1932

Abstract

Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120022
2019-09-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-120022.html?itemId=/content/journals/10.1146/annurev-micro-020518-120022&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. PNAS 95:10306–11
    [Google Scholar]
  2. 2. 
    Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M et al. 2015. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–63
    [Google Scholar]
  3. 3. 
    Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D et al. 2018. Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato. Stud. Mycol. 89:105–15
    [Google Scholar]
  4. 4. 
    Albert I, Boehm H, Albert M, Feiler CE, Imkampe J et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140Demonstrates the integration of signals from pattern recognition.
    [Google Scholar]
  5. 5. 
    Alexander D, Goodman RM, Gutrella M, Glascock C, Weymann K et al. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. PNAS 90:7327–31
    [Google Scholar]
  6. 6. 
    Anderson RG, Casady MS, Fee RA, Vaughan MM, Deb D et al. 2012. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. Plant J 72:882–93
    [Google Scholar]
  7. 7. 
    Aronson JM, Cooper BA, Fuller MS 1967. Glucans of oomycete cell walls. Science 155:332–35
    [Google Scholar]
  8. 8. 
    Asai S, Furzer OJ, Cevik V, Kim DS, Ishaque N et al. 2018. A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat. Commun. 9:5192
    [Google Scholar]
  9. 9. 
    Asai S, Ohta K, Yoshioka H 2008. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–406
    [Google Scholar]
  10. 10. 
    Asai S, Rallapalli G, Piquerez SJM, Caillaud M-C, Furzer OJ et al. 2014. Expression profiling during Arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. PLOS Pathog 10:e1004443
    [Google Scholar]
  11. 11. 
    Attard A, Gourgues M, Callemeyn-Torre N, Keller H 2010. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytologist 187:449–60
    [Google Scholar]
  12. 12. 
    Bailey K, Cevik V, Holton N, Byrne-Richardson J, Sohn KH et al. 2011. Molecular cloning of ATR5(Emoy2) from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Mol. Plant-Microbe Interact 24:827–38
    [Google Scholar]
  13. 13. 
    Baldauf SL. 2003. The deep roots of eukaryotes. Science 300:1703–6
    [Google Scholar]
  14. 14. 
    Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A et al. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549–51
    [Google Scholar]
  15. 15. 
    Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R et al. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–507
    [Google Scholar]
  16. 16. 
    Bishop JG, Ripoll DR, Bashir S, Damasceno CMB, Seeds JD, Rose JKC 2005. Selection on glycine beta-1,3-endoglucanase genes differentially inhibited by a Phytophthora glucanase inhibitor protein. Genetics 169:1009–19
    [Google Scholar]
  17. 17. 
    Boevink PC, Wang X, McLellan H, He Q, Naqvi S et al. 2016. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nat. Commun. 7:10311
    [Google Scholar]
  18. 18. 
    Böhm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nürnberger T 2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLOS Pathog 10:e1004491
    [Google Scholar]
  19. 19. 
    Borras-Hidalgo O, Thomma BPHJ, Silva Y, Chacon O, Pujol M 2010. Tobacco blue mould disease caused by Peronospora hyoscyami f. sp. tabacina. Mol. Plant Pathol. 11:13–18
    [Google Scholar]
  20. 20. 
    Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I et al. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. PNAS 107:9909–14The first demonstration of an oomycete effector targeting a host component.
    [Google Scholar]
  21. 21. 
    Bos JIB, Kanneganti T-D, Young C, Cakir C, Huitema E et al. 2006. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165–76
    [Google Scholar]
  22. 22. 
    Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S et al. 2011. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLOS Pathog 7:e1001327
    [Google Scholar]
  23. 23. 
    Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M et al. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. PNAS 108:20832–37
    [Google Scholar]
  24. 24. 
    Brasier CM, Delcan J, Cooke DE, Thomas J, In't Veld WAM 2004. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol. Res. 108:1172–84
    [Google Scholar]
  25. 25. 
    Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C et al. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–88
    [Google Scholar]
  26. 26. 
    Cai Q, Qiao L, Wang M, He B, Lin F-M et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–29
    [Google Scholar]
  27. 27. 
    Caillaud M-C, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JDG 2013. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLOS Biol 11:e1001732 Correction. 2016. PLOS Biol. 14:e1002408
    [Google Scholar]
  28. 28. 
    Canut H, Carrasco A, Galaud J-P, Cassan C, Bouyssou H et al. 1998. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71
    [Google Scholar]
  29. 29. 
    Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C et al. 2009. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Mol. Plant-Microbe Interact. 22:1535–45
    [Google Scholar]
  30. 30. 
