1932

Abstract

Ro60 ribonucleoproteins (RNPs), composed of the ring-shaped Ro 60-kDa (Ro60) protein and noncoding RNAs called Y RNAs, are present in all three domains of life. Ro60 was first described as an autoantigen in patients with rheumatic disease, and Ro60 orthologs have been identified in 3% to 5% of bacterial genomes, spanning the majority of phyla. Their functions have been characterized primarily in , the first sequenced bacterium with a recognizable ortholog. In , the Ro60 ortholog enhances the ability of 3′-to-5′ exoribonucleases to degrade structured RNA during several forms of environmental stress. Y RNAs are regulators that inhibit or allow the interactions of Ro60 with other proteins and RNAs. Studies of Ro60 RNPs in other bacteria hint at additional functions, since the most conserved Y RNA contains a domain that is a close tRNA mimic and Ro60 RNPs are often encoded adjacent to components of RNA repair systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020620-062812
2020-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-020620-062812.html?itemId=/content/journals/10.1146/annurev-micro-020620-062812&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed YL, Thoms M, Mitterer V, Sinning I, Hurt E 2019. Crystal structures of Rea1-MIDAS bound to its ribosome assembly factor ligands resembling integrin-ligand-type complexes. Nat. Commun. 10:3050
    [Google Scholar]
  2. 2. 
    Akopian D, Shen K, Zhang X, Shan SO 2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82:693–721
    [Google Scholar]
  3. 3. 
    Alspaugh MA, Tan EM. 1975. Antibodies to cellular antigens in Sjögren's syndrome. J. Clin. Investig. 55:1067–73
    [Google Scholar]
  4. 4. 
    Andrade JM, Dos Santos RF, Chelysheva I, Ignatova Z, Arraiano CM 2018. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J. 37:e97631
    [Google Scholar]
  5. 5. 
    Bandyra KJ, Luisi BF. 2013. Licensing and due process in the turnover of bacterial RNA. RNA Biol. 10:627–35
    [Google Scholar]
  6. 6. 
    Bandyra KJ, Said N, Pfeiffer V, Gorna MW, Vogel J, Luisi BF 2012. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol. Cell 47:943–53
    [Google Scholar]
  7. 7. 
    Bandyra KJ, Sinha D, Syrjanen J, Luisi BF, De Lay NR 2016. The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes. RNA 22:360–72
    [Google Scholar]
  8. 8. 
    Bateman A, Kickhoefer VA. 2003. The TROVE module: A common element in telomerase, Ro and vault ribonucleoproteins. BMC Bioinform. 4:49
    [Google Scholar]
  9. 9. 
    Belair C, Sim S, Wolin SL 2018. Noncoding RNA surveillance: The ends justify the means. Chem. Rev. 118:4422–47
    [Google Scholar]
  10. 10. 
    Benda C, Ebert J, Scheltema RA, Schiller HB, Baumgartner M et al. 2014. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol. Cell 56:43–54
    [Google Scholar]
  11. 11. 
    Boccitto M, Wolin SL. 2019. Ro60 and Y RNAs: structure, functions, and roles in autoimmunity. Crit. Rev. Biochem. Mol. Biol. 54:133–52
    [Google Scholar]
  12. 12. 
    Bouffard P, Barbar E, Briere F, Boire G 2000. Interaction cloning and characterization of RoBPI, a novel protein binding to human Ro ribonucleoproteins. RNA 6:66–78
    [Google Scholar]
  13. 13. 
    Bruce HA, Du D, Matak-Vinkovic D, Bandyra KJ, Broadhurst RW et al. 2018. Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes. Nucleic Acids Res. 46:387–402
    [Google Scholar]
  14. 14. 
    Burroughs AM, Aravind L. 2016. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res. 44:8525–55
    [Google Scholar]
  15. 15. 
    Cameron TA, Matz LM, Sinha D, De Lay NR 2019. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res. 47:8821–37
    [Google Scholar]
  16. 16. 
    Cech TR, Steitz JA. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94
    [Google Scholar]
  17. 17. 
    Chan CM, Zhou C, Huang RH 2009. Reconstituting bacterial RNA repair and modification in vitro. Science 326:247
    [Google Scholar]
  18. 18. 
