1932

Abstract

Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms and .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120056
2021-10-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-020518-120056.html?itemId=/content/journals/10.1146/annurev-micro-020518-120056&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alyahya SA, Alexander R, Costa T, Henriques AO, Emonet T, Jacobs-Wagner C 2009. RodZ, a component of the bacterial core morphogenic apparatus. PNAS 106:41239–44
    [Google Scholar]
  2. 2. 
    Banzhaf M, van den Berg van Saparoea B, Terrak M, Fraipont C, Egan A et al. 2012. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol. Microbiol. 85:1179–94
    [Google Scholar]
  3. 3. 
    Baranowski C, Rego EH, Rubin EJ. 2019. The dream of a mycobacterium. Microbiol. Spectr. 7:2 https://doi.org/10.1128/microbiolspec.GPP3-0008-2018
    [Crossref] [Google Scholar]
  4. 4. 
    Baranowski C, Welsh MA, Sham L-T, Eskandarian HA, Lim HC et al. 2018. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife 7:e37516
    [Google Scholar]
  5. 5. 
    Barrett D, Zhang Y, Kahne D, Sliz P, Walker S 2007. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. PNAS 104:135348–53
    [Google Scholar]
  6. 6. 
    Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C et al. 2014. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat. Commun. 5:3842
    [Google Scholar]
  7. 7. 
    Bendezú FO, de Boer PAJ. 2008. Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J. Bacteriol. 190:51792–811
    [Google Scholar]
  8. 8. 
    Bendezú FO, Hale CA, Bernhardt TG, Boer PAJ de 2009. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J 28:3193–204
    [Google Scholar]
  9. 9. 
    Bertsche U, Kast T, Wolf B, Fraipont C, Aarsman MEG et al. 2006. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 61:3675–90
    [Google Scholar]
  10. 10. 
    Bi EF, Lutkenhaus J. 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354:6349161–64
    [Google Scholar]
  11. 11. 
    Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N et al. 2017. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat. Commun. 8:115370
    [Google Scholar]
  12. 12. 
    Billaudeau C, Yao Z, Cornilleau C, Carballido-López R, Chastanet A. 2019. MreB forms subdiffraction nanofilaments during active growth in Bacillus subtilis. mBio 10:1e01879-18
    [Google Scholar]
  13. 13. 
    Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J et al. 2014. De novo morphogenesis in L-forms via geometric control of cell growth. Mol. Microbiol. 93:5883–96
    [Google Scholar]
  14. 14. 
    Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S et al. 2007. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol. Microbiol. 65:1180–200
    [Google Scholar]
  15. 15. 
    Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F et al. 2017. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:6326739–43
    [Google Scholar]
  16. 16. 
    Boes A, Olatunji S, Breukink E, Terrak M. 2019. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10:1220
    [Google Scholar]
  17. 17. 
    Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. 2008. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32:2208–33
    [Google Scholar]
  18. 18. 
    Bratton BP, Shaevitz JW, Gitai Z, Morgenstein RM. 2018. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. Nat. Commun. 9:12797
    [Google Scholar]
  19. 19. 
    Busiek KK, Eraso JM, Wang Y, Margolin W. 2012. The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J. Bacteriol. 194:1989–2000
    [Google Scholar]
  20. 20. 
    Carballido-López R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J. 2006. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev. Cell 11:3399–409
    [Google Scholar]
  21. 21. 
    Cent. Dis. Control Prev 2019. Antibiotic resistance threats in the United States, 2019 AR Threats Rep., U.S. Dep. Health Hum. Serv., Cent. Dis. Control Prev. Atlanta, GA: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  22. 22. 
    Cho H, Uehara T, Bernhardt TG. 2014. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:61300–11
    [Google Scholar]
  23. 23. 
    Cho H, Wivagg CN, Kapoor M, Barry Z, Rohs PDA et al. 2016. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1:1016172
    [Google Scholar]
  24. 24. 
    Contreras-Martel C, Job V, Guilmi AMD, Vernet T, Dideberg O, Dessen A 2006. Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J. Mol. Biol. 355:4684–96
    [Google Scholar]
  25. 25. 
    Contreras-Martel C, Martins A, Ecobichon C, Trindade DM, Matteï P-J et al. 2017. Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nat. Commun. 8:1776
    [Google Scholar]
  26. 26. 