    Chang Y-H, Yan H-Z, Liou R-F 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123–36
    [Google Scholar]
  31. 31. 
    Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B et al. 2015. Phytophthora infestans RXLR-WY effector AVR3a associates with dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2. PLOS ONE 10:e0137071
    [Google Scholar]
  32. 32. 
    Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S, Findlay K, Coffey MD et al. 2011. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLOS ONE 6:e16608
    [Google Scholar]
  33. 33. 
    Chen Y, Liu Z, Halterman DA 2012. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLOS Pathog 8:e1002595
    [Google Scholar]
  34. 34. 
    Cheng B, Yu X, Ma Z, Dong S, Dou D et al. 2012. Phytophthora sojae effector Avh331 suppresses the plant defence response by disturbing the MAPK signalling pathway. Physiol. Mol. Plant Pathol. 77:1–9
    [Google Scholar]
  35. 35. 
    Chi PK, Pang XP, Liu R 1982. Studies on Phytophthora disease of litchi: identification of causal agent. Proceedings of the Annual Meeting of the Chinese Phytopathological Society72–73 Beijing: Chin. Soc. Plant Pathol.
    [Google Scholar]
  36. 36. 
    Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537–52
    [Google Scholar]
  37. 37. 
    Craig J, Frederiksen R. 1980. Pathotypes of Peronosclerospora sorghi. Plant Dis 64:778–79
    [Google Scholar]
  38. 38. 
    Crute IR. 1992. From breeding to cloning (and back again?): a case study with lettuce downy mildew. Annu. Rev. Phytopathol. 30:485–506
    [Google Scholar]
  39. 39. 
    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P et al. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856
    [Google Scholar]
  40. 40. 
    Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48
    [Google Scholar]
  41. 41. 
    Domazakis E, Wouters D, Visser RGF, Kamoun S, Joosten MHAJ, Vleeshouwers VGAA 2018. The ELR-SOBIR1 complex functions as a two-component receptor-like kinase to mount defense against Phytophthora infestans. Mol. Plant-Microbe Interact 31:795–802
    [Google Scholar]
  42. 42. 
    Dong S, Kong G, Qutob D, Yu X, Tang J et al. 2012. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol. Plant-Microbe Interact. 25:896–909
    [Google Scholar]
  43. 43. 
    Dong S, Qutob D, Tedman-Jones J, Kuflu K, Wang Y et al. 2009. The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains. PLOS ONE 4:e5556
    [Google Scholar]
  44. 44. 
    Dong S, Stam R, Cano LM, Song J, Sklenar J et al. 2014. Effector specialization in a lineage of the Irish Potato Famine pathogen. Science 343:552–55
    [Google Scholar]
  45. 45. 
    Dong S, Yin W, Kong G, Yang X, Qutob D et al. 2011. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLOS Pathog 7:e1002353
    [Google Scholar]
  46. 46. 
    Dong S, Yu D, Cui L, Qutob D, Tedman-Jones J et al. 2011. Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean. PLOS ONE 6:e20172
    [Google Scholar]
  47. 47. 
    Dou D, Kale SD, Liu T, Tang Q, Wang X et al. 2010. Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Mol. Plant-Microbe Interact 23:425–35
    [Google Scholar]
  48. 48. 
    Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LCP et al. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1:15034
    [Google Scholar]
  49. 49. 
    Du Y, Mpina MH, Birch PRJ, Bouwmeester K, Govers F 2015. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol 169:1975–90
    [Google Scholar]
  50. 50. 
    Ecker JR, Davis RW. 1987. Plant defense genes are regulated by ethylene. PNAS 84:5202–6
    [Google Scholar]
  51. 51. 
    Ellinger D, Voigt CA. 2014. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114:1349–58
    [Google Scholar]
  52. 52. 
    Erwin DC, Ribeiro OK. 1996. Phytophthora Diseases Worldwide St. Paul, MN: APS
  53. 53. 
    Eshraghi L, Anderson JP, Aryamanesh N, McComb JA, Shearer B, Hardy GESJ 2014. Defence signalling pathways involved in plant resistance and phosphite-mediated control of Phytophthora cinnamomi. Plant Mol. Biol. Rep 32:342–56
    [Google Scholar]
  54. 54. 
    Fabro G, Steinbrenner J, Coates M, Ishaque N, Baxter L et al. 2011. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLOS Pathog 7:e1002348
    [Google Scholar]
  55. 55. 
    Fellbrich G, Romanski A, Varet A, Blume B, Brunner F et al. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–90
    [Google Scholar]
  56. 56. 
