1932

Abstract

The genus is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among species. These mechanisms have caused the evolution of diverse species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-021320-014036
2020-09-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-021320-014036.html?itemId=/content/journals/10.1146/annurev-micro-021320-014036&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M et al. 2014. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat. Commun 5:14044
    [Google Scholar]
  2. 2. 
    Anderson E, Martin PA. 1975. The sporulation and mating of brewing yeasts. J. Inst. Brew. 81:3242–47
    [Google Scholar]
  3. 3. 
    Anderson JB, Funt J, Thompson DA, Prabhu S, Socha A et al. 2010. Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations. Curr. Biol. 20:151383–88
    [Google Scholar]
  4. 4. 
    Barnett JA. 1992. The taxonomy of the genus Saccharomyces Meyen ex Reess: a short review for non-taxonomists. Yeast 8:11–23
    [Google Scholar]
  5. 5. 
    Barnett JA. 1998. A history of research on yeasts. 1: Work by chemists and biologists 1789–1850. Yeast 14:161439–51
    [Google Scholar]
  6. 6. 
    Batschinskaya AA. 1914. Entwicklungsgeschichte und Kultur des neuen Hefepilzes Saccharomyces paradoxus. J. Microbiol. Epidemiol. . Immunobiol 1:231–47
    [Google Scholar]
  7. 7. 
    Bay JC. 1893. The spore-forming species of the genus Saccharomyces. Am. Nat 27:320685–96
    [Google Scholar]
  8. 8. 
    Beijerinck MW. 1898. Ueber regeneration der Sporenbildung bei Alkoholhefen wo diese Funktion im Verschwinden begriffen ist. Centralblatt Bakt. Parasitenkd. 4:657–731
    [Google Scholar]
  9. 9. 
    Bernardes JP, Stelkens RB, Greig D 2017. Heterosis in hybrids within and between yeast species. J. Evol. Biol. 30:3538–48
    [Google Scholar]
  10. 10. 
    Blein-Nicolas M, Albertin W, Da Silva T, Valot B, Balliau T et al. 2015. A systems approach to elucidate heterosis of protein abundances in yeast. Mol. Cell. Proteom. 14:82056–71
    [Google Scholar]
  11. 11. 
    Boynton PJ, Greig D. 2014. The ecology and evolution of non-domesticated Saccharomyces species. Yeast 31:12449–62
    [Google Scholar]
  12. 12. 
    Boynton PJ, Janzen T, Greig D 2018. Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility. Yeast 35:185–98
    [Google Scholar]
  13. 13. 
    Boynton PJ, Kowallik V, Landermann D, Stukenbrock EH 2019. Quantifying the efficiency and biases of forest Saccharomyces sampling strategies. Yeast 36:11657–68
    [Google Scholar]
  14. 14. 
    Bozdag GO, Ono J, Denton JA, Karakoc E, Hunter N et al. 2019. Engineering recombination between diverged yeast species reveals genetic incompatibilities. bioRxiv 755165 . https://doi.org/10.1101/755165
    [Crossref]
  15. 15. 
    Chambers SR, Hunter N, Louis EJ, Borts RH 1996. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16:116110–20
    [Google Scholar]
  16. 16. 
    Chang SL, Lai HY, Tung SY, Leu JY 2013. Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLOS Genet 9:1e1003232
    [Google Scholar]
  17. 17. 
    Charron G, Landry CR. 2017. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system. Biol. Lett. 13:620170197
    [Google Scholar]
  18. 18. 
    Charron G, Leducq JB, Landry CR 2014. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol. Ecol. 23:174362–72
    [Google Scholar]
  19. 19. 
    Charron G, Marsit S, Hénault M, Martin H, Landry CR 2019. Spontaneous whole-genome duplication restores fertility in interspecific hybrids. Nat. Commun. 10:14126
    [Google Scholar]
  20. 20. 
    Chen G, Bradford WD, Seidel CW, Li R 2012. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482:7384246–50
    [Google Scholar]
  21. 21. 
    Chou JY, Hung YS, Lin KH, Lee HY, Leu JY 2010. Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLOS Biol 8:7e1000432
    [Google Scholar]
  22. 22. 
    Chou JY, Leu JY. 2010. Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. BioEssays 32:5401–11
    [Google Scholar]
  23. 23. 