    Cook J, Baverstock TC, McAndrew MBL, Stansfeld PJ, Roper DI, Crow A 2020. Insights into bacterial cell division from a structure of EnvC bound to the FtsX periplasmic domain. PNAS 117:4528355–65
    [Google Scholar]
  27. 27. 
    Crow A, Greene NP, Kaplan E, Koronakis V 2017. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. PNAS 114:4712572–77
    [Google Scholar]
  28. 28. 
    Daitch AK, Goley ED. 2020. Uncovering unappreciated activities and niche functions of bacterial cell wall enzymes. Curr. Biol. 30:19R1170–75
    [Google Scholar]
  29. 29. 
    Daniel RA, Errington J. 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:6767–76
    [Google Scholar]
  30. 30. 
    Dessen A, Mouz N, Gordon E, Hopkins J, Dideberg O. 2001. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J. Biol. Chem. 276:4845106–12
    [Google Scholar]
  31. 31. 
    Dion MF, Kapoor M, Sun Y, Wilson S, Ryan J et al. 2019. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat. Microbiol. 4:81294–305
    [Google Scholar]
  32. 32. 
    Do T, Page JE, Walker S. 2020. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J. Biol. Chem. 295:103347–61
    [Google Scholar]
  33. 33. 
    Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB et al. 2020. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat. Microbiol. 5:2291–303
    [Google Scholar]
  34. 34. 
    Dobihal GS, Brunet YR, Flores-Kim J, Rudner DZ 2019. Homeostatic control of cell wall hydrolysis by the WalRK two-component signaling pathway in Bacillus subtilis. eLife 8:e52088
    [Google Scholar]
  35. 35. 
    Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. 2013. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol. Microbiol. 89:61084–98
    [Google Scholar]
  36. 36. 
    Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Söldner R, Carballido-López R. 2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:6039225–28
    [Google Scholar]
  37. 37. 
    Du S, Lutkenhaus J. 2017. Assembly and activation of the Escherichia coli divisome. Mol. Microbiol. 105:2177–87
    [Google Scholar]
  38. 38. 
    Du S, Pichoff S, Lutkenhaus J 2016. FtsEX acts on FtsA to regulate divisome assembly and activity. PNAS 113:34E5052–61
    [Google Scholar]
  39. 39. 
    Egan AJF, Errington J, Vollmer W. 2020. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18:8446–60
    [Google Scholar]
  40. 40. 
    Egan AJF, Jean NL, Koumoutsi A, Bougault CM, Biboy J et al. 2014. Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. PNAS 111:228197–202
    [Google Scholar]
  41. 41. 
    Elhenawy W, Davis RM, Fero J, Salama NR, Felman MF, Ruiz N. 2016. The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLOS ONE 11:8e0161587
    [Google Scholar]
  42. 42. 
    Emami K, Guyet A, Kawai Y, Devi J, Wu LJ et al. 2017. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2:316253
    [Google Scholar]
  43. 43. 
    Erickson HP. 2017. How bacterial cell division might cheat turgor pressure—a unified mechanism of septal division in Gram-positive and Gram-negative bacteria. BioEssays 39:81700045
    [Google Scholar]
  44. 44. 
    Eswara PJ, Ramamurthi KS. 2015. Bacterial cell division: nonmodels poised to take the spotlight. Annu. Rev. Microbiol. 71:393–411
    [Google Scholar]
  45. 45. 
    Figge RM, Divakaruni AV, Gober JW. 2004. MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol. 51:51321–32
    [Google Scholar]
  46. 46. 
    Figueroa-Cuilan WM, Brown PJB. 2018. Cell wall biogenesis during elongation and division in the plant pathogen Agrobacterium tumefaciens. Agrobacterium Biology: From Basic Science to Biotechnology SB Gelvin 87–110 Cham, Switz: Springer Int.
    [Google Scholar]
  47. 47. 
    Gan L, Chen S, Jensen GJ 2008. Molecular organization of Gram-negative peptidoglycan. PNAS 105:4818953–57
    [Google Scholar]
  48. 48. 
    Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T. 2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:6039222–25
    [Google Scholar]
  49. 49. 
