1932

Abstract

Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic , have shed light on these important innate immune responses. are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the T3SS and the effector proteins used by to manipulate innate immune signaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-120221
2020-09-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020518-120221.html?itemId=/content/journals/10.1146/annurev-micro-020518-120221&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aepfelbacher M, Trasak C, Wilharm G, Wiedemann A, Trulzsch K et al. 2003. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica–infected cells. J. Biol. Chem. 278:33217–23
    [Google Scholar]
  2. 2. 
    Aepfelbacher M, Zumbihl R, Heesemann J 2005. Modulation of Rho GTPases and the actin cytoskeleton by YopT of Yersinia. Curr. Top. Microbiol. . Immunol 291:167–75
    [Google Scholar]
  3. 3. 
    Aili M, Isaksson EL, Carlsson SE, Wolf-Watz H, Rosqvist R, Francis MS 2008. Regulation of Yersinia Yop-effector delivery by translocated YopE. Int. J. Med. Microbiol. 298:183–92
    [Google Scholar]
  4. 4. 
    Auerbuch V, Golenbock DT, Isberg RR 2009. Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLOS Pathog 5:e1000686
    [Google Scholar]
  5. 5. 
    Auerbuch V, Isberg RR. 2007. Growth of Yersinia pseudotuberculosis in mice occurs independently of Toll-like receptor 2 expression and induction of interleukin-10. Infect. Immun. 75:3561–70
    [Google Scholar]
  6. 6. 
    Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS 2019. Diversity and evolution of type III secreted effectors: a case study of three families. Curr. Top. Microbiol. Immunol. In press. https://doi.org/10.1007/82_2019_165
    [Crossref] [Google Scholar]
  7. 7. 
    Benabdillah R, Mota LJ, Lutzelschwab S, Demoinet E, Cornelis GR 2004. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 36:247–61
    [Google Scholar]
  8. 8. 
    Berneking L, Schnapp M, Rumm A, Trasak C, Ruckdeschel K et al. 2016. Immunosuppressive Yersinia effector YopM binds DEAD box helicase DDX3 to control ribosomal S6 kinase in the nucleus of host cells. PLOS Pathog 12:e1005660
    [Google Scholar]
  9. 9. 
    Black DS, Bliska JB. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37:515–27
    [Google Scholar]
  10. 10. 
    Boland A, Cornelis GR. 1998. Role of YopP in suppression of tumor necrosis factor α release by macrophages during Yersinia infection. Infect. Immun. 66:1878–84
    [Google Scholar]
  11. 11. 
    Brentnall M, Rodriguez-Menocal L, Ladron De Guevara R, Cepero E, Boise LH 2013. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32
    [Google Scholar]
  12. 12. 
    Brodsky IE, Medzhitov R. 2008. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLOS Pathog 4:e1000067
    [Google Scholar]
  13. 13. 
    Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS et al. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376–87
    [Google Scholar]
  14. 14. 
    Carson D, Barry R, Hopkins EGD, Roumeliotis TI, Garcia-Weber D et al. 2020. Citrobacter rodentium induces rapid and unique metabolic and inflammatory responses in mice suffering from severe disease. Cell Microbiol 22:e13126
    [Google Scholar]
  15. 15. 
    Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T et al. 2013. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLOS Pathog 9:e1003400
    [Google Scholar]
  16. 16. 
    Centola M, Wood G, Frucht DM, Galon J, Aringer M et al. 2000. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95:3223–31
    [Google Scholar]
  17. 17. 
    Chae JJ, Komarow HD, Cheng J, Wood G, Raben N et al. 2003. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604
    [Google Scholar]
  18. 18. 
    Chen HY, Weng IC, Hong MH, Liu FT 2014. Galectins as bacterial sensors in the host innate response. Curr. Opin. Microbiol. 17:75–81
    [Google Scholar]
  19. 19. 
    Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D et al. 2018. Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps. Sci. Immunol. 3:eaar6676
    [Google Scholar]
  20. 20. 
