 9:e88097
    [Google Scholar]
  86. 86. 
    McElroy C, Manfredo A, Wendt A, Gollnick P, Foster M 2002. TROSY-NMR studies of the 91 kDa TRAP protein reveal allosteric control of a gene regulatory protein by ligand-altered flexibility. J. Mol. Biol. 323:463–73
    [Google Scholar]
  87. 87. 
    McGraw AP, Mokdad A, Major F, Bevilacqua PC, Babitzke P 2009. Molecular basis of TRAP-5′SL RNA interaction in the Bacillus subtilis trp operon transcription attenuation mechanism. RNA 15:55–66
    [Google Scholar]
  88. 88. 
    Mohanty BK, Kushner SR. 2018. Enzymes involved in posttranscriptional RNA metabolism in gram-negative bacteria. Microbiol. Spectr. 6: RWR-0011-2017
    [Google Scholar]
  89. 89. 
    Mondal S, Yakhnin AV, Babitzke P 2017. Modular organization of the NusA- and NusG-stimulated RNA polymerase pause signal that participates in the Bacillus subtilis trp operon attenuation mechanism. J. Bacteriol. 199:e00223–17
    [Google Scholar]
  90. 90. 
    Mondal S, Yakhnin AV, Sebastian A, Albert I, Babitzke P 2016. NusA-dependent transcription termination prevents misregulation of global gene expression. Nat. Microbiol. 1:15007
    [Google Scholar]
  91. 91. 
    Mukherjee S, Oshiro RT, Yakhnin H, Babitzke P, Kearns DB 2016. FliW antagonizes CsrA RNA binding by a noncompetitive allosteric mechanism. PNAS 113:9870–75
    [Google Scholar]
  92. 92. 
    Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB 2011. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol. Microbiol 82:447–61
    [Google Scholar]
  93. 93. 
    Oda M, Kobayashi N, Fujita M, Miyazaki Y, Sadaie Y et al. 2004. Analysis of HutP-dependent transcription antitermination in the Bacillus subtilis hut operon: identification of HutP binding sites on hut antiterminator RNA and the involvement of the N-terminus of HutP in binding of HutP to the antiterminator RNA. Mol. Microbiol. 51:1155–68
    [Google Scholar]
  94. 94. 
    Oda M, Kobayashi N, Ito A, Kurusu Y, Taira K 2000. cis-Acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol. Microbiol. 35:1244–54
    [Google Scholar]
  95. 95. 
    Olejniczak M, Storz G. 2017. ProQ/FinO‐domain proteins: another ubiquitous family of RNA matchmakers?. Mol. Microbiol. 104:905–15
    [Google Scholar]
  96. 96. 
    Otridge J, Gollnick P. 1993. MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan dependent manner. PNAS 90:128–32
    [Google Scholar]
  97. 97. 
    Pannuri A, Vakulskas CA, Zere T, McGibbon LC, Edwards AN et al. 2016. Circuitry linking the catabolite repression and Csr global regulatory systems of Escherichia coli. J. Bacteriol 198:3000–15
    [Google Scholar]
  98. 98. 
    Pannuri A, Yakhnin H, Vakulskas CA, Edwards AN, Babitzke P, Romeo T 2012. Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J. Bacteriol. 194:79–89
    [Google Scholar]
  99. 99. 
    Park H, McGibbon LC, Potts AH, Yakhnin H, Romeo T, Babitzke P 2017. Translational repression of the RpoS antiadapter IraD by CsrA is mediated via translational coupling to a short upstream open reading frame. mBio 8:e01355–17
    [Google Scholar]
  100. 100. 
    Parker A, Cureoglu S, De Lay N, Majdalani N, Gottesman S 2017. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol. Microbiol. 105:309–25
    [Google Scholar]
  101. 101. 
    Patterson-Fortin LM, Vakulskas CA, Yakhnin H, Babitzke P, Romeo T 2013. Dual posttranscriptional regulation via a cofactor-responsive mRNA leader. J. Mol. Biol. 425:3662–77
    [Google Scholar]
  102. 102. 
    Pek JW, Anand A, Kai T 2012. Tudor domain proteins in development. Development 139:2255–66
    [Google Scholar]
  103. 103. 
