1932

Abstract

Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120011
2019-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-120011.html?itemId=/content/journals/10.1146/annurev-micro-020518-120011&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed S, Cock JM, Pessia E, Luthringer R, Cormier A et al. 2014. A haploid system of sex determination in the brown alga Ectocarpus sp. Curr. Biol. 24:171945–57The first description of a sex-determining locus in multicellular stramenopiles.
    [Google Scholar]
  2. 2. 
    Arun A, Coelho SM, Peters AF, Bourdareau S, Pérès L et al. 2019. Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. eLife 8:e43101
    [Google Scholar]
  3. 3. 
    Avia K, Lipinska A, Mignerot L, Montecinos A, Jamy M et al. 2018. Genetic diversity in the UV sex chromosomes of the brown alga Ectocarpus. Genes 9:6E286
    [Google Scholar]
  4. 4. 
    Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC et al. 2011. Are all sex chromosomes created equal?. Trends Genet 27:9350–57
    [Google Scholar]
  5. 5. 
    Basu S, Patil S, Mapleson D, Russo MT, Vitale L et al. 2017. Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol 215:1140–56
    [Google Scholar]
  6. 6. 
    Bell G. 1978. The evolution of anisogamy. J. Theor. Biol. 73:2247–70
    [Google Scholar]
  7. 7. 
    Bell G. 1985. The origin and early evolution of germ cells as illustrated by the Volvocales. The Origin and Evolution of Sex ed. HO Halvorson, A Monroy 221–56 New York: Alan R. Liss
    [Google Scholar]
  8. 8. 
    Beukeboom L, Perrin N. 2014. The Evolution of Sex Determination Oxford, UK: Oxford Univ. Press
  9. 9. 
    Beutlich A, Schnetter R. 1993. The life cycle of Cryptochlora perforans (Chlorarachniophyta). Botanica Acta 106:5441–47
    [Google Scholar]
  10. 10. 
    Birchem R, Kochert G. 1979. Development of sperm cells of Volvoxcarteri f. weismannia (Chlorophyceae). Phycologia 18:4409–19
    [Google Scholar]
  11. 11. 
    Blanc-Mathieu R, Krasovec M, Hebrard M, Yau S, Desgranges E et al. 2017. Population genomics of picophytoplankton unveils novel chromosome hypervariability. Sci. Adv 3:7e1700239Evidence for sexual recombination and heteromorphic sex chromosomes in prasinophytes.
    [Google Scholar]
  12. 12. 
    Bowman JL, Sakakibara K, Furumizu C, Dierschke T 2016. Evolution in the cycles of life. Annu. Rev. Genet. 50:133–54
    [Google Scholar]
  13. 13. 
    Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M et al. 2017. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). PNAS 114:31E6361–70
    [Google Scholar]
  14. 14. 
    Brawley SH, Johnson LE. 1992. Gametogenesis, gametes and zygotes: An ecological perspective on sexual reproduction in the algae. Br. Phycol. J. 27:3233–52
    [Google Scholar]
  15. 15. 
    Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM et al. 2017. The algal revolution. Trends Plant Sci 22:8726–38
    [Google Scholar]
  16. 16. 
    Bulmer MG, Parker GA. 2002. The evolution of anisogamy: a game-theoretic approach. Proc. R. Soc. B 269:15072381–88
    [Google Scholar]
  17. 17. 
    Chardin C, Girin T, Roudier F, Meyer C, Krapp A 2014. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J. Exp. Bot. 65:195577–87
    [Google Scholar]
  18. 18. 
    Charlesworth B. 1978. The population genetics of anisogamy. J. Theor. Biol. 73:2347–57
    [Google Scholar]
  19. 19. 
    Chepurnov VA, Mann DG. 2004. Auxosporulation of Licmophora communis (Bacillariophyta) and a review of mating systems and sexual reproduction in araphid pennate diatoms. Phycol. Res. 52:11–12
    [Google Scholar]
  20. 20. 
    Chepurnov VA, Mann DG, Sabbe K, Vyverman W 2004. Experimental studies on sexual reproduction in diatoms. Int. Rev. Cytol. 237:91–154
    [Google Scholar]
  21. 21. 