    Chen LM, Kaniga K, Galan JE 1996. Salmonella spp. are cytotoxic for cultured macrophages. Mol. Microbiol. 21:1101–15
    [Google Scholar]
  21. 21. 
    Chen ZJ. 2005. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7:758–65
    [Google Scholar]
  22. 22. 
    Cho YS, Challa S, Moquin D, Genga R, Ray TD et al. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–23
    [Google Scholar]
  23. 23. 
    Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P et al. 2016. The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector–triggered activation of the pyrin inflammasome. Cell Host Microbe 20:296–306
    [Google Scholar]
  24. 24. 
    Chung LK, Philip NH, Schmidt VA, Koller A, Strowig T et al. 2014. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM. mBio 5:e01402
    [Google Scholar]
  25. 25. 
    Coburn B, Sekirov I, Finlay BB 2007. Type III secretion systems and disease. Clin. Microbiol. Rev. 20:535–49
    [Google Scholar]
  26. 26. 
    Denecker G, Declercq W, Geuijen CA, Boland A, Benabdillah R et al. 2001. Yersinia enterocolitica YopP-induced apoptosis of macrophages involves the apoptotic signaling cascade upstream of bid. J. Biol. Chem. 276:19706–14
    [Google Scholar]
  27. 27. 
    Dewoody R, Merritt PM, Houppert AS, Marketon MM 2011. YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol. Microbiol. 79:1445–61
    [Google Scholar]
  28. 28. 
    Dewoody R, Merritt PM, Marketon MM 2013. YopK controls both rate and fidelity of Yop translocation. Mol. Microbiol. 87:301–17
    [Google Scholar]
  29. 29. 
    Duncan MC, Herrera NG, Johnson KS, Engel JN, Auerbuch V 2017. Bacterial internalization is required to trigger NIK-dependent NF-κB activation in response to the bacterial type three secretion system. PLOS ONE 12:e0171406
    [Google Scholar]
  30. 30. 
    Ea CK, Sun L, Inoue J, Chen ZJ 2004. TIFA activates IκB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6. PNAS 101:15318–23
    [Google Scholar]
  31. 31. 
    Erickson DL, Lew CS, Kartchner B, Porter NT, McDaniel SW et al. 2016. Lipopolysaccharide biosynthesis genes of Yersinia pseudotuberculosis promote resistance to antimicrobial chemokines. PLOS ONE 11:e0157092
    [Google Scholar]
  32. 32. 
    Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS 2001. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312:807–21
    [Google Scholar]
  33. 33. 
    Feeley EM, Pilla-Moffett DM, Zwack EE, Piro AS, Finethy R et al. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. PNAS 114:E1698–706
    [Google Scholar]
  34. 34. 
    Fernandez-Prada CM, Hoover DL, Tall BD, Venkatesan MM 1997. Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis. Infect. Immun. 65:1486–96
    [Google Scholar]
  35. 35. 
    Franchi L, Eigenbrod T, Munoz-Planillo R, Ozkurede U, Kim YG et al. 2014. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol. 193:4214–22
    [Google Scholar]
  36. 36. 
    Francis MS, Wolf-Watz H. 1998. YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol. Microbiol. 29:799–813
    [Google Scholar]
  37. 37. 
    Gall A, Gaudet RG, Gray-Owen SD, Salama NR 2017. TIFA signaling in gastric epithelial cells initiates the cag type 4 secretion system–dependent innate immune response to Helicobacter pylori infection. mBio 8:e01168
    [Google Scholar]
  38. 38. 
    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
    [Google Scholar]
  39. 39. 
    Galyov EE, Håkansson S, Wolf-Watz H 1994. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J. Bacteriol 176:4543–48
    [Google Scholar]
  40. 40. 
    Gao W, Yang J, Liu W, Wang Y, Shao F 2016. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. PNAS 113:E4857–66
    [Google Scholar]
  41. 41. 
    Garcia-Weber D, Dangeard AS, Cornil J, Thai L, Rytter H et al. 2018. ADP-heptose is a newly identified pathogen-associated molecular pattern of Shigella flexneri. . EMBO Rep 19:e46943
    [Google Scholar]
  42. 42. 