    Coluccio A, Neiman AM. 2004. Interspore bridges: a new feature of the Saccharomyces cerevisiae spore wall. Microbiology 150:103189–96
    [Google Scholar]
  24. 24. 
    Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM 2008. The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. . PLOS ONE 3:8e2873
    [Google Scholar]
  25. 25. 
    Coyle S, Kroll E. 2008. Starvation induces genomic rearrangements and starvation-resilient phenotypes in yeast. Mol. Biol. Evol. 25:2310–18
    [Google Scholar]
  26. 26. 
    Dashko S, Zhou N, Compagno C, Piškur J 2014. Why, when, and how did yeast evolve alcoholic fermentation. FEMS Yeast Res 14:6826–32
    [Google Scholar]
  27. 27. 
    Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG 2003. Engineering evolution to study speciation in yeasts. Nature 422:692768–72
    [Google Scholar]
  28. 28. 
    Dettman JR, Sirjusingh C, Kohn LM, Anderson JB 2007. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447:7144585–88
    [Google Scholar]
  29. 29. 
    Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A 2011. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24:51135–53
    [Google Scholar]
  30. 30. 
    Dujon BA, Louis EJ. 2017. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics 206:2717–50
    [Google Scholar]
  31. 31. 
    Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO et al. 2002. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. . PNAS 99:2516144–49
    [Google Scholar]
  32. 32. 
    Eberlein C, Hénault M, Fijarczyk A, Charron G, Bouvier M et al. 2019. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nat. Commun. 10:1923
    [Google Scholar]
  33. 33. 
    Erny C, Raoult P, Alais A, Butterlin G, Delobel P et al. 2012. Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the northern European wine-making environment. Appl. Environ. Microbiol. 78:93256–65
    [Google Scholar]
  34. 34. 
    Fay JC, Liu P, Ong GT, Dunham MJ, Cromie GA et al. 2019. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLOS Biol 17:3e3000147
    [Google Scholar]
  35. 35. 
    Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ 2000. Chromosomal evolution in Saccharomyces. . Nature 405:6785451–54
    [Google Scholar]
  36. 36. 
    Gallone B, Steensels J, Prahl T, Soriaga L, Saels V et al. 2016. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166:61397–410
    [Google Scholar]
  37. 37. 
    Gasch AP, Hose J, Newton MA, Sardi M, Yong M, Wang Z 2016. Further support for aneuploidy tolerance in wild yeast and effects of dosage compensation on gene copy-number evolution. eLife 5:e14409
    [Google Scholar]
  38. 38. 
    Gerstein AC, Ono J, Lo DS, Campbell ML, Kuzmin A, Otto SP 2015. Too much of a good thing: the unique and repeated paths toward copper adaptation. Genetics 199:2555–71
    [Google Scholar]
  39. 39. 
    Gibson B, Liti G. 2015. Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 32:117–27
    [Google Scholar]
  40. 40. 
    Greig D. 2007. A screen for recessive speciation genes expressed in the gametes of F1 hybrid yeast. PLOS Genet 3:2e21
    [Google Scholar]
  41. 41. 
    Greig D, Borts RH, Louis EJ, Travisano M 2002. Epistasis and hybrid sterility in Saccharomyces.. Proc. R. Soc. Lond. B Biol. Sci 269:14961167–71
    [Google Scholar]
  42. 42. 
    Greig D, Louis EJ, Borts RH, Travisano M 2002. Hybrid speciation in experimental populations of yeast. Science 298:55991773–75
    [Google Scholar]
  43. 43. 
    Greig D, Travisano M, Louis EJ, Borts RH 2003. A role for the mismatch repair system during incipient speciation in Saccharomyces. J. Evol. Biol 16:3429–37
    [Google Scholar]
  44. 44. 
    Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM 2000. An Introduction to Genetic Analysis New York: WH Freeman. , 7th ed..
  45. 45. 
    Haber JE. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet 32:561–99
    [Google Scholar]
  46. 46. 
    Hansen EC. 1908. Nouvelles études sur des levures de brasserie à fermentation basse. C. R. Trav. Lab. Carlsberg 7:179–217
    [Google Scholar]
  47. 47. 