    Gerding MA, Liu B, Bendezú FO, Hale CA, Bernhardt TG, de Boer PAJ. 2009. Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J. Bacteriol 191:247383–401
    [Google Scholar]
  50. 50. 
    Gray AN, Egan AJF, Veer ILV, Verheul J, Colavin A et al. 2015. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife 4:e07118
    [Google Scholar]
  51. 51. 
    Greene NG, Fumeaux C, Bernhardt TG 2018. Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa. PNAS 115:123150–55
    [Google Scholar]
  52. 52. 
    Hashimoto M, Ooiwa S, Sekiguchi J. 2012. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of d,l-endopeptidase activity at the lateral cell wall. J. Bacteriol. 194:4796–803
    [Google Scholar]
  53. 53. 
    Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J et al. 2001. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41:1167–78
    [Google Scholar]
  54. 54. 
    Höltje J-V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:1181–203
    [Google Scholar]
  55. 55. 
    Howell M, Brown PJ. 2016. Building the bacterial cell wall at the pole. Curr. Opin. Microbiol. 34:53–59
    [Google Scholar]
  56. 56. 
    Hugonnet J-E, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E et al. 2016. Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. eLife 5:e19469
    [Google Scholar]
  57. 57. 
    Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K et al. 2018. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7:e32471
    [Google Scholar]
  58. 58. 
    Ishino F, Park W, Tomioka S, Tamaki S, Takase I et al. 1986. Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. J. Biol. Chem. 261:157024–31
    [Google Scholar]
  59. 59. 
    Jean NL, Bougault CM, Lodge A, Derouaux A, Callens G et al. 2014. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure 22:71047–54
    [Google Scholar]
  60. 60. 
    Jones LJ, Carballido-López R, Errington J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:6913–22
    [Google Scholar]
  61. 61. 
    Kato J, Suzuki H, Hirota Y. 1985. Dispensability of either penicillin-binding protein-1a or -1b involved in the essential process for cell elongation in Escherichia coli. Mol. Gen. Genet. 200:2272–77
    [Google Scholar]
  62. 62. 
    Kawai Y, Daniel RA, Errington J. 2009. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol. 71:51131–44
    [Google Scholar]
  63. 63. 
    Kruse T, Bork-Jensen J, Gerdes K. 2004. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55:178–89
    [Google Scholar]
  64. 64. 
    Kuk ACY, Hao A, Guan Z, Lee S-Y. 2019. Visualizing conformation transitions of the lipid II flippase MurJ. Nat. Commun. 10:11736
    [Google Scholar]
  65. 65. 
    Kuk ACY, Lee S-Y. 2017. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struc. Mol. Biol. 24:2171–76
    [Google Scholar]
  66. 66. 
    Kumar S, Rubino FA, Mendoza AG, Ruiz N. 2019. The bacterial lipid II flippase MurJ functions by an alternating-access mechanism. J. Biol. Chem. 294:3981–90
    [Google Scholar]
  67. 67. 
    Lai GC, Cho H, Bernhardt TG. 2017. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLOS Genet 13:7e1006934
    [Google Scholar]
  68. 68. 
    Lariviere PJ, Mahone CR, Santiago-Collazo G, Howell M, Daitch AK et al. 2019. An essential regulator of bacterial division links FtsZ to cell wall synthase activation. Curr. Biol. 29:91460–70.e4
    [Google Scholar]
  69. 69. 
    Leaver M, Errington J. 2005. Roles for MreC and MreD proteins in helical growth of the cylindrical cell wall in Bacillus subtilis. Mol. Microbiol. 57:51196–209
    [Google Scholar]
  70. 70. 
    Lee TK, Meng K, Shi H, Huang KC. 2016. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nat. Commun. 7:13170
    [Google Scholar]
  71. 71. 
    Lim D, Strynadka NCJ. 2002. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9:11870–76
    [Google Scholar]
  72. 72. 
    Liu B, Persons L, Lee L, Boer PAJ de 2015. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol 95:6945–70
    [Google Scholar]
  73. 73. 
    Liu X, Meiresonne NY, Bouhss A, den Blaauwen T. 2018. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol. Microbiol 109:6855–84
    [Google Scholar]
  74. 74. 
    Loose M, Mitchison TJ. 2013. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16:138–46
    [Google Scholar]
  75. 75. 