    Pompeo F, Luciano J, Brochier-Armanet C, Galinier A 2011. The GTPase function of YvcJ and its subcellular relocalization are dependent on growth conditions in Bacillus subtilis. J. Mol. Microbiol. Biotechnol 20:156–67
    [Google Scholar]
  104. 104. 
    Potts AH, Leng Y, Babitzke P, Romeo T 2018. Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB and CsrC. Sci. Rep. 8:5373
    [Google Scholar]
  105. 105. 
    Potter KD, Merlino NM, Jacobs T, Gollnick P 2011. TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator. Nucleic Acids Res 39:2092–102
    [Google Scholar]
  106. 106. 
    Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T 2017. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat. Commun. 8:1596
    [Google Scholar]
  107. 107. 
    Radomska KA, Wösten MMSM, Ordoñez SR, Wagenaar JA, van Putten JPM 2017. Importance of Campylobacter jejuni FliS and FliW in flagella biogenesis and flagellin secretion. Front. Microbiol. 8:1060
    [Google Scholar]
  108. 108. 
    Reichenbach B, Maes A, Kalamorz F, Hajnsdorf E, Görke B 2008. The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res 36:2570–80
    [Google Scholar]
  109. 109. 
    Ren B, Shen H, Lu ZJ, Liu H, Xu Y 2014. The phzA2-G2 transcript exhibits direct RsmA-mediated activation in Pseudomonas aeruginosa M18. PLOS ONE 9:e89653
    [Google Scholar]
  110. 110. 
    Rennella E, Sára T, Juen M, Wunderlich C, Imbert L et al. 2017. RNA binding and chaperone activity of the E. coli cold-shock protein CspA. Nucleic Acids Res 45:4255–68
    [Google Scholar]
  111. 111. 
    Rick PD, Silver RP. 1996. Enterobacterial common antigen and capsular polysaccharides. Escherichia coli and Salmonella: Cellular and Molecular Biology FC Neidhardt, R Curtiss III, JL Ingraham, ECC Lin, KB Low et al.104–22 Washington, DC: ASM. , 2nd ed..
    [Google Scholar]
  112. 112. 
    Romeo T, Babitzke P. 2018. Global regulation by CsrA and its RNA antagonists. Microbiol. Spectr. 6: RWR-0009-2017
    [Google Scholar]
  113. 113. 
    Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM 1993. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 175:4744–55
    [Google Scholar]
  114. 114. 
    Romeo T, Vakulskas CA, Babitzke P 2013. Post‐transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Env. Microbiol. 15:313–24
    [Google Scholar]
  115. 115. 
    Rothe FM, Bahr T, Stülke J, Rak B, Görke B 2012. Activation of Escherichia coli antiterminator BglG requires its phosphorylation. PNAS 109:15906–11
    [Google Scholar]
  116. 116. 
    Santiago-Frangos A, Woodson SA. 2018. Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA 9:e1475
    [Google Scholar]
  117. 117. 
    Sarsero JP, Merino E, Yanofsky C 2000. A Bacillus subtilis gene of previously unknown function, yhaG, is translationally regulated by tryptophan-activated TRAP and appears to be involved in tryptophan transport. J. Bacteriol. 182:2329–31
    [Google Scholar]
  118. 118. 
    Sarsero JP, Merino E, Yanofsky C 2000. A Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis. PNAS 97:2656–61
    [Google Scholar]
  119. 119. 
    Savacool HK, Switzer RL. 2002. Characterization of the interaction of Bacillus subtilis PyrR with pyr mRNA by site-directed mutagenesis of the protein. J. Bacteriol. 184:2521–28
    [Google Scholar]
  120. 120. 
    Schindelin H, Jiang W, Inouye M, Heinemann U 1994. Crystal structure of CspA, the major cold shock protein of Escherichia coli. PNAS 91:5119–23
    [Google Scholar]
  121. 121. 
    Schmalisch MH, Bachem S, Stülke J 2003. Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation: elucidation of the phosphorylation chain leading to inactivation of GlcT. J. Biol. Chem. 278:51108–15
    [Google Scholar]
  122. 122. 
    Schnetz K, Stülke J, Gertz S, Krüger S, Krieg M et al. 1996. LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J. Bacteriol. 178:1971–79
    [Google Scholar]
  123. 123. 