    Hanson PK. 2018. Saccharomyces cerevisiae: a unicellular model genetic organism of enduring importance. Curr. Protoc. Essent. Lab. Tech. 16:1e21
    [Google Scholar]
  48. 48. 
    Herskowitz I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev 52:4536–53
    [Google Scholar]
  49. 49. 
    Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol. Res 111:5509–47
    [Google Scholar]
  50. 50. 
    Hou J, Friedrich A, de Montigny J, Schacherer J 2014. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Curr. . Biol 24:101153–59
    [Google Scholar]
  51. 51. 
    Hou J, Friedrich A, Gounot JS, Schacherer J 2015. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nat. Commun. 6:17214
    [Google Scholar]
  52. 52. 
    Hunter N, Chambers SR, Louis EJ, Borts RH 1996. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J 15:71726–33
    [Google Scholar]
  53. 53. 
    Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET 2003. Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165:41745–59
    [Google Scholar]
  54. 54. 
    Jhuang HY, Lee HY, Leu JY 2017. Mitochondrial–nuclear co-evolution leads to hybrid incompatibility through pentatricopeptide repeat proteins. EMBO Rep 18:187–101
    [Google Scholar]
  55. 55. 
    Kao KC, Schwartz K, Sherlock G 2010. A genome-wide analysis reveals no nuclear Dobzhansky-Muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities. PLOS Genet 6:7e1001038
    [Google Scholar]
  56. 56. 
    Kao KC, Sherlock G. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. . Genet 40:121499–504
    [Google Scholar]
  57. 57. 
    Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:6937241–54
    [Google Scholar]
  58. 58. 
    Kowallik V, Greig D. 2016. A systematic forest survey showing an association of Saccharomyces paradoxus with oak leaf litter. Environ. Microbiol. Rep. 8:5833–41
    [Google Scholar]
  59. 59. 
    Kuehne HA, Murphy HA, Francis CA, Sniegowski PD 2007. Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr. Biol. 17:5407–11
    [Google Scholar]
  60. 60. 
    Kurtzman CP. 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. . FEMS Yeast Res 4:3233–45
    [Google Scholar]
  61. 61. 
    Kvitek DJ, Sherlock G. 2011. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLOS Genet 7:4e1002056
    [Google Scholar]
  62. 62. 
    Leducq JB, Charron G, Samani P, Dubé AK, Sylvester K et al. 2014. Local climatic adaptation in a widespread microorganism. Proc. R. Soc. B Biol. Sci. 281:177720132472
    [Google Scholar]
  63. 63. 
    Leducq JB, Henault M, Charron G, Nielly-Thibault L, Terrat Y et al. 2017. Mitochondrial recombination and introgression during speciation by hybridization. Mol. Biol. Evol. 34:81947–59
    [Google Scholar]
  64. 64. 
    Leducq JB, Nielly-Thibault L, Charron G, Eberlein C, Verta JP et al. 2016. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat. Microbiol. 1:115003
    [Google Scholar]
  65. 65. 
    Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY 2008. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135:61065–73
    [Google Scholar]
  66. 66. 
    Leu JY, Murray AW. 2006. Experimental evolution of mating discrimination in budding yeast. Curr. Biol. 16:3280–86
    [Google Scholar]
  67. 67. 
    Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J et al. 2011. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. PNAS 108:3514539–44
    [Google Scholar]
  68. 68. 
    Liti G, Barton DBH, Louis EJ 2006. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. . Genetics 174:2839–50
    [Google Scholar]
  69. 69. 
    Liti G, Carter DM, Moses AM, Warringer J, Parts L et al. 2009. Population genomics of domestic and wild yeasts. Nature 458:7236337–41
    [Google Scholar]
  70. 70. 
    Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G et al. 2007. Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. . FEMS Yeast Res 7:6953–65
    [Google Scholar]
  71. 71. 
    Maclean CJ, Greig D. 2008. Prezygotic reproductive isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus. BMC Evol. . Biol 8:11
    [Google Scholar]
  72. 72. 
    Magwene PM, Kaykç Ö, Granek JA, Reininga JM, Scholl Z, Murray D 2011. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. . PNAS 108:51987–92
    [Google Scholar]
  73. 73. 
    McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR et al. 2004. Fermented beverages of pre- and proto-historic China. PNAS 101:5117593–98
    [Google Scholar]
  74. 74. 