    Gaudet RG, Guo CX, Molinaro R, Kottwitz H, Rohde JR et al. 2017. Innate recognition of intracellular bacterial growth is driven by the TIFA-dependent cytosolic surveillance pathway. Cell Rep 19:1418–30
    [Google Scholar]
  43. 43. 
    Gaudet RG, Sintsova A, Buckwalter CM, Leung N, Cochrane A et al. 2015. Innate immunity. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity. Science 348:1251–55
    [Google Scholar]
  44. 44. 
    Greaney AJ, Leppla SH, Moayeri M 2015. Bacterial exotoxins and the inflammasome. Front. Immunol. 6:570
    [Google Scholar]
  45. 45. 
    Guarda G, Zenger M, Yazdi AS, Schroder K, Ferrero I et al. 2011. Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 186:2529–34
    [Google Scholar]
  46. 46. 
    Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–53
    [Google Scholar]
  47. 47. 
    Hakansson S, Schesser K, Persson C, Galyov EE, Rosqvist R et al. 1996. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 15:5812–23
    [Google Scholar]
  48. 48. 
    He S, Wang L, Miao L, Wang T, Du F et al. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137:1100–11
    [Google Scholar]
  49. 49. 
    Hentschke M, Berneking L, Belmar Campos C, Buck F, Ruckdeschel K, Aepfelbacher M 2010. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLOS ONE 5:e13165
    [Google Scholar]
  50. 50. 
    Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A 1999. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. PNAS 96:2396–401
    [Google Scholar]
  51. 51. 
    Holmström A, Petterson J, Rosqvist R, Håkansson S, Tafazoli F et al. 1997. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Mol. Microbiol. 24:73–91
    [Google Scholar]
  52. 52. 
    Holmström A, Rosqvist R, Wolf-Watz H, Forsberg A 1995. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect. Immun. 63:2269–76
    [Google Scholar]
  53. 53. 
    Huang CC, Weng JH, Wei TY, Wu PY, Hsu PH et al. 2012. Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor α stimulation and NF-κB activation. Mol. Cell. Biol. 32:2664–73
    [Google Scholar]
  54. 54. 
    Jeru I, Papin S, L'Hoste S, Duquesnoy P, Cazeneuve C et al. 2005. Interaction of pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum 52:1848–57
    [Google Scholar]
  55. 55. 
    Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ 2013. Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190:1217–26
    [Google Scholar]
  56. 56. 
    Kanamori M, Suzuki H, Saito R, Muramatsu M, Hayashizaki Y 2002. T2BP, a novel TRAF2 binding protein, can activate NF-κB and AP-1 without TNF stimulation. Biochem. Biophys. Res. Commun. 290:1108–13
    [Google Scholar]
  57. 57. 
    Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH et al. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–36
    [Google Scholar]
  58. 58. 
    Karin M, Gallagher E. 2009. TNFR signaling: Ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev. 228:225–40
    [Google Scholar]
  59. 59. 
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  60. 60. 
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:117–21
    [Google Scholar]
  61. 61. 
    Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F et al. 2002. Biosynthesis pathway of ADP-l-glycero-β-d-manno-heptose in Escherichia coli. J. Bacteriol 184:363–69
    [Google Scholar]
  62. 62. 
    Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–95
    [Google Scholar]
  63. 63. 
    Kondakova AN, Ho N, Bystrova OV, Shashkov AS, Lindner B et al. 2008. Structural studies of the O-antigens of Yersinia pseudotuberculosis O:2a and mutants thereof with impaired 6-deoxy-d-manno-heptose biosynthesis pathway. Carbohydr. Res. 343:1383–89
    [Google Scholar]
  64. 64. 
    Kortmann J, Brubaker SW, Monack DM 2015. Cutting edge: Inflammasome activation in primary human macrophages is dependent on flagellin. J. Immunol. 195:815–19
    [Google Scholar]
  65. 65. 