    Chen X, Quinn AM, Wolin SL 2000. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev. 14:777–82
    [Google Scholar]
  19. 19. 
    Chen X, Sim S, Wurtmann EJ, Feke A, Wolin SL 2014. Bacterial noncoding Y RNAs are widespread and mimic tRNAs. RNA 20:1715–24
    [Google Scholar]
  20. 20. 
    Chen X, Smith JD, Shi H, Yang DD, Flavell RA, Wolin SL 2003. The Ro autoantigen binds misfolded U2 small nuclear RNAs and assists mammalian cell survival after UV irradiation. Curr. Biol. 13:2206–11
    [Google Scholar]
  21. 21. 
    Chen X, Taylor DW, Fowler CC, Galan JE, Wang HW, Wolin SL 2013. An RNA degradation machine sculpted by Ro autoantigen and noncoding RNA. Cell 153:166–77
    [Google Scholar]
  22. 22. 
    Chen X, Wurtmann EJ, Van Batavia J, Zybailov B, Washburn MP, Wolin SL 2007. An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans. . Genes Dev. 21:1328–39
    [Google Scholar]
  23. 23. 
    Cheng ZF, Deutscher MP. 2005. An important role for RNase R in mRNA decay. Mol. Cell 17:313–18
    [Google Scholar]
  24. 24. 
    Clark G, Reichlin M, Tomasi TB Jr 1969. Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J. Immunol. 102:117–22
    [Google Scholar]
  25. 25. 
    Coburn GA, Mackie GA. 1998. Reconstitution of the degradation of the mRNA for ribosomal protein S20 with purified enzymes. J. Mol. Biol. 279:1061–74
    [Google Scholar]
  26. 26. 
    Dandekar T, Snel B, Huynen M, Bork P 1998. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23:324–28
    [Google Scholar]
  27. 27. 
    Das U, Shuman S. 2013. 2′-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa. RNA 19:1355–62
    [Google Scholar]
  28. 28. 
    Desai KK, Beltrame AL, Raines RT 2015. Coevolution of RtcB and Archease created a multiple-turnover RNA ligase. RNA 21:1866–72
    [Google Scholar]
  29. 29. 
    Dos Santos RF, Arraiano CM, Andrade JM 2019. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr. Genet. 65:1313–19
    [Google Scholar]
  30. 30. 
    Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU et al. 2018. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol. Cell 69:893–905
    [Google Scholar]
  31. 31. 
    Engl C, Schaefer J, Kotta-Loizou I, Buck M 2016. Cellular and molecular phenotypes depending upon the RNA repair system RtcAB of Escherichia coli. . Nucleic Acids Res. 44:9933–41
    [Google Scholar]
  32. 32. 
    Englert M, Sheppard K, Aslanian A, Yates JR 3rd, Soll D 2011. Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. PNAS 108:1290–95
    [Google Scholar]
  33. 33. 
    Esakova O, Krasilnikov AS. 2010. Of proteins and RNA: the RNase P/MRP family. RNA 16:1725–47
    [Google Scholar]
  34. 34. 
    Fabini G, Raijmakers R, Hayer S, Fouraux MA, Pruijn GJ, Steiner G 2001. The heterogeneous nuclear ribonucleoproteins I and K interact with a subset of Ro ribonucleoprotein-associated Y RNAs in vitro and in vivo. J. Biol. Chem. 276:20711–18
    [Google Scholar]
  35. 35. 
    Farris AD, Gross JK, Hanas JS, Harley JB 1996. Genes for murine Y1 and Y3 Ro RNAs have class 3 RNA polymerase III promoter structures and are unlinked on mouse chromosome 6. Gene 174:35–42
    [Google Scholar]
  36. 36. 
    Fouraux MA, Bouvet P, Verkaart S, van Venrooij WJ, Pruijn GJ 2002. Nucleolin associates with a subset of the human Ro ribonucleoprotein complexes. J. Mol. Biol. 320:475–88
    [Google Scholar]
  37. 37. 
    Fuchs G, Stein AJ, Fu C, Reinisch KM, Wolin SL 2006. Structural and biochemical basis for misfolded RNA recognition by the Ro protein. Nat. Struct. Mol. Biol. 13:1002–9
    [Google Scholar]
  38. 38. 