    Meyen FJF. 1839. A Report on the Progress of Vegetable Physiology During the Year 1837 London: Taylor
  75. 75. 
    Miller EL, Greig D. 2015. Spore germination determines yeast inbreeding according to fitness in the local environment. Am. Nat. 185:2291–301
    [Google Scholar]
  76. 76. 
    Millet C, Ausiannikava D, Le Bihan T, Granneman S, Makovets S 2015. Cell populations can use aneuploidy to survive telomerase insufficiency. Nat. Commun. 6:18664
    [Google Scholar]
  77. 77. 
    Murphy HA, Kuehne HA, Francis CA, Sniegowski PD 2006. Mate choice assays and mating propensity differences in natural yeast populations. Biol. Lett. 2:4553–56
    [Google Scholar]
  78. 78. 
    Murphy HA, Zeyl CW. 2012. Prezygotic isolation between Saccharomyces cerevisiae and Saccharomyces paradoxus through differences in mating speed and germination timing. Evolution 66:41196–209
    [Google Scholar]
  79. 79. 
    Murphy HA, Zeyl CW. 2015. A potential case of reinforcement in a facultatively sexual unicellular eukaryote. Am. Nat. 186:2312–19
    [Google Scholar]
  80. 80. 
    Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S et al. 2009. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:2115–29
    [Google Scholar]
  81. 81. 
    Naseeb S, Alsammar H, Burgis T, Donaldson I, Knyazev N et al. 2018. Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei. . G3 8:92967–77
    [Google Scholar]
  82. 82. 
    Naseeb S, James SA, Alsammar H, Michaels CJ, Gini B et al. 2017. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. . Int. J. Syst. Evol. Microbiol 67:62046–52
    [Google Scholar]
  83. 83. 
    Naumov GI. 1996. Genetic identification of biological species in the Saccharomyces sensu stricto complex. J. Ind. Microbiol. 17:3295–302
    [Google Scholar]
  84. 84. 
    Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN 2000. Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. . Int. J. Syst. Evol. Microbiol. 50:51931–42
    [Google Scholar]
  85. 85. 
    Naumov GI, Lee CF, Naumova ES 2013. Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. . Antonie Van Leeuwenhoek 103:1217–28
    [Google Scholar]
  86. 86. 
    Neiman AM. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev 69:4565–84
    [Google Scholar]
  87. 87. 
    Neiman AM. 2011. Sporulation in the budding yeast Saccharomyces cerevisiae. . Genetics 189:3737–65
    [Google Scholar]
  88. 88. 
    Ono J, Gerstein AC, Otto SP 2017. Widespread genetic incompatibilities between first-step mutations during parallel adaptation of Saccharomyces cerevisiae to a common environment. PLOS Biol 15:1e1002591
    [Google Scholar]
  89. 89. 
    Ono J, Greig D. 2020. A Saccharomyces paradox: chromosomes from different species are incompatible because of anti-recombination, not because of differences in number or arrangement. Curr. Genet. 66:3469–74
    [Google Scholar]
  90. 90. 
    Orr HA. 1995. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:41805–13
    [Google Scholar]
  91. 91. 
    Paleo-López R, Quintero-Galvis JF, Solano-Iguaran JJ, Sanchez-Salazar AM, Gaitan-Espitia JD, Nespolo RF 2016. A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts. Ecol. Evol. 6:123851–61
    [Google Scholar]
  92. 92. 
    Parry EM, Cox BS. 1970. The tolerance of aneuploidy in yeast. Genet. Res. 16:3333–40
    [Google Scholar]
  93. 93. 
    Pasteur L. 1876. Études sur la Bière: Ses Maladies, Causes Qui les Provoquent, Procédé pour la Rendre Inaltérable; avec une Théorie Nouvelle de la Fermentation Paris: Gauthier-Villars
  94. 94. 
    Pérez-Ortín JE, Querol A, Puig S, Barrio E 2002. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:101533–39
    [Google Scholar]
  95. 95. 
    Peris D, Sylvester K, Libkind D, Gonçalves P, Sampaio JP et al. 2014. Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 23:82031–45
    [Google Scholar]
  96. 96. 
    Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D et al. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:7701339–44
    [Google Scholar]
  97. 97. 