    Feng B-Z, Zhu X-P, Fu L, Lv R-F, Storey D et al. 2014. Characterization of necrosis-inducing NLP proteins in Phytophthora capsici. BMC Plant Biol 14:126
    [Google Scholar]
  57. 57. 
    Flor HH. 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8:29–54
    [Google Scholar]
  58. 58. 
    Frederiksen R, Renfro B. 1977. Global status of maize downy mildew. Annu. Rev. Phytopathol. 15:249–71
    [Google Scholar]
  59. 59. 
    Fry W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9:385–402 Correction. 2008. Mol. Plant Pathol. 9:727
    [Google Scholar]
  60. 60. 
    Fu L, Zhu CY, Ding XM, Yang XY, Morris PF et al. 2015. Characterization of cell-death-inducing members of the pectate lyase gene family in Phytophthora capsici and their contributions to infection of pepper. Mol. Plant-Microbe Interact. 28:766–75
    [Google Scholar]
  61. 61. 
    Gaastra W, Lipman LJA, De Cock AWAM, Exel TK, Pegge RBG et al. 2010. Pythium insidiosum: an overview. Vet. Microbiol. 146:1–16
    [Google Scholar]
  62. 62. 
    Gamir J, Darwiche R, van't Hof P, Choudhary V, Stumpe M et al. 2017. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J 89:502–9
    [Google Scholar]
  63. 63. 
    Gascuel Q, Martinez Y, Boniface M-C, Vear F, Pichon M, Godiard L 2015. The sunflower downy mildew pathogen Plasmopara halstedii. Mol. Plant Pathol 16:109–22
    [Google Scholar]
  64. 64. 
    Gaulin E, Jacquet C, Bottin A, Dumas B 2007. Root rot disease of legumes caused by Aphanomyces euteiches. Mol. Plant Pathol 8:539–48
    [Google Scholar]
  65. 65. 
    Gessler C, Pertot I, Perazzolli M 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr 50:3–44
    [Google Scholar]
  66. 66. 
    Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PRJ 2011. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol 190:653–66
    [Google Scholar]
  67. 67. 
    Göker M, Voglmayr H, Blázquez GG, Oberwinkler F 2009. Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol. Res. 113:308–25
    [Google Scholar]
  68. 68. 
    González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M 2010. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–15
    [Google Scholar]
  69. 69. 
    Goritschnig S, Krasileva KV, Dahlbeck D, Staskawicz BJ 2012. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene. PLOS Genet 8:e1002502
    [Google Scholar]
  70. 70. 
    Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW 2015. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnol. J. 13:875–83
    [Google Scholar]
  71. 71. 
    Graham TL, Graham MY, Subramanian S, Yu O 2007. RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–40
    [Google Scholar]
  72. 72. 
    Grunwald NJ, Goss EM, Press CM 2008. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 9:729–40
    [Google Scholar]
  73. 73. 
    Gumtow R, Wu D, Uchida J, Tian M 2018. A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol. Plant-Microbe Interact. 31:363–73
    [Google Scholar]
  74. 74. 
    Guo B, Wang H, Yang B, Jiang W, Jing M et al. 2019. Phytophthora sojae effector PsAvh240 inhibits host aspartic protease secretion to promote infection. Mol. Plant 12:552–64
    [Google Scholar]
  75. 75. 
    Guo N, Zhao J, Yan Q, Huang J, Ma H et al. 2018. Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. J. Phytopathol. 166:379–85
    [Google Scholar]
  76. 76. 
    Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–98
    [Google Scholar]
  77. 77. 
    Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S et al. 2014. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24:134–43
    [Google Scholar]
  78. 78. 
    Halterman DA, Chen Y, Sopee J, Berduo-Sandoval J, Sánchez-Pérez A 2010. Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PLOS ONE 5:e10536
    [Google Scholar]
  79. 79. 
    Hardham AR. 2005. Phytophthora cinnamomi. Mol. Plant Pathol. 6:589–604
    [Google Scholar]
  80. 80. 
    Hardham AR, Blackman LM. 2018. Phytophthora cinnamomi. Mol. Plant Pathol. 19:260–85
    [Google Scholar]
  81. 81. 
    Hatsugai N, Igarashi D, Mase K, Lu Y, Tsuda Y et al. 2017. A plant effector-triggered immunity signaling sector is inhibited by pattern-triggered immunity. EMBO J 36:2758–69
    [Google Scholar]
  82. 82. 
    He Q, Naqvi S, McLellan H, Boevink PC, Champouret N et al. 2018. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. PNAS 115:E7834–43
    [Google Scholar]
  83. 83. 