    Septer AN, Bose JL, Lipzen A, Martin J, Whistler C, Stabb EV 2015. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95:283–96
    [Google Scholar]
  124. 124. 
    Sharma S, Gollnick P. 2014. Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon. Nucleic Acids Res 42:5543–55
    [Google Scholar]
  125. 125. 
    Smirnov A, Förstner KU, Holmqvist E, Otto A, Günster R et al. 2016. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. PNAS 113:11591–96
    [Google Scholar]
  126. 126. 
    Smirnov A, Wang C, Drewry LL, Vogel J 2017. Molecular mechanism of mRNA repression in trans by a ProQ‐dependent small RNA. EMBO J 36:1029–45
    [Google Scholar]
  127. 127. 
    Steiner S, Lori C, Boehm A, Jenal U 2013. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32:354–68
    [Google Scholar]
  128. 128. 
    Sterzenbach T, Nguyen KT, Nuccio SP, Winter MG, Vakulskas CA et al. 2013. A novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium. EMBO J 32:2872–83
    [Google Scholar]
  129. 129. 
    Stülke J. 2002. Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch. Microbiol. 177:433–40
    [Google Scholar]
  130. 130. 
    Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I 1998. PRD—a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol. 28:865–74
    [Google Scholar]
  131. 131. 
    Stülke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G 1997. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol. Microbiol. 25:65–78
    [Google Scholar]
  132. 132. 
    Suzuki K, Babitzke P, Kushner SR, Romeo T 2006. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20:2605–17
    [Google Scholar]
  133. 133. 
    Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O et al. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol 184:5130–40
    [Google Scholar]
  134. 134. 
    Tomchick DR, Turner RJ, Switzer RL, Smith JL 1998. Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. Structure 6:337–50
    [Google Scholar]
  135. 135. 
    Tortosa P, Declerck N, Dutartre H, Lindner C, Deutscher J, Le Coq D 2001. Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY. Mol. Microbiol. 41:1381–93
    [Google Scholar]
  136. 136. 
    Tortosa P, Le Coq D 1995. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiology 141:2921–27
    [Google Scholar]
  137. 137. 
    Turnbough CL Jr, Switzer RL. 2008. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol. Mol. Biol. Rev. 72:266–300
    [Google Scholar]
  138. 138. 
    Turner RJ, Bonner ER, Grabner GK, Switzer RL 1998. Purification and characterization of Bacillus subtilis PyrR, a bifunctional pyr mRNA-binding attenuation protein/uracil phosphoribosyltransferase. J. Biol. Chem. 273:5932–38
    [Google Scholar]
  139. 139. 
    Turner RJ, Lu Y, Switzer RL 1994. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J. Bacteriol. 176:3708–22
    [Google Scholar]
  140. 140. 
    Urban JH, Vogel J. 2008. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLOS Biol 6:e64
    [Google Scholar]
  141. 141. 
    Vakulskas CA, Leng Y, Abe H, Amaki T, Okayama A et al. 2016. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 44:7896–910
    [Google Scholar]
  142. 142. 
    Vakulskas CA, Pannuri A, Cortés-Selva D, Zere TR, Ahmer BM et al. 2014. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol. Microbiol. 92:945–58
    [Google Scholar]
  143. 143. 
    Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T 2015. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79:193–224
    [Google Scholar]
  144. 144. 
    Valbuzzi A, Gollnick P, Babitzke P, Yanofsky C 2002. The anti-trp RNA-binding attenuation protein (Anti-TRAP), AT, recognizes the tryptophan-activated RNA binding domain of the TRAP regulatory protein. J. Biol. Chem. 277:10608–13
    [Google Scholar]
  145. 145. 
    Valbuzzi A, Yanofsky C. 2001. Inhibition of TRAP, the B. subtilis trp RNA-binding attenuation protein, by the Anti-TRAP protein, AT. Science 293:2057–59
    [Google Scholar]
  146. 146. 
    Valverde C, Lindell M, Wagner EG, Haas DA 2004. A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J. Biol. Chem 279:25066–74
    [Google Scholar]
  147. 147. 
    Vijayakumar V, Vanhove AS, Pickering BS, Liao J, Tierney BT et al. 2018. Removal of a membrane anchor reveals the opposing regulatory functions of Vibrio cholerae glucose-specific enzyme IIA in biofilms and the mammalian intestine. mBio 9:e00858–18
    [Google Scholar]
  148. 148. 
    Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T 2005. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol. Microbiol 56:1648–63
    [Google Scholar]
  149. 149. 
    Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S et al. 2003. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol 48:657–70
    [Google Scholar]
  150. 150. 
    Wray LV Jr, Fisher SH. 1994. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. J. Bacteriol. 176:5466–73
    [Google Scholar]
  151. 151. 
    Yakhnin AV, Babitzke P. 2002. NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism in vitro. PNAS 99:11067–72
    [Google Scholar]
  152. 152. 
    Yakhnin AV, Babitzke P. 2014. NusG/Spt5: Are there common functions of this ubiquitous transcription elongation factor?. Curr. Opin. Microbiol. 18:68–71
    [Google Scholar]
  153. 153. 
    Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I et al. 2013. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol. Microbiol. 87:851–66
    [Google Scholar]
  154. 154. 
    Yakhnin AV, Murakami KS, Babitzke P 2016. NusG is a sequence-specific RNA polymerase pause factor that binds to the non-template DNA within the paused transcription bubble. J. Biol. Chem. 291:5299–308
    [Google Scholar]
  155. 155. 
    Yakhnin AV, Yakhnin H, Babitzke P 2006. RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction. Mol. Cell 24:547–57
    [Google Scholar]
  156. 156. 
    Yakhnin AV, Yakhnin H, Babitzke P 2008. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. PNAS 105:16131–36
    [Google Scholar]
  157. 157. 
    Yakhnin H, Aichele R, Ades SE, Romeo T, Babitzke P 2017. Circuitry linking the global Csr and σE-dependent cell envelope stress response systems. J. Bacteriol. 199:e00484–17
    [Google Scholar]
  158. 158. 
    Yakhnin H, Babiarz JE, Yakhnin AV, Babitzke P 2001. Expression of the Bacillus subtilis trpEDCFBA operon is influenced by translational coupling and Rho termination factor. J. Bacteriol. 183:5918–26
    [Google Scholar]
  159. 159. 
    Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T, Babitzke P 2007. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol. 64:1605–20
    [Google Scholar]
  160. 160. 
    Yakhnin H, Yakhnin AV, Babitzke P 2006. The trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis regulates translation initiation of ycbK, a gene encoding a putative efflux protein, by blocking ribosome binding. Mol. Microbiol. 61:1252–66
    [Google Scholar]
  161. 161. 
    Yakhnin H, Zhang H, Yakhnin AV, Babitzke P 2004. The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene, trpP (yhaG), by blocking ribosome binding. J. Bacteriol. 186:278–86
    [Google Scholar]
  162. 162. 
    Yang M, de Saizieu A, van Loon AP, Gollnick P 1995. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP). J. Bacteriol. 177:4272–78
    [Google Scholar]
  163. 163. 
    Yang Y, Declerck N, Manival X, Aymerich S, Kochoyan M 2002. Solution structure of the LicT-RNA antitermination complex: CAT clamping RAT. EMBO J 21:1987–97
    [Google Scholar]
  164. 164. 
    Ye F, Yang F, Yu R, Lin X, Qi J et al. 2018. Molecular basis of binding between the global post-transcriptional regulator CsrA and the T3SS chaperone CesT. Nat. Commun. 9:1196
    [Google Scholar]
  165. 165. 
    Zere TR, Vakulskas CA, Leng Y, Pannuri A, Potts AH et al. 2015. Genomic targets and features of BarA-UvrY (-SirA) signal transduction systems. PLOS ONE 10:e0145035
    [Google Scholar]
  166. 166. 
    Zhang H, Switzer RL. 2003. Transcriptional pausing in the Bacillus subtilis pyr operon in vitro: a role in transcriptional attenuation. ? J. Bacteriol. 185:4764–71
    [Google Scholar]
  167. 167. 
    Zhang Y, Burkhardt DH, Rouskin S, Li GW, Weissman JS, Gross CA 2018. A stress response that monitors and regulates mRNA structure is central to cold shock adaptation. Mol. Cell 70:274–86
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115907
Loading
/content/journals/10.1146/annurev-micro-020518-115907
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error