    Chepurnov VA, Mann DG, von Dassow P, Vanormelingen P, Gillard J et al. 2008. In search of new tractable diatoms for experimental biology. BioEssays 30:7692–702
    [Google Scholar]
  22. 22. 
    Cock JM, Godfroy O, Macaisne N, Peters AF, Coelho SM 2014. Evolution and regulation of complex life cycles: a brown algal perspective. Curr. Opin. Plant. Biol. 17:1–6
    [Google Scholar]
  23. 23. 
    Cocquyt E, Verbruggen H, Leliaert F, De Clerck O 2010. Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol. Biol. Evol. 27:92052–61
    [Google Scholar]
  24. 24. 
    Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM 2011. OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. PNAS 108:2811518–23
    [Google Scholar]
  25. 25. 
    Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG 2018. UV chromosomes and haploid sexual systems. Trends Plant Sci 23:9794–807
    [Google Scholar]
  26. 26. 
    Coelho SM, Mignerot L, Cock JM 2019. Origin and evolution of sex‐determination systems in the brown algae. New Phytol 222:41751–56
    [Google Scholar]
  27. 27. 
    Coelho SM, Peters AF, Charrier B, Roze D, Destombe C et al. 2007. Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:1–2152–70
    [Google Scholar]
  28. 28. 
    Coleman AW. 1979. Sexuality in colonial green flagellates. Biochemistry and Physiology of Protozoa M Levandowsky, SH Hutner 307–40 New York: Elsevier
    [Google Scholar]
  29. 29. 
    Coleman AW. 2012. A comparative analysis of the Volvocaceae (Chlorophyta). J. Phycol. 48:3491–513
    [Google Scholar]
  30. 30. 
    Collén J, Porcel B, Carré W, Ball SG, Chaparro C et al. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. PNAS 110:135247–52
    [Google Scholar]
  31. 31. 
    Connallon T, Clark AG. 2011. The resolution of sexual antagonism by gene duplication. Genetics 187:3919–37
    [Google Scholar]
  32. 32. 
    Cosmides LM, Tooby J. 1981. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89:183–129
    [Google Scholar]
  33. 33. 
    Cross FR, Umen JG. 2015. The Chlamydomonas cell cycle. Plant J 82:3370–92
    [Google Scholar]
  34. 34. 
    da Silva J. 2017. The evolution of sexes: A specific test of the disruptive selection theory. Ecol. Evol. 8:1207–19
    [Google Scholar]
  35. 35. 
    D'Alelio D, Amato A, Luedeking A, Montresor M 2009. Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata. Harmful Algae 8:2225–32
    [Google Scholar]
  36. 36. 
    Darwin C. 1871. The Descent of Man, and Selection in Relation to Sex London: J. Murray
  37. 37. 
    De Clerck O, Kao S-M, Bogaert KA, Blomme J, Foflonker F et al. 2018. Insights into the evolution of multicellularity from the sea lettuce genome. Curr. Biol. 28:182921–25
    [Google Scholar]
  38. 38. 
    De Hoff PL, Ferris P, Olson BJSC, Miyagi A, Geng S, Umen JG 2013. Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLOS Genet 9:8e1003724
    [Google Scholar]
  39. 39. 
    Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ et al. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103:3111647–52
    [Google Scholar]
  40. 40. 
    Drebes G. 1977. Sexuality. The Biology of Diatoms D Werner 250–83 Oxford, UK: Blackwell
    [Google Scholar]
  41. 41. 
    Dusenbery DB. 2006. Selection for high gamete encounter rates explains the evolution of anisogamy using plausible assumptions about size relationships of swimming speed and duration. J. Theor. Biol. 241:133–38
    [Google Scholar]
  42. 42. 
    Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG et al. 2019. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 17:111
    [Google Scholar]
  43. 43. 
    Ferris P, Olson BJSC, De Hoff PL, Douglass S, Casero D et al. 2010. Evolution of an expanded sex-determining locus in Volvox. Science 328:5976351–54 Erratum. 2010 Science 329:59981467Characterization of UV sex chromosomes in Volvox originating from a mating-type system.
    [Google Scholar]
  44. 44. 
    Ferris PJ, Goodenough UW. 1997. Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146:3859–69
    [Google Scholar]
  45. 45. 