    Hillmer RA, Tsuda K, Rallapalli G, Asai S, Truman W et al. 2017. The highly buffered Arabidopsis immune signaling network conceals the functions of its components. PLOS Genet 13:e1006639
    [Google Scholar]
  84. 84. 
    Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25:153–65Demonstration that plants release small RNAs to achieve transkingdom gene silencing of oomycete genes.
    [Google Scholar]
  85. 85. 
    Hua C, Zhao J-H, Guo H-S 2018. Trans-kingdom RNA silencing in plant–fungal pathogen interactions. Mol. Plant 11:235–44
    [Google Scholar]
  86. 86. 
    Huang J, Chen L, Lu X, Peng Q, Zhang Y et al. 2018. Natural allelic variations provide insights into host adaptation of Phytophthora avirulence effector PsAvr3c. New Phytol 221:1010–22
    [Google Scholar]
  87. 87. 
    Huang J, Gu L, Zhang Y, Yan T, Kong G et al. 2017. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat. Commun. 8:2051
    [Google Scholar]
  88. 88. 
    Huitema E, Vleeshouwers V, Francis DM, Kamoun S 2003. Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Mol. Plant Pathol 4:487–500
    [Google Scholar]
  89. 89. 
    Imkampe J, Halter T, Huang S, Schulze S, Mazzotta S et al. 2017. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1. Plant Cell 29:2285–303
    [Google Scholar]
  90. 90. 
    In't Veld WAM, de Cock AWAM, Ilieva E, Lévesque CA 2002. Gene flow analysis of Phytophthora porri reveals a new species: Phytophthora brassicae sp. nov. Eur. J. Plant Pathol 108:51–62
    [Google Scholar]
  91. 91. 
    Jambunathan N, Penaganti A, Tang Y, Mahalingam R 2010. Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol 10:173
    [Google Scholar]
  92. 92. 
    Jeandet P, Hebrard C, Deville M-A, Cordelier S, Dorey S et al. 2014. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19:18033–56
    [Google Scholar]
  93. 93. 
    Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Loebach L et al. 2013. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLOS Genet 9:e1003272
    [Google Scholar]
  94. 94. 
    Jiang RHY, Tripathy S, Govers F, Tyler BM 2008. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. PNAS 105:4874–79
    [Google Scholar]
  95. 95. 
    Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F 2006. Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol. Biol. Evol. 23:338–51
    [Google Scholar]
  96. 96. 
    Jing M, Guo B, Li H, Yang B, Wang H et al. 2016. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins. Nat. Commun. 7:11685
    [Google Scholar]
  97. 97. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  98. 98. 
    Jung T, Burgess T. 2009. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia 22:95
    [Google Scholar]
  99. 99. 
    Kamoun S, van West P, Vleeshouwers VGAA, de Groot KE, Govers F 1998. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–25
    [Google Scholar]
  100. 100. 
    Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S et al. 2010. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol 154:1794–804
    [Google Scholar]
  101. 101. 
    Kaschani F, Van der Hoorn RAL 2011. A model of the C14-EPIC complex indicates hotspots for a protease-inhibitor arms race in the oomycete-potato interaction. Plant Signal. Behav. 6:109–12
    [Google Scholar]
  102. 102. 
    Keen NT, Yoshikawa M. 1983. β-1,3-Endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol 71:460–65
    [Google Scholar]
  103. 103. 
    Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL et al. 2011. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLOS Biol 9:e1001094
    [Google Scholar]
  104. 104. 
    Khatib M, Lafitte C, Esquerre-Tugaye MT, Bottin A, Rickauer M 2004. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol 162:501–10
    [Google Scholar]
  105. 105. 
    Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H et al. 2014. Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host Microbe 15:84–94
    [Google Scholar]
  106. 106. 
    King SRF, McLellan H, Boevink PC, Armstrong MR, Bukharova T et al. 2014. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell 26:1345–59
    [Google Scholar]
  107. 107. 
    Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-bornefungi. PNAS 95:1933–37
    [Google Scholar]
  108. 108. 
    Koch E, Slusarenko A. 1990. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–45
    [Google Scholar]
  109. 109. 
    Kong G, Zhao Y, Jing M, Huang J, Yang J et al. 2015. The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the Nudix hydrolase activity of Avr3b. PLOS Pathog 11:e1005139
    [Google Scholar]
  110. 110. 
    Kong L, Qiu X, Kang J, Wang Y, Chen H et al. 2017. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection. Curr. Biol. 27:981–91
    [Google Scholar]
  111. 111. 
    Krasileva KV, Dahlbeck D, Staskawicz BJ 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–58
    [Google Scholar]
  112. 112. 