    Kusmierek M, Hossmann J, Witte R, Opitz W, Vollmer I et al. 2019. A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. PLOS Pathog 15:e1007813
    [Google Scholar]
  66. 66. 
    Kwuan L, Adams W, Auerbuch V 2013. Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response. Infect. Immun. 81:905–14
    [Google Scholar]
  67. 67. 
    Lamkanfi M, Kanneganti TD. 2010. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42:21–24
    [Google Scholar]
  68. 68. 
    LaRock CN, Cookson BT. 2012. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12:799–805
    [Google Scholar]
  69. 69. 
    Lemaitre N, Sebbane F, Long D, Hinnebusch BJ 2006. Yersinia pestis YopJ suppresses tumor necrosis factor α induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect. Immun. 74:5126–31
    [Google Scholar]
  70. 70. 
    Leung KY, Reisner BS, Straley SC 1990. YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infect. Immun. 58:3262–71
    [Google Scholar]
  71. 71. 
    Lin TY, Wei TW, Li S, Wang SC, He M et al. 2016. TIFA as a crucial mediator for NLRP3 inflammasome. PNAS 113:15078–83
    [Google Scholar]
  72. 72. 
    Lu YC, Yeh WC, Ohashi PS 2008. LPS/TLR4 signal transduction pathway. Cytokine 42:145–51
    [Google Scholar]
  73. 73. 
    Ma KW, Ma W. 2016. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev. 80:1011–27
    [Google Scholar]
  74. 74. 
    Malik A, Kanneganti TD. 2017. Inflammasome activation and assembly at a glance. J. Cell Sci. 130:3955–63
    [Google Scholar]
  75. 75. 
    Man SM, Place DE, Kuriakose T, Kanneganti TD 2017. Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation. J. Leukoc. Biol. 101:143–50
    [Google Scholar]
  76. 76. 
    Masters SL, Lagou V, Jeru I, Baker PJ, Van Eyck L et al. 2016. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl. Med. 8:332ra45
    [Google Scholar]
  77. 77. 
    Matsumura T, Kawamura-Tsuzuku J, Yamamoto T, Semba K, Inoue J 2009. TRAF-interacting protein with a forkhead-associated domain B (TIFAB) is a negative regulator of the TRAF6-induced cellular functions. J. Biochem. 146:375–81
    [Google Scholar]
  78. 78. 
    Matsumura T, Semba K, Azuma S, Ikawa S, Gohda J et al. 2004. TIFAB inhibits TIFA, TRAF-interacting protein with a forkhead-associated domain. Biochem. Biophys. Res. Commun. 317:230–34
    [Google Scholar]
  79. 79. 
    Matusiak M, Van Opdenbosch N, Vande Walle L, Sirard JC, Kanneganti TD, Lamkanfi M 2015. Flagellin-induced NLRC4 phosphorylation primes the inflammasome for activation by NAIP5. PNAS 112:1541–46
    [Google Scholar]
  80. 80. 
    McCoy MW, Marre ML, Lesser CF, Mecsas J 2010. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect. Immun. 78:2584–98
    [Google Scholar]
  81. 81. 
    McDonald C, Vacratsis PO, Bliska JB, Dixon JE 2003. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278:18514–23
    [Google Scholar]
  82. 82. 
    McPhee JB, Mena P, Bliska JB 2010. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect. Immun. 78:3529–39
    [Google Scholar]
  83. 83. 
    McPhee JB, Mena P, Zhang Y, Bliska JB 2012. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect. Immun. 80:2519–27
    [Google Scholar]
  84. 84. 
    Medici NP, Rashid M, Bliska JB 2019. Characterization of Pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the Yersinia effectors YopE and YopT. Infect. Immun. 87:e00822
    [Google Scholar]
  85. 85. 
    Medzhitov R, Janeway C 2000. Innate immunity. N. Engl. J. Med. 343:338–44
    [Google Scholar]
  86. 86. 