    Fučíková K, Pažoutová M, Rindi F 2015. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta). J. Phycol. 51:3419–30
    [Google Scholar]
  46. 46. 
    Geng S, De Hoff P, Umen JG 2014. Evolution of sexes from an ancestral mating-type specification pathway. PLOS Biol 12:7e1001904Revealed deep homology in volvocine MID function as a mating-type or sex-determining gene.
    [Google Scholar]
  47. 47. 
    Geng S, Miyagi A, Umen JG 2018. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 145:7dev162537
    [Google Scholar]
  48. 48. 
    Goodenough U, Heitman J. 2014. Origins of eukaryotic sexual reproduction. Cold Spring Harb. Perspect. Biol. 6:a016154
    [Google Scholar]
  49. 49. 
    Goodenough U, Lin H, Lee J-H 2007. Sex determination in Chlamydomonas. Semin. Cell Dev. Biol 18:3350–61
    [Google Scholar]
  50. 50. 
    Graham LE, Graham JM, Wilcox LW 2009. Algae San Francisco: Benjamin-Cummings
  51. 51. 
    Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G 2010. Cryptic sex in the smallest eukaryotic marine green alga. Mol. Biol. Evol. 27:147–54
    [Google Scholar]
  52. 52. 
    Guillemin M-L, Huanel OR, Martínez EA 2012. Characterization of genetic markers linked to sex determination in the haploid-diploid red alga Gracilaria chilensis. J. Phycol 48:2365–72
    [Google Scholar]
  53. 53. 
    Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:3307–21
    [Google Scholar]
  54. 54. 
    Hallmann A, Godl K, Wenzl S, Sumper M 1998. The highly efficient sex-inducing pheromone system of Volvox. Trends Microbiol 6:5185–89
    [Google Scholar]
  55. 55. 
    Hamaji T, Ferris PJ, Coleman AW, Waffenschmidt S, Takahashi F et al. 2008. Identification of the minus-dominance gene ortholog in the mating-type locus of Gonium pectorale. Genetics 178:1283–94
    [Google Scholar]
  56. 56. 
    Hamaji T, Ferris PJ, Nishii I, Nishimura Y, Nozaki H 2013. Distribution of the sex-determining gene MID and molecular correspondence of mating types within the isogamous genus Gonium (Volvocales, Chlorophyta). PLOS ONE 8:5e64385
    [Google Scholar]
  57. 57. 
    Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H et al. 2018. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun. Biol. 1:117
    [Google Scholar]
  58. 58. 
    Hamaji T, Mogi Y, Ferris PJ, Mori T, Miyagishima S et al. 2016. Sequence of the Gonium pectorale mating locus reveals a complex and dynamic history of changes in volvocine algal mating haplotypes. G3 6:51179–89
    [Google Scholar]
  59. 59. 
    Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE 2017. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 19:716
    [Google Scholar]
  60. 60. 
    Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE 2018. Multicellularity drives the evolution of sexual traits. Am. Nat 192:3E93–105Showed repeated evolution of sexual dimorphism in volvocine algae and strong support for PBS theory.
    [Google Scholar]
  61. 61. 
    Hawkes MW. 1978. Sexual reproduction in Porphyra gardneri (Smith et Hollenberg) Hawkes (Bangiales, Rhodophyta). Phycologia 17:3329–53
    [Google Scholar]
  62. 62. 
    Hawkes MW. 1990. Reproductive strategies. Biology of the Red Algae KM Cole, RG Sheath 455–76 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  63. 63. 
    Heesch S, Serrano-Serrano M, Luthringer R, Peters AF, Destombe C et al. 2019. Evolution of life cycles and reproductive traits: insights from the brown algae. bioRxiv 530477. https://doi.org/10.1101/530477
    [Crossref]
  64. 64. 
    Herron MD, Hackett JD, Aylward FO, Michod RE 2009. Triassic origin and early radiation of multicellular volvocine algae. PNAS 106:93254–58
    [Google Scholar]
  65. 65. 
    Herron MD, Michod RE. 2008. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye. Evolution 62:2436–51
    [Google Scholar]
  66. 66. 
    Herron MD, Rashidi A, Shelton DE, Driscoll WW 2013. Cellular differentiation and individuality in the “minor” multicellular taxa. Biol. Rev. Camb. Philos. Soc. 88:4844–61
    [Google Scholar]
  67. 67. 