    Kroj T, Rudd JJ, Nürnberger T, Gäbler Y, Lee J, Scheel D 2003. Mitogen-activated protein kinases play an essential role in oxidative burst-independent expression of pathogenesis-related genes in parsley. J. Biol. Chem. 278:2256–64
    [Google Scholar]
  113. 113. 
    Lamour KH, Stam R, Jupe J, Huitema E 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol 13:329–37
    [Google Scholar]
  114. 114. 
    Lenarčič T, Albert I, Böhm H, Hodnik V, Pirc K et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358:1431–34
    [Google Scholar]
  115. 115. 
    Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C et al. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73
    [Google Scholar]
  116. 116. 
    Li H, Wang H, Jing M, Zhu J, Guo B et al. 2018. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. eLife 7:e40039
    [Google Scholar]
  117. 117. 
    Li N, Zhao M, Liu T, Dong L, Cheng Q et al. 2017. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Front. Plant Sci 8:1185
    [Google Scholar]
  118. 118. 
    Liu T, Song T, Zhang X, Yuan H, Su L et al. 2014. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat. Commun. 5:4686
    [Google Scholar]
  119. 119. 
    Liu T, Ye W, Ru Y, Yang X, Gu B et al. 2011. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses. Plant Physiol 155:490–501
    [Google Scholar]
  120. 120. 
    Liu ZQ, Qiu AL, Shi LP, Cai JS, Huang XY et al. 2015. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1. J. Exp. Bot. 66:3683–98
    [Google Scholar]
  121. 121. 
    Luan Y, Cui J, Li J, Jiang N, Liu P, Meng J 2018. Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta 247:127–38
    [Google Scholar]
  122. 122. 
    Ma Z, Song T, Zhu L, Ye W, Wang Y et al. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057–72
    [Google Scholar]
  123. 123. 
    Ma Z, Zhu L, Song T, Wang Y, Zhang Q et al. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355:710–14Demonstrates a new paradigm for pathogen counterdefense, the decoy model.
    [Google Scholar]
  124. 124. 
    Martin FN, Loper JE. 1999. Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18:111–81
    [Google Scholar]
  125. 125. 
    Matsukawa M, Shibata Y, Ohtsu M, Mizutani A, Mori H et al. 2013. Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans. Mol. Plant-Microbe Interact 26:880–92
    [Google Scholar]
  126. 126. 
    McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S et al. 2013. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLOS Pathog 9:e1003670
    [Google Scholar]
  127. 127. 
    Mestre P, Arista G, Piron MC, Rustenholz C, Ritzenthaler C et al. 2017. Identification of a Vitis vinifera endo-beta-1,3-glucanase with antimicrobial activity against Plasmopara viticola. Mol. Plant Pathol 18:708–19
    [Google Scholar]
  128. 128. 
    Minic Z, Jouanin L. 2006. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44:435–49
    [Google Scholar]
  129. 129. 
    Mukhtar MS, Carvunis A-R, Dreze M, Epple P, Steinbrenner J et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601
    [Google Scholar]
  130. 130. 
    Murphy F, He Q, Armstrong M, Giuliani LM, Boevink PC et al. 2018. The potato MAP3K StVIK is required for the Phytophthora infestans RXLR effector Pi17316 to promote disease. Plant Physiol 177:398–410
    [Google Scholar]
  131. 131. 
    Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A et al. 2018. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J. Exp. Bot. 69:2023–36
    [Google Scholar]
  132. 132. 
    Nawrath C, Métraux JP. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–404
    [Google Scholar]
  133. 133. 
    Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A et al. 1995. Pathogenesis-related PR-1 proteins are antifungal: isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108:17–27
    [Google Scholar]
  134. 134. 
    Noga EJ. 1993. Water mold infections of freshwater fish: recent advances. Annu. Rev. Fish Dis. 3:291–304
    [Google Scholar]
  135. 135. 
    Oh S-K, Kim H, Choi D 2014. Rpi-blb2-mediated late blight resistance in Nicotiana benthamiana requires SGT1 and salicylic acid-mediated signaling but not RAR1 or HSP90. FEBS Lett 588:1109–15
    [Google Scholar]
  136. 136. 
    Oh S-K, Kwon S-Y, Choi D 2014. Rpi-blb2-mediated hypersensitive cell death caused by Phytophthora infestans AVRblb2 requires SGT1, but not EDS1, NDR1, salicylic acid-, jasmonic acid-, or ethylene-mediated signaling. Plant Pathol. J 30:254–60
    [Google Scholar]
  137. 137. 