    Meinzer U, Barreau F, Esmiol-Welterlin S, Jung C, Villard C et al. 2012. Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-1 to induce intestinal barrier dysfunction. Cell Host Microbe 11:337–51
    [Google Scholar]
  87. 87. 
    Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D et al. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:366–70
    [Google Scholar]
  88. 88. 
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG et al. 2010. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. PNAS 107:3076–80
    [Google Scholar]
  89. 89. 
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J 2001. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol. 21:5299–305
    [Google Scholar]
  90. 90. 
    Micheau O, Tschopp J. 2003. Induction of TNF receptor I–mediated apoptosis via two sequential signaling complexes. Cell 114:181–90
    [Google Scholar]
  91. 91. 
    Michiels T, Vanooteghem JC, Lambert de Rouvroit C, China B, Gustin A et al. 1991. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J. Bacteriol 173:4994–5009
    [Google Scholar]
  92. 92. 
    Milivojevic M, Dangeard AS, Kasper CA, Tschon T, Emmenlauer M et al. 2017. ALPK1 controls TIFA/TRAF6-dependent innate immunity against heptose-1,7-bisphosphate of gram-negative bacteria. PLOS Pathog 13:e1006224
    [Google Scholar]
  93. 93. 
    Mills SD, Boland A, Sory MP, van der Smissen P, Kerbourch C et al. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. PNAS 94:12638–43
    [Google Scholar]
  94. 94. 
    Minnich SA, Rohde HN. 2007. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv. Exp. Med. Biol. 603:298–310
    [Google Scholar]
  95. 95. 
    Mittal R, Peak-Chew SY, McMahon HT 2006. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. PNAS 103:18574–79
    [Google Scholar]
  96. 96. 
    Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT 2010. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285:19927–34
    [Google Scholar]
  97. 97. 
    Monack DM, Mecsas J, Bouley D, Falkow S 1998. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188:2127–37
    [Google Scholar]
  98. 98. 
    Monack DM, Mecsas J, Ghori N, Falkow S 1997. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. PNAS 94:10385–90
    [Google Scholar]
  99. 99. 
    Montagner C, Arquint C, Cornelis GR 2011. Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J. Bacteriol. 193:6923–28
    [Google Scholar]
  100. 100. 
    Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL et al. 2006. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–14
    [Google Scholar]
  101. 101. 
    Neyt C, Cornelis GR. 1999. Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33:971–81
    [Google Scholar]
  102. 102. 
    Ngo CC, Man SM. 2017. Mechanisms and functions of guanylate-binding proteins and related interferon-inducible GTPases: roles in intracellular lysis of pathogens. Cell Microbiol 19:12 https://doi.org/10.1111/cmi.12791
    [Crossref] [Google Scholar]
  103. 103. 
    Nicholson DW. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–42
    [Google Scholar]
  104. 104. 
    Orning P, Weng D, Starheim K, Ratner D, Best Z et al. 2018. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064–69
    [Google Scholar]
  105. 105. 
    Orth K, Palmer LE, Bao ZQ, Stewart S, Rudolph AE et al. 1999. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285:1920–23
    [Google Scholar]
  106. 106. 
    Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE et al. 2000. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–97
    [Google Scholar]
  107. 107. 
    Pahl HL. 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–66
    [Google Scholar]
  108. 108. 
    Palmer LE, Hobbie S, Galan JE, Bliska JB 1998. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-α production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27:953–65
    [Google Scholar]
  109. 109. 
    Paquette N, Conlon J, Sweet C, Rus F, Wilson L et al. 2012. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. PNAS 109:12710–15
    [Google Scholar]
  110. 110. 
    Park YH, Wood G, Kastner DL, Chae JJ 2016. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17:914–21
    [Google Scholar]
  111. 111. 
    Paz I, Sachse M, Dupont N, Mounier J, Cederfur C et al. 2010. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12:530–44
    [Google Scholar]
  112. 112. 
    Peters KN, Anderson DM. 2012. Modulation of host cell death pathways by Yersinia species and the type III effector YopK. Adv. Exp. Med. Biol. 954:229–36
    [Google Scholar]
  113. 113. 