    Lovering AL, Castro LD, Lim D, Strynadka NCJ. 2006. Structural analysis of an “open” form of PBP1B from Streptococcus pneumoniae. Protein Sci 15:71701–9
    [Google Scholar]
  76. 76. 
    Lovering AL, de Castro LH, Lim D, Strynadka NCJ. 2007. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:58171402–5
    [Google Scholar]
  77. 77. 
    Löwe J, Amos LA. 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:6663203–6
    [Google Scholar]
  78. 78. 
    Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A 2006. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol. Rev. 30:5673–91
    [Google Scholar]
  79. 79. 
    Macheboeuf P, Guilmi AMD, Job V, Vernet T, Dideberg O, Dessen A 2005. Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. PNAS 102:3577–82
    [Google Scholar]
  80. 80. 
    Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi J-L et al. 2007. Identification of the L,D-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J. Bacteriol. 189:103927–31
    [Google Scholar]
  81. 81. 
    Magnet S, Dubost L, Marie A, Arthur M, Gutmann L 2008. Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J. Bacteriol. 190:134782–85
    [Google Scholar]
  82. 82. 
    Mainardi J-L, Fourgeaud M, Hugonnet J-E, Dubost L, Brouard J-P et al. 2005. A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J. Biol. Chem. 280:4638146–52
    [Google Scholar]
  83. 83. 
    Marmont LS, Bernhardt TG 2020. A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. PNAS 117:3823879–85
    [Google Scholar]
  84. 84. 
    Mavrici D, Marakalala MJ, Holton JM, Prigozhin DM, Gee CL et al. 2014. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. PNAS 111:228037–42
    [Google Scholar]
  85. 85. 
    McCausland JW, Yang X, Squyres GR, Lyu Z, Bruce KE et al. 2021. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Nat. Commun. 12:609
    [Google Scholar]
  86. 86. 
    McPherson DC, Popham DL. 2003. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J. Bacteriol. 185:41423–31
    [Google Scholar]
  87. 87. 
    McQuillen R, Xiao J 2020. Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring. Annu. Rev. Biophys. 49:309–41
    [Google Scholar]
  88. 88. 
    Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ et al. 2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:7622634–38
    [Google Scholar]
  89. 89. 
    Meeske AJ, Sham L-T, Kimsey H, Koo B-M, Gross CA et al. 2015. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. PNAS 112:206437–42
    [Google Scholar]
  90. 90. 
    Meisner J, Llopis PM, Sham L-T, Garner E, Bernhardt TG, Rudner DZ. 2013. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol. 89:61069–83
    [Google Scholar]
  91. 91. 
    Modell JW, Hopkins AC, Laub MT. 2011. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev 25:121328–43
    [Google Scholar]
  92. 92. 
    Modell JW, Kambara TK, Perchuk BS, Laub MT. 2014. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLOS Biol 12:10e1001977
    [Google Scholar]
  93. 93. 
    Mohammadi T, Sijbrandi R, Lutters M, Verheul J, Martin N et al. 2014. Specificity of the transport of Lipid II by FtsW in Escherichia coli. J. Biol. Chem. 289:2114707–18
    [Google Scholar]
  94. 94. 
    Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:81425–32
    [Google Scholar]
  95. 95. 
    Möll A, Thanbichler M. 2009. FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol. Microbiol. 72:41037–53
    [Google Scholar]
  96. 96. 
    Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB et al. 2018. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554:7693528–32
    [Google Scholar]
  97. 97. 
    Morè N, Martorana AM, Biboy J, Otten C, Winkle M et al. 2019. Peptidoglycan remodeling enables Escherichia coli to survive severe outer membrane assembly defect. mBio 10:1e02729-18
    [Google Scholar]
  98. 98. 
    Morgenstein RM, Bratton BP, Nguyen JP, Ouzounov N, Shaevitz JW, Gitai Z. 2015. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. PNAS 112:4012510–15
    [Google Scholar]
  99. 99. 
    Müller P, Ewers C, Bertsche U, Anstett M, Kallis T et al. 2007. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J. Biol. Chem. 282:5036394–402
    [Google Scholar]
  100. 100. 
    Özbaykal G, Wollrab E, Simon F, Vigouroux A, Cordier B et al. 2020. The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli. eLife 9:e50629
    [Google Scholar]
  101. 101. 
    Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S et al. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143:71110–20
    [Google Scholar]
  102. 102. 
    Pares S, Mouz N, Pétillot Y, Hakenbeck R, Dideberg O. 1996. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat. Struct. Biol. 3:3284–89
    [Google Scholar]
  103. 103. 
    Park K-T, Du S, Lutkenhaus J. 2020. Essential role for FtsL in activation of septal peptidoglycan synthesis. mBio 11:6e03012-20
    [Google Scholar]
  104. 104. 
    Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R et al. 2020. The architecture of the Gram-positive bacterial cell wall. Nature 582:7811294–97
    [Google Scholar]
  105. 105. 
    Patel Y, Zhao H, Helmann JD 2020. A regulatory pathway that selectively up-regulates elongasome function in the absence of class A PBPs. eLife 9:e57902
    [Google Scholar]
  106. 106. 
    Pazos M, Peters K, Casanova M, Palacios P, VanNieuwenhze M et al. 2018. Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nat. Commun. 9:15090 Erratum. 2019. Nat. Commun. 10(1):591
    [Google Scholar]
  107. 107. 
    Perez AJ, Cesbron Y, Shaw SL, Villicana JB, Tsui H-CT et al. 2019. Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. PNAS 116:8201816018
    [Google Scholar]
  108. 108. 
    Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG. 2013. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodeling at the Escherichia coli division site. Mol. Microbiol. 89:690–701
    [Google Scholar]
  109. 109. 
    Rohs PDA, Buss J, Sim SI, Squyres GR, Srisuknimit V et al. 2018. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLOS Genet 14:10e1007726
    [Google Scholar]
  110. 110. 
    Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE. 2018. Membrane potential is required for MurJ function. J. Am. Chem. Soc. 140:134481–84
    [Google Scholar]
  111. 111. 
    Ruiz N. 2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PNAS 105:4015553–57
    [Google Scholar]
  112. 112. 
    Salje J, van den Ent F, de Boer P, Löwe J. 2011. Direct membrane binding by bacterial actin MreB. Mol. Cell 43:3478–87
    [Google Scholar]
  113. 113. 
    Sauvage E, Kerff F, Fonzé E, Herman R, Schoot B et al. 2002. The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol. Life Sci. 59:71223–32
    [Google Scholar]
  114. 114. 
    Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. 2008. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32:2234–58
    [Google Scholar]
  115. 115. 
    Sham L, Zheng S, Yakhnina AA, Kruse AC, Bernhardt TG. 2018. Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Mol. Microbiol. 109:5633–41
    [Google Scholar]
  116. 116. 
    Sham L-T, Barendt SM, Kopecky KE, Winkler ME 2011. Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. PNAS 108:E1061–69
    [Google Scholar]
  117. 117. 
    Sham L-T, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 2014. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:6193220–22
    [Google Scholar]
  118. 118. 
    Shi H, Bratton BP, Gitai Z, Huang KC. 2018. How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172:61294–305
    [Google Scholar]
  119. 119. 
    Shin J-H, Sulpizio AG, Kelley A, Alvarez L, Murphy SG et al. 2020. Structural basis of peptidoglycan endopeptidase regulation. PNAS 117:2111692–702
    [Google Scholar]
  120. 120. 
    Shiomi D, Sakai M, Niki H 2008. Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27:233081–91
    [Google Scholar]
  121. 121. 
    Silver LL. 2011. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24:171–109
    [Google Scholar]
  122. 122. 
    Silver LL. 2013. Viable screening targets related to the bacterial cell wall. Ann. N. Y. Acad. Sci. 1277:129–53
    [Google Scholar]
  123. 123. 
    Singh SK, Parveen S, SaiSree L, Reddy M. 2015. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. PNAS 112:3510956–61
    [Google Scholar]
  124. 124. 
    Singh SK, SaiSree L, Amrutha RN, Reddy M. 2012. Three redundant murein endopeptidases catalyze an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol. Microbiol. 86:51036–51
    [Google Scholar]
  125. 125. 
    Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG et al. 2018. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556:7699118–21
    [Google Scholar]
  126. 126. 
    Sjodt M, Rohs PDA, Gilman MSA, Erlandson SC, Zheng S et al. 2020. Structural coordination of polymerization and crosslinking by a SEDS-bPBP peptidoglycan synthase complex. Nat. Microbiol. 5:6813–20
    [Google Scholar]
  127. 127. 