    Genschik P, Drabikowski K, Filipowicz W 1998. Characterization of the Escherichia coli RNA 3′-terminal phosphate cyclase and its σ54-regulated operon. J. Biol. Chem. 273:25516–26
    [Google Scholar]
  39. 39. 
    Giraud C, Hausmann S, Lemeille S, Prados J, Redder P, Linder P 2015. The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus. . RNA Biol. 12:658–74
    [Google Scholar]
  40. 40. 
    Gorna MW, Carpousis AJ, Luisi BF 2012. From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Q. Rev. Biophys. 45:105–45
    [Google Scholar]
  41. 41. 
    Gottesman S, Storz G. 2011. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3:a003798
    [Google Scholar]
  42. 42. 
    Green C, Long K, Shi H, Wolin S 1998. Binding of the 60-kDa Ro autoantigen to Y RNAs: evidence for recognition in the major groove of a conserved helix. RNA 4:750–65
    [Google Scholar]
  43. 43. 
    Greiling TM, Dehner C, Chen X, Hughes K, Iniguez AJ et al. 2018. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci. Transl. Med. 10:eaaan2306
    [Google Scholar]
  44. 44. 
    Hale CR, Zhao P, Olson S, Duff MO, Graveley BR et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–56
    [Google Scholar]
  45. 45. 
    Harrington L, McPhail T, Mar V, Zhou W, Oulton R et al. 1997. A mammalian telomerase-associated protein. Science 275:973–77
    [Google Scholar]
  46. 46. 
    Hayes CS, Keiler KC. 2010. Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett. 584:413–19
    [Google Scholar]
  47. 47. 
    Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA 1981. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol. Cell. Biol. 1:1138–49
    [Google Scholar]
  48. 48. 
    Hoekzema M, Romilly C, Holmqvist E, Wagner EGH 2019. Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation. EMBO J. 38:e101199
    [Google Scholar]
  49. 49. 
    Hogg JR, Collins K. 2007. Human Y5 RNA specializes a Ro ribonucleoprotein for 5S ribosomal RNA quality control. Genes Dev. 21:3067–72
    [Google Scholar]
  50. 50. 
    Holmqvist E, Vogel J. 2018. RNA-binding proteins in bacteria. Nat. Rev. Microbiol. 16:601–15
    [Google Scholar]
  51. 51. 
    Holmqvist E, Wright PR, Li L, Bischler T, Barquist L et al. 2016. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35:991–1011
    [Google Scholar]
  52. 52. 
    Hor J, Gorski SA, Vogel J 2018. Bacterial RNA biology on a genome scale. Mol. Cell 70:785–99
    [Google Scholar]
  53. 53. 
    Jones GH. 2019. Phylogeny and evolution of RNA 3′-nucleotidyltransferases in bacteria. J. Mol. Evol. 87:254–70
    [Google Scholar]
  54. 54. 
    Kato N, Hoshino H, Harada F 1982. Nucleotide sequence of 4.5S RNA (C8 or hY5) from HeLa cells. Biochem. Biophys. Res. Commun. 108:363–70
    [Google Scholar]
  55. 55. 
    Kavita K, de Mets F, Gottesman S 2018. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 42:53–61
    [Google Scholar]
  56. 56. 
    Kazlauskiene M, Kostiuk G, Venclovas C, Tamulaitis G, Siksnys V 2017. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357:605–9
    [Google Scholar]
  57. 57. 
    Kickhoefer VA, Liu Y, Kong LB, Snow BE, Stewart PL et al. 2001. The telomerase/vault-associated protein TEP1 is required for vault RNA stability and its association with the vault particle. J. Cell Biol. 152:157–64
    [Google Scholar]
  58. 58. 
    Kolev NG, Rajan KS, Tycowski KT, Toh JY, Shi H et al. 2019. The vault RNA of Trypanosoma brucei plays a role in the production of trans-spliced mRNA. J. Biol. Chem. 294:15559–74
    [Google Scholar]
  59. 59. 
    Kosmaczewski SG, Edwards TJ, Han SM, Eckwahl MJ, Meyer BI et al. 2014. The RtcB RNA ligase is an essential component of the metazoan unfolded protein response. EMBO Rep. 15:1278–85
    [Google Scholar]
  60. 60. 