    Peterson LW, Philip NH, DeLaney A, Wynosky-Dolfi MA, Asklof K et al. 2017. RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. J. Exp. Med. 214:3171–82
    [Google Scholar]
  114. 114. 
    Philip NH, DeLaney A, Peterson LW, Santos-Marrero M, Grier JT et al. 2016. Activity of uncleaved caspase-8 controls anti-bacterial immune defense and TLR-induced cytokine production independent of cell death. PLOS Pathog 12:e1005910
    [Google Scholar]
  115. 115. 
    Philip NH, Dillon CP, Snyder AG, Fitzgerald P, Wynosky-Dolfi MA et al. 2014. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. PNAS 111:7385–90
    [Google Scholar]
  116. 116. 
    Philip NH, Zwack EE, Brodsky IE 2016. Activation and evasion of inflammasomes by Yersinia. Curr. Top. Microbiol. Immunol 397:69–90
    [Google Scholar]
  117. 117. 
    Pilla-Moffett D, Barber MF, Taylor GA, Coers J 2016. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 428:3495–513
    [Google Scholar]
  118. 118. 
    Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D et al. 2014. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. PNAS 111:6046–51
    [Google Scholar]
  119. 119. 
    Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A 2016. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem. Sci. 41:175–89
    [Google Scholar]
  120. 120. 
    Portnoy DA, Moseley SL, Falkow S 1981. Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect. Immun. 31:775–82
    [Google Scholar]
  121. 121. 
    Ratner D, Orning MP, Proulx MK, Wang D, Gavrilin MA et al. 2016. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLOS Pathog 12:e1006035
    [Google Scholar]
  122. 122. 
    Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ et al. 2017. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. PNAS 114:13242–47
    [Google Scholar]
  123. 123. 
    Richards N, Schaner P, Diaz A, Stuckey J, Shelden E et al. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 276:39320–29
    [Google Scholar]
  124. 124. 
    Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL 2007. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLOS Genet 3:e10
    [Google Scholar]
  125. 125. 
    Romanish MT, Nakamura H, Lai CB, Wang Y, Mager DL 2009. A novel protein isoform of the multicopy human NAIP gene derives from intragenic Alu SINE promoters. PLOS ONE 4:e5761
    [Google Scholar]
  126. 126. 
    Rosadini CV, Zanoni I, Odendall C, Green ER, Paczosa MK et al. 2015. A single bacterial immune evasion strategy dismantles both MyD88 and TRIF signaling pathways downstream of TLR4. Cell Host Microbe 18:682–93
    [Google Scholar]
  127. 127. 
    Ruckdeschel K, Harb S, Roggenkamp A, Hornef M, Zumbihl R et al. 1998. Yersinia enterocolitica impairs activation of transcription factor NF-κB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor α production. J. Exp. Med. 187:1069–79
    [Google Scholar]
  128. 128. 
    Ruckdeschel K, Mannel O, Schröttner P 2002. Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. J. Immunol. 168:4601–11
    [Google Scholar]
  129. 129. 
    Ruckdeschel K, Richter K, Mannel O, Heesemann J 2001. Arginine-143 of Yersinia enterocolitica YopP crucially determines isotype-related NF-κB suppression and apoptosis induction in macrophages. Infect. Immun. 69:7652–62
    [Google Scholar]
  130. 130. 
    Ruckdeschel K, Roggenkamp A, Lafont V, Mangeat P, Heesemann J, Rouot B 1997. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect. Immun. 65:4813–21
    [Google Scholar]
  131. 131. 
    Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R et al. 2018. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. PNAS 115:E10888–97
    [Google Scholar]
  132. 132. 
    Schroder K, Zhou R, Tschopp J 2010. The NLRP3 inflammasome: a sensor for metabolic danger. Science 327:296–300
    [Google Scholar]
  133. 133. 
    Shao F, Dixon JE. 2003. YopT is a cysteine protease cleaving Rho family GTPases. Adv. Exp. Med. Biol. 529:79–84
    [Google Scholar]
  134. 134. 