    Oh S-K, Young C, Lee M, Oliva R, Bozkurt TO et al. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928–47
    [Google Scholar]
  138. 138. 
    Okinaka Y, Mimori K, Takeo K, Kitamura S, Takeuchi Y et al. 1995. A structural model for the mechanisms of elicitor release from fungal cell walls by plant β-1,3-endoglucanase. Plant Physiol 109:839–45
    [Google Scholar]
  139. 139. 
    Oome S, Raaymakers TM, Cabral A, Samwel S, Boehm H et al. 2014. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. PNAS 111:16955–60
    [Google Scholar]
  140. 140. 
    Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F et al. 2009. A common toxin fold mediates microbial attack and plant defense. PNAS 106:10359–64
    [Google Scholar]
  141. 141. 
    Panabières F, Ponchet M, Allasia V, Cardin L, Ricci P 1997. Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol. Res. 101:1459–68
    [Google Scholar]
  142. 142. 
    Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M et al. 2016. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210:309–26
    [Google Scholar]
  143. 143. 
    Pound G, Williams P. 1963. Biological races of Albugo candida. Phytopathology 53:1146–49
    [Google Scholar]
  144. 144. 
    Qi Y, Tsuda K, Glazebrook J, Katagiri F 2011. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. Mol. Plant Pathol 12:702–8
    [Google Scholar]
  145. 145. 
    Qiao Y, Liu L, Xiong Q, Flores C, Wong J et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45:330–33
    [Google Scholar]
  146. 146. 
    Qiao Y, Shi J, Zhai Y, Hou Y, Ma W 2015. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. PNAS 112:5850–55
    [Google Scholar]
  147. 147. 
    Qutob D, Chapman BP, Gijzen M 2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat. Commun. 4:1349
    [Google Scholar]
  148. 148. 
    Qutob D, Kemmerling B, Brunner F, Kuefner I, Engelhardt S et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–44
    [Google Scholar]
  149. 149. 
    Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L 2017. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J. Exp. Bot. 68:5485–95
    [Google Scholar]
  150. 150. 
    Rehmany AP, Gordon A, Rose LE, Allen RL, Armstrong MR et al. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839–50The first description of the characteristic RXLR and dEER motifs in oomycete effectors.
    [Google Scholar]
  151. 151. 
    Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B 2001. Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 28:293–305
    [Google Scholar]
  152. 152. 
    Rutter BD, Innes RW. 2017. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 173:728–41
    [Google Scholar]
  153. 153. 
    Saharan GS, Mehta N, Meena PD 2017. Host resistance. Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management T Hytonen, J Graham, R Harrison 225–83 Singapore: Springer
    [Google Scholar]
  154. 154. 
    Sandhu D, Gao H, Cianzio S, Bhattacharyya MK 2004. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics 168:2157–67
    [Google Scholar]
  155. 155. 
    Sastry MNL, Hegde RK. 1987. Pathogenic variation in Phytophthora species affecting plantation crops. Indian Phytopathol 40:365–69
    [Google Scholar]
  156. 156. 
    Sastry MNL, Hegde RK. 1989. Survival of Phytophthora meadii causing fruit-rot of arecanut. Indian Phytopathol 42:573–74
    [Google Scholar]
  157. 157. 
    Saunders DGO, Breen S, Win J, Schornack S, Hein I et al. 2012. Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance. Plant Cell 24:3420–34
    [Google Scholar]
  158. 158. 
    Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol 12:217–26
    [Google Scholar]
  159. 159. 
    Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F 2010. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–51
    [Google Scholar]
  160. 160. 
    Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R et al. 2004. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell. Mol. Life Sci. 61:502–9
    [Google Scholar]
  161. 161. 
    Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T et al. 2008. Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20:1169–83
    [Google Scholar]
  162. 162. 
    Shan WX, Cao M, Dan LU, Tyler BM 2004. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol. Plant-Microbe Interact 17:394–403Cloning of the first avirulence gene from oomycetes.
    [Google Scholar]
  163. 163. 
    Sharma PC, Ito A, Shimizu T, Terauchi R, Kamoun S, Saitoh H 2003. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol. Genet. Genom 269:583–91
    [Google Scholar]
  164. 164. 
    Shen D, Tang Z, Wang C, Wang J, Dong Y et al. 2019. Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis. PLOS Genet 15:e1008116
    [Google Scholar]
  165. 165. 
    Shibata Y, Kawakita K, Takemoto D 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways. Mol. Plant-Microbe Interact. 23:1130–42
    [Google Scholar]
  166. 166. 