    Kurasz JE, Hartman CE, Samuels DJ, Mohanty BK, Deleveaux A et al. 2018. Genotoxic, metabolic, and oxidative stresses regulate the RNA repair operon of Salmonella enterica serovar Typhimurium. J. Bacteriol. 200:e00476–18
    [Google Scholar]
  61. 61. 
    Labbe JC, Hekimi S, Rokeach LA 1999. The levels of the RoRNP-associated Y RNA are dependent upon the presence of ROP-1, the Caenorhabditis elegans Ro60 protein. Genetics 151:143–50
    [Google Scholar]
  62. 62. 
    Lehnik-Habrink M, Pfortner H, Rempeters L, Pietack N, Herzberg C, Stulke J 2010. The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. Mol. Microbiol. 77:958–71
    [Google Scholar]
  63. 63. 
    Lehnik-Habrink M, Schaffer M, Mader U, Diethmaier C, Herzberg C, Stulke J 2011. RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol. Microbiol. 81:1459–73
    [Google Scholar]
  64. 64. 
    Lerner MR, Boyle JA, Hardin JA, Steitz JA 1981. Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. Science 211:400–2
    [Google Scholar]
  65. 65. 
    Levitt M. 1969. Detailed molecular model for transfer ribonucleic acid. Nature 224:759–63
    [Google Scholar]
  66. 66. 
    Li Z, Reimers S, Pandit S, Deutscher MP 2002. RNA quality control: degradation of defective transfer RNA. EMBO J. 21:1132–38
    [Google Scholar]
  67. 67. 
    Luo B-H, Carman CV, Springer TA 2007. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619–47
    [Google Scholar]
  68. 68. 
    Maes A, Gracia C, Hajnsdorf E, Regnier P 2012. Search for poly(A) polymerase targets in E. coli reveals its implication in surveillance of Glu tRNA processing and degradation of stable RNAs. Mol. Microbiol. 83:436–51
    [Google Scholar]
  69. 69. 
    Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L 2014. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front. Genet. 5:102
    [Google Scholar]
  70. 70. 
    Martin G, Keller W. 2007. RNA-specific ribonucleotidyl transferases. RNA 13:1834–49
    [Google Scholar]
  71. 71. 
    Martins A, Shuman S. 2005. An end-healing enzyme from Clostridium thermocellum with 5′ kinase, 2′,3′ phosphatase, and adenylyltransferase activities. RNA 11:1271–80
    [Google Scholar]
  72. 72. 
    Mohanty BK, Kushner SR. 2011. Bacterial/archaeal/organellar polyadenylation. Wiley Interdiscip. Rev. RNA 2:256–76
    [Google Scholar]
  73. 73. 
    Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP et al. 2002. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 9:23–30
    [Google Scholar]
  74. 74. 
    Moore SD, Sauer RT. 2007. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76:101–24
    [Google Scholar]
  75. 75. 
    Morita T, Maki K, Aiba H 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19:2176–86
    [Google Scholar]
  76. 76. 
    Mosig A, Guofeng M, Stadler BMR, Stadler PF 2007. Evolution of the vertebrate Y RNA cluster. Theory Biosci. 126:9–14
    [Google Scholar]
  77. 77. 
    Muller AU, Leibundgut M, Ban N, Weber-Ban E 2019. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat. Commun. 10:4653
    [Google Scholar]
  78. 78. 
    Musgrove C, Jansson LI, Stone MD 2018. New perspectives on telomerase RNA structure and function. Wiley Interdiscip. Rev. RNA 9: https://doi.org/10.1002/wrna.1456
    [Crossref] [Google Scholar]
  79. 79. 
    Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29:2933–35
    [Google Scholar]
  80. 80. 
    Niewoehner O, Garcia-Doval C, Rostol JT, Berk C, Schwede F et al. 2017. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–48
    [Google Scholar]
  81. 81. 
    O'Brien CA, Harley JB. 1990. A subset of hY RNAs is associated with erythrocyte Ro ribonucleoproteins. EMBO J. 9:3683–89
    [Google Scholar]
  82. 82. 