    Shi J, Gao W, Shao F 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42:245–54
    [Google Scholar]
  135. 135. 
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  136. 136. 
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–92
    [Google Scholar]
  137. 137. 
    Sivaraman V, Pechous RD, Stasulli NM, Eichelberger KR, Miao EA, Goldman WE 2015. Yersinia pestis activates both IL-1β and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague. PLOS Pathog 11:e1004688
    [Google Scholar]
  138. 138. 
    Skrzypek E, Cowan C, Straley SC 1998. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30:1051–65
    [Google Scholar]
  139. 139. 
    Skrzypek E, Myers-Morales T, Whiteheart SW, Straley SC 2003. Application of a Saccharomyces cerevisiae model to study requirements for trafficking of Yersinia pestis YopM in eucaryotic cells. Infect. Immun. 71:937–47
    [Google Scholar]
  140. 140. 
    Skurnik M, Venho R, Bengoechea JA, Moriyon I 1999. The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Mol. Microbiol. 31:1443–62
    [Google Scholar]
  141. 141. 
    Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R et al. 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3:eaar6689
    [Google Scholar]
  142. 142. 
    Stasulli NM, Eichelberger KR, Price PA, Pechous RD, Montgomery SA et al. 2015. Spatially distinct neutrophil responses within the inflammatory lesions of pneumonic plague. mBio 6:e01530
    [Google Scholar]
  143. 143. 
    Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB et al. 1998. Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273:27084–90
    [Google Scholar]
  144. 144. 
    Straley SC, Bowmer WS. 1986. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51:445–54
    [Google Scholar]
  145. 145. 
    Straley SC, Cibull ML. 1989. Differential clearance and host–pathogen interactions of YopE and YopKYopLYersinia pestis in BALB/c mice. Infect. Immun. 57:1200–10
    [Google Scholar]
  146. 146. 
    Sun L, Wang H, Wang Z, He S, Chen S et al. 2012. Mixed lineage kinase domain–like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–27
    [Google Scholar]
  147. 147. 
    Swanson KV, Deng M, Ting JPY 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  148. 148. 
    Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N 2007. YopJ targets TRAF proteins to inhibit TLR-mediated NF-κB, MAPK and IRF3 signal transduction. Cell Microbiol 9:2700–15
    [Google Scholar]
  149. 149. 
    Takatsuna H, Kato H, Gohda J, Akiyama T, Moriya A et al. 2003. Identification of TIFA as an adapter protein that links tumor necrosis factor receptor–associated factor 6 (TRAF6) to interleukin-1 (IL-1) receptor–associated kinase-1 (IRAK-1) in IL-1 receptor signaling. J. Biol. Chem. 278:12144–50
    [Google Scholar]
  150. 150. 
    Tardy F, Homble F, Neyt C, Wattiez R, Cornelis GR et al. 1999. Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J 18:6793–99
    [Google Scholar]
  151. 151. 
    Thorslund SE, Edgren T, Pettersson J, Nordfelth R, Sellin ME et al. 2011. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PLOS ONE 6:e16784
    [Google Scholar]
  152. 152. 
    Thorslund SE, Ermert D, Fahlgren A, Erttmann SF, Nilsson K et al. 2013. Role of YopK in Yersinia pseudotuberculosis resistance against polymorphonuclear leukocyte defense. Infect. Immun. 81:11–22
    [Google Scholar]
  153. 153. 
    Trulzsch K, Sporleder T, Igwe EI, Russmann H, Heesemann J 2004. Contribution of the major secreted yops of Yersinia enterocolitica O:8 to pathogenicity in the mouse infection model. Infect. Immun. 72:5227–34
    [Google Scholar]
  154. 154. 
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P et al. 2015. Proteomics. Tissue-based map of the human proteome. Science 347:1260419
    [Google Scholar]
  155. 155. 
    Valvano MA, Messner P, Kosma P 2002. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148:1979–89
    [Google Scholar]
  156. 156. 