    Hill DRA, Wetherbee R. 1986. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia 25:4521–43
    [Google Scholar]
  68. 68. 
    Hiraide R, Kawai-Toyooka H, Hamaji T, Matsuzaki R, Kawafune K et al. 2013. The evolution of male-female sexual dimorphism predates the gender-based divergence of the mating locus gene MAT3/RB. Mol. Biol. Evol 30:51038–40
    [Google Scholar]
  69. 69. 
    Hoekstra RF. 2011. Nucleo-cytoplasmic conflict and the evolution of gamete dimorphism. The Evolution of Anisogamy: A Fundamental Phenomenon Underlying Sexual Selection T Togashi, PA Cox 111–30 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. 70. 
    Hoxmark RC, Nordby Ø 1974. Haploid meiosis as a regular phenomenon in the life cycle of Ulva mutabilis. Hereditas 76:2239–49
    [Google Scholar]
  71. 71. 
    Hurst LD. 1990. Parasite diversity and the evolution of diploidy, multicellularity and anisogamy. J. Theor. Biol. 144:4429–43
    [Google Scholar]
  72. 72. 
    Ichihara K, Suzuki R, Yamazaki T, Ota S, Mogi Y et al. 2015. Ulva partita sp. nov., a novel Enteromorpha-like Ulva species from Japanese coastal areas. Cytologia 80:3261–70
    [Google Scholar]
  73. 73. 
    Iyer P, Roughgarden J. 2008. Gametic conflict versus contact in the evolution of anisogamy. Theor. Popul. Biol. 73:4461–72
    [Google Scholar]
  74. 74. 
    Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T et al. 2017. Gene regulatory networks for the haploid-to-diploid transition of Chlamydomonas reinhardtii. Plant Physiol 175:1314–32
    [Google Scholar]
  75. 75. 
    Kagami Y, Mogi Y, Arai T, Yamamoto M, Kuwano K, Kawano S 2008. Sexuality and uniparental inheritance of chloroplast DNA in the isogamous green alga Ulva compressa (Ulvophyceae). J. Phycol. 44:3691–702
    [Google Scholar]
  76. 76. 
    Keeling PJ. 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant. Biol. 64:1583–607
    [Google Scholar]
  77. 77. 
    Knowlton N. 1974. A note on the evolution of gamete dimorphism. J. Theor. Biol. 46:1283–85
    [Google Scholar]
  78. 78. 
    Koi S, Hisanaga T, Sato K, Shimamura M, Yamato KT et al. 2016. An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26:131775–81
    [Google Scholar]
  79. 79. 
    Koszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L et al. 2011. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:2280–91
    [Google Scholar]
  80. 80. 
    Krueger-Hadfield SA, Roze D, Correa JA, Destombe C, Valero M 2015. O father where art thou? Paternity analyses in a natural population of the haploid-diploid seaweed Chondrus crispus. Heredity 114:2185–94
    [Google Scholar]
  81. 81. 
    Kugrens P, Lee RE. 1988. Ultrastructure of fertilization in a cryptomonad. J. Phycol. 24:3385–93
    [Google Scholar]
  82. 82. 
    Lahr DJG, Parfrey LW, Mitchell EAD, Katz LA, Lara E 2011. The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proc. R. Soc. B 278:2081–90
    [Google Scholar]
  83. 83. 
    Lehtonen J, Kokko H. 2010. Two roads to two sexes: unifying gamete competition and gamete limitation in a single model of anisogamy evolution. Behav. Ecol. Sociobiol. 65:3445–59
    [Google Scholar]
  84. 84. 
    Lehtonen J, Kokko H, Parker GA 2016. What do isogamous organisms teach us about sex and the two sexes?. Philos. Trans. R. Soc. B 371:170620150532
    [Google Scholar]
  85. 85. 
    Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H et al. 2012. Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31:1–46
    [Google Scholar]
  86. 86. 
    Lin H, Goodenough UW. 2007. Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1. Genetics 176:2913–25
    [Google Scholar]
  87. 87. 
    Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E et al. 2015. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. Evol 32:61581–97
    [Google Scholar]
  88. 88. 
    Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM 2017. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 18:1104Analysis of long-term gene traffic in sex chromosomes of a haploid UV system.