    O'Brien CA, Wolin SL. 1994. A possible role for the 60 kd Ro autoantigen in a discard pathway for defective 5S ribosomal RNA precursors. Genes Dev. 8:2891–903
    [Google Scholar]
  83. 83. 
    Perreault J, Perreault J-P, Boire G 2007. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol. Biol. Evol. 24:1678–89
    [Google Scholar]
  84. 84. 
    Pommer AJ, Cal S, Keeble AH, Walker D, Evans SJ et al. 2001. Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9. J. Mol. Biol. 314:735–49
    [Google Scholar]
  85. 85. 
    Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B et al. 2011. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331:760–64
    [Google Scholar]
  86. 86. 
    Popow J, Jurkin J, Schleiffer A, Martinez J 2014. Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 511:104–7
    [Google Scholar]
  87. 87. 
    Pruijn GJM, Slobbe RL, van Venrooij WJ 1991. Analysis of protein-RNA interactions within Ro ribonucleoprotein complexes. Nucleic Acids Res. 19:5173–80
    [Google Scholar]
  88. 88. 
    Ramakrishnan S, Sharma HW, Farris AD, Kaufman KM, Harley JB et al. 1997. Characterization of human telomerase complex. PNAS 94:10075–79
    [Google Scholar]
  89. 89. 
    Ramesh A, Savva CG, Holzenburg A, Sacchettini JC 2007. Crystal structure of Rsr, an ortholog of the antigenic Ro protein, links conformational flexibility to RNA binding activity. J. Biol. Chem. 282:14960–67
    [Google Scholar]
  90. 90. 
    Rousseau BA, Hou Z, Gramelspacher MJ, Zhang Y 2018. Programmable RNA cleavage and recognition by a natural CRISPR-Cas9 system from Neisseria meningitidis. Mol. . Cell 69:906–14
    [Google Scholar]
  91. 91. 
    Santelli E, Bankston LA, Leppla SH, Liddington RC 2004. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 430:905–8
    [Google Scholar]
  92. 92. 
    Santiago-Frangos A, Woodson SA. 2018. Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip. Rev. RNA 9:e1475
    [Google Scholar]
  93. 93. 
    Schumacher MA, Pearson RF, Moller T, Valentin-Hansen P, Brennan RG 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 21:3546–56
    [Google Scholar]
  94. 94. 
    Shahbabian K, Jamalli A, Zig L, Putzer H 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. . EMBO J. 28:3523–33
    [Google Scholar]
  95. 95. 
    Shi H, O'Brien CA, Van Horn DJ, Wolin SL 1996. A misfolded form of 5S rRNA is associated with the Ro and La autoantigens. RNA 2:769–84
    [Google Scholar]
  96. 96. 
    Sikorski J, Tindall BJ, Lowry S, Lucas S, Nolan M et al. 2010. Complete genome sequence of Meiothermus silvanus type strain (VI-R2). Stand. Genom. Sci. 3:37–46
    [Google Scholar]
  97. 97. 
    Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL 2009. The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol. Biol. Cell 20:1555–64
    [Google Scholar]
  98. 98. 
    Sim S, Wolin SL. 2011. Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip. Rev. RNA 2:686–99
    [Google Scholar]
  99. 99. 
    Sim S, Wolin SL. 2018. Bacterial Y RNAs: gates, tethers, and tRNA mimics. Microbiol. Spectrum 6: https://doi.org/10.1128/microbiolspec.RWR-0023-2018
    [Crossref] [Google Scholar]
  100. 100. 
    Sim S, Yao J, Weinberg DE, Niessen S, Yates JR 3rd, Wolin SL 2012. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA 18:100–10
    [Google Scholar]
  101. 101. 
    Spickler C, Mackie GA. 2000. Action of RNase II and polynucleotide phosphorylase against stem-loops of defined structure. J. Bacteriol. 182:2422–27
    [Google Scholar]
  102. 102. 
    Springer TA. 2006. Complement and the multifaceted functions of VWA and integrin I domains. Structure 14:1611–16
    [Google Scholar]
  103. 103. 
    Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM 2005. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 121:529–39
    [Google Scholar]
  104. 104. 
    Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA 2018. RNA-dependent RNA targeting by CRISPR-Cas9. eLife 7:e32724
    [Google Scholar]
  105. 105. 
    Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA et al. 2004. Analysis of Deinococcus radiodurans’ transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168:21–33
    [Google Scholar]
  106. 106. 
    Tanaka N, Chakravarty AK, Maughan B, Shuman S 2011. Novel mechanism of RNA repair by RtcB via sequential 2′,3′-cyclic phosphodiesterase and 3′-phosphate/5′-hydroxyl ligation reactions. J. Biol. Chem. 286:43134–43
    [Google Scholar]
  107. 107. 
    Tejada-Arranz A, de Crecy-Lagard V, de Reuse H 2019. Bacterial RNA degradosomes: molecular machines under tight control. Trends Biochem. Sci. 45:42–57
    [Google Scholar]
  108. 108. 
    Temmel H, Muller C, Sauert M, Vesper O, Reiss A et al. 2017. The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli. . Nucleic Acids Res. 45:4708–21
    [Google Scholar]
  109. 109. 
    Teunissen SW, Kruithof MJ, Farris AD, Harley JB, van Venrooij WJ, Pruijn GJ 2000. Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucleic Acids Res. 28:610–19
    [Google Scholar]
  110. 110. 
    Updegrove TB, Zhang A, Storz G 2016. Hfq: the flexible RNA matchmaker. Curr. Opin. Microbiol. 30:133–38
    [Google Scholar]
  111. 111. 
    Valentin-Hansen P, Eriksen M, Udesen C 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51:1525–33
    [Google Scholar]
  112. 112. 
    Van Horn DJ, Eisenberg D, O'Brien CA, Wolin SL 1995. Caenorhabditis elegans embryos contain only one major species of Ro RNP. RNA 1:293–303
    [Google Scholar]
  113. 113. 
    Wang W, Chen X, Wolin SL, Xiong Y 2018. Structural basis for tRNA mimicry by a bacterial Y RNA. Structure 26:1635–44.e3
    [Google Scholar]
  114. 114. 
    Wassarman KM. 2018. 6S RNA, a global regulator of transcription. Microbiol. Spectr. 6: https://doi.org/10.1128/microbiolspec.RWR-0019-2018
    [Crossref] [Google Scholar]
  115. 115. 
    Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y et al. 2016. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529:496–501
    [Google Scholar]
  116. 116. 
    Whittaker CA, Hynes RO. 2002. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13:3369–87
    [Google Scholar]
  117. 117. 
    Wolin SL, Belair C, Boccitto M, Chen X, Sim S et al. 2013. Non-coding Y RNAs as tethers and gates: insights from bacteria. RNA Biol. 10:1602–8
    [Google Scholar]
  118. 118. 
    Wolin SL, Steitz JA. 1983. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome. Cell 32:735–44
    [Google Scholar]
  119. 119. 
    Wolin SL, Steitz JA. 1984. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. PNAS 81:1996–2000
    [Google Scholar]
  120. 120. 
    Wurtmann EJ, Wolin SL. 2010. A role for a bacterial ortholog of the Ro autoantigen in starvation-induced rRNA degradation. PNAS 107:4022–27
    [Google Scholar]
  121. 121. 
    Xu F, Cohen SN. 1995. RNA degradation in Escherichia coli regulated by 3′ adenylation and 5′ phosphorylation. Nature 374:180–83
    [Google Scholar]
  122. 122. 
    Xue D, Shi H, Smith JD, Chen X, Noe DA et al. 2003. A lupus-like syndrome develops in mice lacking the Ro 60 kDa protein, a major lupus autoantigen. PNAS 100:7503–8
    [Google Scholar]
  123. 123. 
    Yamagata H, Harley JB, Reichlin M 1984. Molecular properties of the Ro/SSA antigen and enzyme-linked immunosorbent assay for quantitation of antibody. J. Clin. Investig. 74:625–33
    [Google Scholar]
  124. 124. 
    Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G 2002. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9:11–22
    [Google Scholar]
  125. 125. 
    Zhang J, Ferre-D'Amare AR. 2016. The tRNA elbow in structure, recognition and evolution. Life 6:E3
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020620-062812
Loading
/content/journals/10.1146/annurev-micro-020620-062812
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error