    Vance RE. 2015. The NAIP/NLRC4 inflammasomes. Curr. Opin. Immunol. 32:84–89
    [Google Scholar]
  157. 157. 
    Vance RE, Isberg RR, Portnoy DA 2009. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6:10–21
    [Google Scholar]
  158. 158. 
    Varney ME, Niederkorn M, Konno H, Matsumura T, Gohda J et al. 2015. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling. J. Exp. Med. 212:1967–85
    [Google Scholar]
  159. 159. 
    Viboud GI, Bliska JB. 2005. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59:69–89
    [Google Scholar]
  160. 160. 
    Viboud GI, So SS, Ryndak MB, Bliska JB 2003. Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosis. Mol. Microbiol 47:1305–15
    [Google Scholar]
  161. 161. 
    Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R 2000. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36:737–48
    [Google Scholar]
  162. 162. 
    Wang L, Du F, Wang X 2008. TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703
    [Google Scholar]
  163. 163. 
    Weng D, Marty-Roix R, Ganesan S, Proulx MK, Vladimer GI et al. 2014. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. PNAS 111:7391–96
    [Google Scholar]
  164. 164. 
    Wright EK, Goodart SA, Growney JD, Hadinoto V, Endrizzi MG et al. 2003. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol 13:27–36
    [Google Scholar]
  165. 165. 
    Xu H, Yang J, Gao W, Li L, Li P et al. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–41
    [Google Scholar]
  166. 166. 
    Yang J, Zhang E, Liu F, Zhang Y, Zhong M et al. 2014. Flagellins of Salmonella Typhi and nonpathogenic Escherichia coli are differentially recognized through the NLRC4 pathway in macrophages. J. Innate Immun. 6:47–57
    [Google Scholar]
  167. 167. 
    Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I et al. 2006. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ 13:236–49
    [Google Scholar]
  168. 168. 
    Zhang DW, Shao J, Lin J, Zhang N, Lu BJ et al. 2009. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–36
    [Google Scholar]
  169. 169. 
    Zhang Y, Bliska JB. 2010. YopJ-promoted cytotoxicity and systemic colonization are associated with high levels of murine interleukin-18, γ interferon, and neutrophils in a live vaccine model of Yersinia pseudotuberculosis infection. Infect. Immun. 78:2329–41
    [Google Scholar]
  170. 170. 
    Zhang Y, Ting AT, Marcu KB, Bliska JB 2005. Inhibition of MAPK and NF-κB pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J. Immunol 174:7939–49
    [Google Scholar]
  171. 171. 
    Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S et al. 2017. Mechanism of host substrate acetylation by a YopJ family effector. Nat. Plants 3:17115
    [Google Scholar]
  172. 172. 
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600
    [Google Scholar]
  173. 173. 
    Zhong Z, Zhai Y, Liang S, Mori Y, Han R et al. 2013. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 4:1611
    [Google Scholar]
  174. 174. 
    Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J et al. 2005. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J. Exp. Med. 202:1327–32
    [Google Scholar]
  175. 175. 
    Zhou P, She Y, Dong N, Li P, He H et al. 2018. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561:122–26
    [Google Scholar]
  176. 176. 
    Zimmermann S, Pfannkuch L, Al-Zeer MA, Bartfeld S, Koch M et al. 2017. ALPK1- and TIFA-dependent innate immune response triggered by the Helicobacter pylori type IV secretion system. Cell Rep 20:2384–95
    [Google Scholar]
  177. 177. 
    Zumbihl R, Aepfelbacher M, Andor A, Jacobi CA, Ruckdeschel K et al. 1999. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274:29289–93
    [Google Scholar]
  178. 178. 
    Zwack EE, Feeley EM, Burton AR, Hu B, Yamamoto M et al. 2017. Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components. Infect. Immun. 85:e00778
    [Google Scholar]
  179. 179. 
    Zwack EE, Snyder AG, Wynosky-Dolfi MA, Ruthel G, Philip NH et al. 2015. Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio 6:e02095
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-120221
Loading
/content/journals/10.1146/annurev-micro-020518-120221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error