    [Google Scholar]
  89. 89. 
    Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M et al. 2015. Dynamic changes in the transcriptome and methylome of Chlamydomonas reinhardtii throughout its life cycle. Plant Physiol 169:42730–43
    [Google Scholar]
  90. 90. 
    Lozano J-C, Schatt P, Botebol H, Vergé V, Lesuisse E et al. 2014. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J 78:61073–83
    [Google Scholar]
  91. 91. 
    Luthringer R, Cormier A, Ahmed S, Peters A, Cock J, Coelho SM 2014. Sexual dimorphism in the brown algae. Perspect. Phycol. 1:111–25
    [Google Scholar]
  92. 92. 
    Maddox AS, Azoury J, Dumont J 2012. Polar body cytokinesis. Cytoskeleton 69:11855–68
    [Google Scholar]
  93. 93. 
    Mages HW, Tschochner H, Sumper M 1988. The sexual inducer of Volvox carteri. Primary structure deduced from cDNA sequence. FEBS Lett 234:2407–10
    [Google Scholar]
  94. 94. 
    Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM 2007. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol. Biol. Evol. 24:122827–41
    [Google Scholar]
  95. 95. 
    Martinez EA, Destombe C, Quillet MC, Valero M 1999. Identification of random amplified polymorphic DNA (RAPD) markers highly linked to sex determination in the red alga Gracilaria gracilis. Mol. Ecol 8:91533–38
    [Google Scholar]
  96. 96. 
    Matt GY, Umen JG. 2018. Cell-type transcriptomes of the multicellular green alga Volvox carteri yield insights into the evolutionary origins of germ and somatic differentiation programs. G3 8:2531–50
    [Google Scholar]
  97. 97. 
    McCourt RM, Delwiche CF, Karol KG 2004. Charophyte algae and land plant origins. Trends Ecol. Evol. 19:12661–66
    [Google Scholar]
  98. 98. 
    Mitman GG, Meer JP. 1994. Meiosis, blade development, and sex determination in Porphyra purpurea (Rhodophyta). J. Phycol. 30:1147–59
    [Google Scholar]
  99. 99. 
    Miyamura S. 2010. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. J. Plant Res. 123:2171–84
    [Google Scholar]
  100. 100. 
    Moeys S, Frenkel J, Lembke C, Gillard JTF, Devos V et al. 2016. A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci. Rep 6:19252
    [Google Scholar]
  101. 101. 
    Mori T, Kawai-Toyooka H, Igawa T, Nozaki H 2015. Gamete dialogs in green lineages. Mol. Plant. 8:101442–54
    [Google Scholar]
  102. 102. 
    Neiman AM. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev 69:4565–84
    [Google Scholar]
  103. 103. 
    Niwa K, Hayashi Y, Abe T, Aruga Y 2009. Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol. Res. 57:3194–202
    [Google Scholar]
  104. 104. 
    Nojiri T, Fujii T, Sekimoto H 1995. Purification and characterization of a novel sex pheromone that induces the release of another sex pheromone during sexual reproduction of the heterothallic Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 36:179–84
    [Google Scholar]
  105. 105. 
    Nozaki H, Misawa K, Kajita T, Kato M, Nohara S, Watanabe MM 2000. Origin and evolution of the colonial Volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol. Phylogenet. Evol. 17:2256–68
    [Google Scholar]
  106. 106. 
    Nozaki H, Mori T, Misumi O, Matsunaga S, Kuroiwa T 2006. Males evolved from the dominant isogametic mating type. Curr. Biol 16:24R1018–20First evidence that MID gene is conserved between volvocine algal mating types and sexes.
    [Google Scholar]
  107. 107. 
    Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O et al. 2018. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Bot. Stud. 59:110
    [Google Scholar]
  108. 108. 
    Oertel W, Wichard T, Weissgerber A 2015. Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome. J. Phycol. 51:5963–79
    [Google Scholar]
  109. 109. 
    Ohme M, Kunifuji Y, Miura A 1986. Cross experiments in the color mutants of Porphyra yezoensis Ueda. Japanese J. Phycol. 34:101–6
    [Google Scholar]
  110. 110. 