    Straume D, Piechowiak KW, Olsen S, Stamsås GA, Berg KH et al. 2020. Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. PNAS 117:116129–38
    [Google Scholar]
  128. 128. 
    Sung M-T, Lai Y-T, Huang C-Y, Chou L-Y, Shih H-W et al. 2009. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. PNAS 106:228824–29
    [Google Scholar]
  129. 129. 
    Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M et al. 2019. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4:4587–94
    [Google Scholar]
  130. 130. 
    Tipper DJ, Strominger JL 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. PNAS 54:41133–41
    [Google Scholar]
  131. 131. 
    Truong TT, Vettiger A, Bernhardt TG. 2020. Cell division is antagonized by the activity of peptidoglycan endopeptidases that promote cell elongation. Mol. Microbiol. 114:6966–78
    [Google Scholar]
  132. 132. 
    Tsang M-J, Bernhardt TG. 2015. A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol. Microbiol. 95:6925–44
    [Google Scholar]
  133. 133. 
    Turner RD, Mesnage S, Hobbs JK, Foster SJ. 2018. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 9:11263
    [Google Scholar]
  134. 134. 
    Typas A, Banzhaf M, Gross CA, Vollmer W. 2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10:2123–36
    [Google Scholar]
  135. 135. 
    Typas A, Banzhaf M, van den Berg van Saparoea B, Verheul J, Biboy J et al. 2010. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:71097–109
    [Google Scholar]
  136. 136. 
    Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G et al. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. PNAS 111:11E1025–34
    [Google Scholar]
  137. 137. 
    Ursinus A, van den Ent F, Brechtel S, de Pedro M, Höltje J-V et al. 2004. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 186:206728–37
    [Google Scholar]
  138. 138. 
    van den Ent F, Amos LA, Löwe J 2001. Prokaryotic origin of the actin cytoskeleton. Nature 413:685139–44
    [Google Scholar]
  139. 139. 
    van den Ent F, Izoré T, Bharat TA, Johnson CM, Löwe J, Laub M 2014. Bacterial actin MreB forms antiparallel double filaments. eLife 3:e02634
    [Google Scholar]
  140. 140. 
    van den Ent F, Johnson CM, Persons L, Boer P de, Löwe J. 2010. Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J 29:61081–90
    [Google Scholar]
  141. 141. 
    van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108:3815822–27
    [Google Scholar]
  142. 142. 
    Vigouroux A, Cordier B, Aristov A, Alvarez L, Özbaykal G et al. 2020. Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects. eLife 9:e51998
    [Google Scholar]
  143. 143. 
    Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32:2287–306
    [Google Scholar]
  144. 144. 
    Vollmer W, Blanot D, de Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev 32:2149–67
    [Google Scholar]
  145. 145. 
    Vollmer W, Höltje J-V. 2004. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer(s)?. J. Bacteriol. 186:185978–87
    [Google Scholar]
  146. 146. 
    Wong F, Garner EC, Amir A 2019. Mechanics and dynamics of translocating MreB filaments on curved membranes. eLife 8:e40472
    [Google Scholar]
  147. 147. 
    Wong F, Renner LD, Özbaykal G, Paulose J, Weibel DB et al. 2017. Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nat. Microbiol. 2:917115
    [Google Scholar]
  148. 148. 
    Xiao J, Goley ED. 2016. Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr. Opin. Microbiol. 34:90–96
    [Google Scholar]
  149. 149. 
    Yahashiri A, Jorgenson MA, Weiss DS. 2015. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. PNAS 112:3611347–52
    [Google Scholar]
  150. 150. 
    Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG 2011. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. PNAS 108:E1052–60
    [Google Scholar]
  151. 151. 
    Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J 2017. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:6326744–47
    [Google Scholar]
  152. 152. 
    Yang X, McQuillen R, Lyu Z, Phillips-Mason P, De La, Cruz A et al. 2021. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat. Microbiol. 6:584–93
    [Google Scholar]
  153. 153. 
    Zheng S, Sham L-T, Rubino FA, Brock KP, Robins WP et al. 2018. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. PNAS 115:6709–14
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120056
Loading
/content/journals/10.1146/annurev-micro-020518-120056
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error