    Shiu SH, Bleecker AB. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–43
    [Google Scholar]
  167. 167. 
    Slusarenko AJ, Schlaich NL. 2003. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol. 4:159–70
    [Google Scholar]
  168. 168. 
    Smakowska-Luzan E, Mott GA, Parys K, Stegmann M, Howton TC et al. 2018. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 561:342
    [Google Scholar]
  169. 169. 
    Sohn KH, Lei R, Nemri A, Jones JDG 2007. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19:4077–90
    [Google Scholar]
  170. 170. 
    Song J, Win J, Tian M, Schornack S, Kaschani F et al. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS 106:1654–59
    [Google Scholar]
  171. 171. 
    Song T, Kale SD, Arredondo FD, Shen D, Su L et al. 2013. Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance. Mol. Plant-Microbe Interact. 26:711–20
    [Google Scholar]
  172. 172. 
    Song T, Ma Z, Shen D, Li Q, Li W et al. 2016. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters. PLOS Pathog 11:e1005348
    [Google Scholar]
  173. 173. 
    Staswick PE, Yuen GY, Lehman C 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–54
    [Google Scholar]
  174. 174. 
    Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–89
    [Google Scholar]
  175. 175. 
    Steinbrenner AD, Goritschnig S, Krasileva KV, Schreiber KJ, Staskawicz BJ 2012. Effector recognition and activation of the Arabidopsis thaliana NLR innate immune receptors. Cold Spring Harb. Symp. Quant. Biol. 77:249–57
    [Google Scholar]
  176. 176. 
    Subramanian S, Graham MY, Yu O, Graham TL 2005. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–53
    [Google Scholar]
  177. 177. 
    Sur B, Bihari V, Sharma A, Joshi A 2002. Studies on physiology, zoospore morphology and entomopathogenic potential of the aquatic oomycete: Lagenidium giganteum. Mycopathologia 154:51–54
    [Google Scholar]
  178. 178. 
    Takahashi Y, Bin Nasir KH, Ito A, Kanzaki H, Matsumura H et al. 2007. A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant J 49:1030–40
    [Google Scholar]
  179. 179. 
    Thines M, Choi Y-J, Kemen E, Ploch S, Holub E et al. 2009. A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22:123
    [Google Scholar]
  180. 180. 
    Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA 2007. Soybean root suberin: Anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144:299–311
    [Google Scholar]
  181. 181. 
    Thomma BPHJ, Nuernberger T, Joosten MHAJ 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15
    [Google Scholar]
  182. 182. 
    Tian M, Benedetti B, Kamoun S 2005. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol 138:1785–93
    [Google Scholar]
  183. 183. 
    Tian M, Huitema E, da Cunha L, Torto-Alalibo T, Kamoun S 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279:26370–77
    [Google Scholar]
  184. 184. 
    Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol 143:364–77
    [Google Scholar]
  185. 185. 
    Tomczynska I, Stumpe M, Mauch F 2018. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. Plant J 95:187–203
    [Google Scholar]
  186. 186. 
    Tonon C, Guevara G, Oliva C, Daleo G 2002. Isolation of a potato acidic 39 kDa beta-1,3-glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. J. Phytopathol. 150:189–95
    [Google Scholar]
  187. 187. 
    Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F 2009. Network properties of robust immunity in plants. PLOS Genet 5:e1000772The first quantitation of the interactions among signaling sectors in fine-tuning defense signals.
    [Google Scholar]
  188. 188. 
    Turnbull D, Yang L, Naqvi S, Breen S, Welsh L et al. 2017. RXLR effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity. Plant Physiol 174:356–69
    [Google Scholar]
  189. 189. 
    Tyler BM. 2007. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol. Plant Pathol. 8:1–8
    [Google Scholar]
  190. 190. 
    Tyler BM. 2017. The fog of war: how network buffering protects plants’ defense secrets from pathogens. PLOS Genet 13:e1006713
    [Google Scholar]
  191. 191. 
    Tyler BM, Gijzen M. 2014. The Phytophthora sojae genome sequence: foundation for a revolution. Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens RA Dean, A Lichens-Park, C Kole 133–57 Berlin: Springer
    [Google Scholar]
  192. 192. 
    Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–66
    [Google Scholar]
  193. 193. 
    Umemoto N, Kakitani M, Iwamatsu A, Yoshikawa M, Yamaoka N, Ishida I 1997. The structure and function of a soybean β-glucan-elicitor-bindingprotein. PNAS 94:1029–34
    [Google Scholar]
  194. 194. 