    Ohme M, Miura A. 1988. Tetrad analysis in conchospore germlings of Porphyra yezoensis (Rhodophyta, Bangiales). Plant Sci 57:2135–40
    [Google Scholar]
  111. 111. 
    Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104:187705–10
    [Google Scholar]
  112. 112. 
    Parker GA. 1978. Selection on non-random fusion of gametes during the evolution of anisogamy. J. Theor. Biol. 73:11–28
    [Google Scholar]
  113. 113. 
    Parker GA. 2011. The origin and maintenance of two sexes (anisogamy), and their gamete sizes by gamete competition. The Evolution of Anisogamy: A Fundamental Phenomenon Underlying Sexual Selection T Togashi, PA Cox 17–74 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  114. 114. 
    Parker GA, Baker RR, Smith VG 1972. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36:3529–53
    [Google Scholar]
  115. 115. 
    Pfiester LA. 1989. Dinoflagellate sexuality. Int. Rev. Cytol. 114:249–72
    [Google Scholar]
  116. 116. 
    Randerson JP, Hurst LD. 2001. A comparative test of a theory for the evolution of anisogamy. Proc. R. Soc. B 268:1469879–84
    [Google Scholar]
  117. 117. 
    Randerson JP, Hurst LD. 2001. The uncertain evolution of the sexes. Trends Ecol. Evol. 16:10571–79
    [Google Scholar]
  118. 118. 
    Reedy JL, Floyd AM, Heitman J 2009. Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr. Biol. 19:11891–99
    [Google Scholar]
  119. 119. 
    Rövekamp M, Bowman JL, Grossniklaus U 2016. Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26:131782–89
    [Google Scholar]
  120. 120. 
    Russo MT, Vitale L, Entrambasaguas L, Anestis K, Fattorini N et al. 2018. MRP3 is a sex determining gene in the diatom Pseudo-nitzschia multistriata. Nat. Commun 9:15050Identified the first sex-determining gene in diatoms.
    [Google Scholar]
  121. 121. 
    Schmid MW, Schmidt A, Grossniklaus U 2015. The female gametophyte: an emerging model for cell type-specific systems biology in plant development. Front. Plant. Sci. 6:907
    [Google Scholar]
  122. 122. 
    Searles RB. 1980. The strategy of the red algal life history. Am. Nat. 115:1113–20
    [Google Scholar]
  123. 123. 
    Sekimoto H. 2017. Sexual reproduction and sex determination in green algae. J. Plant Res. 52:1676–79
    [Google Scholar]
  124. 124. 
    Sekimoto H, Abe J, Tsuchikane Y 2012. New insights into the regulation of sexual reproduction in Closterium. Int. Rev. Cell Mol. Biol 297:309–38
    [Google Scholar]
  125. 125. 
    Sekimoto H, Fukumoto R, Dohmae N, Takio K, Fujii T, Kamiya Y 1998. Molecular cloning of a novel sex pheromone responsible for the release of a different sex pheromone in Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 39:111169
    [Google Scholar]
  126. 126. 
    Sekimoto H, Sone Y, Fujii T 1994. Regulation of expression of the genes for a sex pheromone by an inducer of the sex pheromone in the Closterium peracerosum-strigosum-littorale complex. Planta 193:1137–44
    [Google Scholar]
  127. 127. 
    Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F 2010. A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the “brown algal crown radiation. .” Mol. Phylogenet. Evol. 56:2659–74
    [Google Scholar]
  128. 128. 
    Speijer D, Lukeš J, Elias M 2015. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. PNAS 112:298827–34
    [Google Scholar]
  129. 129. 
    Starr RC. 1970. Control of differentiation in Volvox. Symp. Soc. Dev. Biol 29:59–100
    [Google Scholar]
  130. 130. 
    Stosch HA, Drebes G. 1964. Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen IV. Helgolander Wiss. Meeresunters 11:3–4209–57
    [Google Scholar]
  131. 131. 
    Stratmann J, Paputsoglu G, Oertel W 1996. Differentiation of Ulva mutabilis (Chlorophyta) gametangia and gamete release are controlled by extracellular inhibitors. J. Phycol. 32:61009–21
    [Google Scholar]
  132. 132. 