    Vijayan P, Shockey J, Lévesque CA, Cook RJ, Browse J 1998. A role for jasmonate in pathogen defense of Arabidopsis. PNAS 95:7209–14
    [Google Scholar]
  195. 195. 
    Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R et al. 2011. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49:507–31
    [Google Scholar]
  196. 196. 
    Waldmüller T, Cosio EG, Grisebach H, Ebel J 1992. Release of highly elicitor-active glucans by germinating zoospores of Phytophthora megasperma f. sp. glycinea. Planta 188:498–505
    [Google Scholar]
  197. 197. 
    Wang Q, Han C, Ferreira AO, Yu X, Ye W et al. 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23:2064–86
    [Google Scholar]
  198. 198. 
    Wang Y, Bouwmeester K, Van de Mortel JE, Shan W, Govers F 2013. A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant Cell Environ 36:1192–203
    [Google Scholar]
  199. 199. 
    Wang Y, Hu DW, Zhang ZG, Ma ZC, Zheng XB, Li DB 2003. Purification and immunocytolocalization of a novel Phytophthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiol. Mol. Plant Pathol. 63:223–32
    [Google Scholar]
  200. 200. 
    Wang Y, Meng Y, Zhang M, Tong X, Wang Q et al. 2011. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 12:187–201
    [Google Scholar]
  201. 201. 
    Wang Y, Xu Y, Sun Y, Wang H, Qi J et al. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nat. Commun. 9:594
    [Google Scholar]
  202. 202. 
    Wegulo S, Koike S, Vilchez M, Santos P 2004. First report of downy mildew caused by Plasmopara obducens on impatiens in California. Plant Dis 88:909
    [Google Scholar]
  203. 203. 
    Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G et al. 2018. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. New Phytol 220:232–48
    [Google Scholar]
  204. 204. 
    Wong J, Gao L, Yang Y, Zhai J, Arikit S et al. 2014. Roles of small RNAs in soybean defense against Phytophthora sojae infection. Plant J 79:928–40
    [Google Scholar]
  205. 205. 
    Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R et al. 2017. NLR network mediates immunity to diverse plant pathogens. PNAS 114:8113–18
    [Google Scholar]
  206. 206. 
    Wyenandt CA, Simon JE, Pyne RM, Homa K, McGrath MT et al. 2015. Basil downy mildew (Peronospora belbahrii): discoveries and challenges relative to its control. Phytopathology 105:885–94
    [Google Scholar]
  207. 207. 
    Xiong Q, Ye W, Choi D, Wong J, Qiao Y et al. 2014. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana. Mol. Plant-Microbe Interact 27:1379–89
    [Google Scholar]
  208. 208. 
    Yang B, Wang Q, Jing M, Guo B, Wu J et al. 2017. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytol 214:361–75
    [Google Scholar]
  209. 209. 
    Yang B, Wang Y, Guo B, Jing M, Zhou H et al. 2019. The Phytophthora sojae RXLR effector Avh238 destabilizes soybean Type2 GmACSs to suppress ethylene biosynthesis and promote infection. New Phytol 222:425–37
    [Google Scholar]
  210. 210. 
    Yang L, McLellan H, Naqvi S, He Q, Boevink PC et al. 2016. Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiol 171:645–57
    [Google Scholar]
  211. 211. 
    Ye W, Ma W. 2016. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Curr. Opin. Microbiol. 32:1–6
    [Google Scholar]
  212. 212. 
    Yeh Y-H, Panzeri D, Kadota Y, Huang Y-C, Huang P-Y et al. 2016. The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity. Plant Cell 28:1701–21
    [Google Scholar]
  213. 213. 
    Yogendra KN, Dhokane D, Kushalappa AC, Sarmiento F, Rodriguez E, Mosquera T 2017. StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Sci 256:208–16
    [Google Scholar]
  214. 214. 
    Yogendra KN, Kumar A, Sarkar K, Li Y, Pushpa D et al. 2015. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato. J. Exp. Bot. 66:7377–89
    [Google Scholar]
  215. 215. 
    Yu LM. 1995. Elicitins from Phytophthora and basic resistance in tobacco. PNAS 92:4088–94
    [Google Scholar]
  216. 216. 
    Yu X, Tang J, Wang Q, Ye W, Tao K et al. 2012. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytol 196:247–60
    [Google Scholar]
  217. 217. 
    Zhang M, Li Q, Liu T, Liu L, Shen D et al. 2015. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases. Plant Physiol 167:164–75
    [Google Scholar]
  218. 218. 
    Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC et al. 2014. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLOS Pathog 10:e1004057
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120022
Loading
/content/journals/10.1146/annurev-micro-020518-120022
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error