    Suda S, Watanabe MM, Inouye I 1989. Evidence for sexual reproduction in the primitive green alga Nephroselmis olivacea (Prasinophyceae). J. Phycol. 25:3596–600
    [Google Scholar]
  133. 133. 
    Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H 2017. RWP‐RK domain‐containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. New Phytol 213:41909–24
    [Google Scholar]
  134. 134. 
    Togashi T, Bartelt JL. 2011. Evolution of anisogamy and related phenomena in marine green algae. The Evolution of Anisogamy: A Fundamental Phenomenon Underlying Sexual Selection T Togashi, PA Cox 194–242 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  135. 135. 
    Togashi T, Bartelt JL, Yoshimura J, Tainaka K-I, Cox PA 2012. Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae. PNAS 109:3413692–97
    [Google Scholar]
  136. 136. 
    Tschochner H, Lottspeich F, Sumper M 1987. The sexual inducer of Volvox carteri: purification, chemical characterization and identification of its gene. EMBO J 6:82203–7
    [Google Scholar]
  137. 137. 
    Tsuchikane Y, Kokubun Y, Sekimoto H 2010. Characterization and molecular cloning of conjugation-regulating sex pheromones in homothallic Closterium. Plant Cell Physiol 51:91515–23
    [Google Scholar]
  138. 138. 
    Tsuchikane Y, Sato M, Ootaki T, Kokubun Y, Nozaki H et al. 2010. Sexual processes and phylogenetic relationships of a homothallic strain in the Closterium peracerosum-strigosum-littorale complex (Zygnematales, Charophyceae). J. Phycol. 46:2278–84
    [Google Scholar]
  139. 139. 
    Tsuchikane Y, Sekimoto H 2019. The genus Closterium, a new model organism to study sexual reproduction in streptophytes. New Phytol 221:99–104Up-to-date review on the molecular genetics of sex in Closterium.
    [Google Scholar]
  140. 140. 
    Umen JG. 2011. Evolution of sex and mating loci: an expanded view from volvocine algae. Curr. Opin. Microbiol. 14:6634–41
    [Google Scholar]
  141. 141. 
    Umen JG. 2014. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb. Perspect. Biol. 6:11a016170
    [Google Scholar]
  142. 142. 
    Umen JG, Olson BJSC. 2012. Genomics of volvocine algae. Adv. Bot. Res. 64:185–243
    [Google Scholar]
  143. 143. 
    van Ooijen G, Knox K, Kis K, Bouget F-Y, Millar AJ 2012. Genomic transformation of the picoeukaryote Ostreococcus tauri. J. Vis. Exp 2012:e4074
    [Google Scholar]
  144. 144. 
    Vanstechelman I, Sabbe K, Vyverman W, Vanormelingen P, Vuylsteke M 2013. Linkage mapping identifies the sex determining region as a single locus in the pennate diatom Seminavis robusta. PLOS ONE 8:3e60132
    [Google Scholar]
  145. 145. 
    Vesty EF, Kessler RW, Wichard T, Coates JC 2015. Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture. Front. Plant Sci. 6:15
    [Google Scholar]
  146. 146. 
    Wichard T, Charrier B, Mineur F, Bothwell JH, Clerck OD, Coates JC 2015. The green seaweed Ulva: a model system to study morphogenesis. Front. Plant Sci. 6:72
    [Google Scholar]
  147. 147. 
    Yamamoto K, Kawai-Toyooka H, Hamaji T, Tsuchikane Y, Mori T et al. 2017. Molecular evolutionary analysis of a gender-limited MID ortholog from the homothallic species Volvox africanus with male and monoecious spheroids. PLOS ONE 12:6e0180313
    [Google Scholar]
  148. 148. 
    Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S et al. 2017. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci. Rep 7:111679Identification and characterization of first mating-type locus from ulvophytes.
    [Google Scholar]
  149. 149. 
    Yan X-H, Fujita Y, Aruga Y 2000. Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 12:169–81
    [Google Scholar]
  150. 150. 
    Yoon HS, Ciniglia C, Wu M, Comeron JM, Pinto G et al. 2006. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol. Biol. 6:78
    [Google Scholar]
  151. 151. 
    Young JR, Geisen M, Probert I 2005. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology 51:4267–88
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120011
Loading
/content/journals/10.1146/annurev-micro-020518-120011
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error