    Plech M, de Visser JAGM, Korona R 2014. Heterosis is prevalent among domesticated but not wild strains of Saccharomyces cerevisiae. . G3 4:2315–23
    [Google Scholar]
  98. 98. 
    Pulvirenti A, Nguyen HV, Caggia C, Giudici P, Rainieri S, Zambonelli C 2000. Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto. FEMS Microbiol. Lett. 192:2191–96
    [Google Scholar]
  99. 99. 
    Reess M. 1870. Botanische Untersuchungen über die Alkolholgährungspilze Leipzig, Ger: A. Felix
  100. 100. 
    Robinson HA, Pinharanda A, Bensasson D 2016. Summer temperature can predict the distribution of wild yeast populations. Ecol. Evol. 6:41236–50
    [Google Scholar]
  101. 101. 
    Rogers DW, Denton JA, McConnell E, Greig D 2015. Experimental evolution of species recognition. Curr. Biol. 25:131753–58
    [Google Scholar]
  102. 102. 
    Rogers DW, McConnell E, Ono J, Greig D 2018. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast. PLOS Biol 16:11e2005066
    [Google Scholar]
  103. 103. 
    Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L 2006. Population genomic analysis of outcrossing and recombination in yeast. Nat. Genet. 38:91077–81
    [Google Scholar]
  104. 104. 
    Saccardo PA. 1895. Sylloge fungorum omnium hucusque cognitorum Berlin: R. Friedländer & Sohn
  105. 105. 
    Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E 2011. Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl. Environ. Microbiol 77:72292–302
    [Google Scholar]
  106. 106. 
    Sampaio JP, Gonçalves P. 2008. Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl. Environ. Microbiol 74:72144–52
    [Google Scholar]
  107. 107. 
    Schlebusch CM, Malmström H, Günther T, Sjödin P, Coutinho A et al. 2017. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358:6363652–55
    [Google Scholar]
  108. 108. 
    Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:5915737–41
    [Google Scholar]
  109. 109. 
    Schwann T. 1837. Vorläufige Mittheilung, betreffend Versuche über die Weingährung und Fäulniss. Ann. Phys. 117:5184–93
    [Google Scholar]
  110. 110. 
    Shapira R, Levy T, Shaked S, Fridman E, David L 2014. Extensive heterosis in growth of yeast hybrids is explained by a combination of genetic models. Heredity 113:4316–26
    [Google Scholar]
  111. 111. 
    Stelkens RB, Miller EL, Greig D 2016. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus. . FEMS Yeast Res 16:3fow012
    [Google Scholar]
  112. 112. 
    Sweeney JY, Kuehne HA, Sniegowski PD 2004. Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res 4:4–5521–25
    [Google Scholar]
  113. 113. 
    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:121–32
    [Google Scholar]
  114. 114. 
    Tsai IJ, Bensasson D, Burt A, Koufopanou V 2008. Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. PNAS 105:124957–62
    [Google Scholar]
  115. 115. 
    Vaughan Martini A, Martini A 1987. Three newly delimited species of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 53:277–84
    [Google Scholar]
  116. 116. 
    Vaughan-Martini A, Martini A. 1995. Facts, myths and legends on the prime industrial microorganism. J. Ind. Microbiol. 14:6514–22
    [Google Scholar]
  117. 117. 
    Wang QM, Liu WQ, Liti G, Wang SA, Bai FY 2012. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 21:225404–17
    [Google Scholar]
  118. 118. 
    Wang SA, Bai FY. 2008. Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int. J. Syst. Evol. Microbiol. 58:2510–14
    [Google Scholar]
  119. 119. 
    Wolters JF, Charron G, Gaspary A, Landry CR, Fiumera AC, Fiumera HL 2018. Mitochondrial recombination reveals mito–mito epistasis in yeast. Genetics 209:1307–19
    [Google Scholar]
  120. 120. 
    Xia W, Nielly-Thibault L, Charron G, Landry CR, Kasimer D et al. 2017. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Mol. Ecol. 26:4995–1007
    [Google Scholar]
  121. 121. 
    Xie X, Qiu WG, Lipke PN 2011. Accelerated and adaptive evolution of yeast sexual adhesins. Mol. Biol. Evol. 28:113127–37
    [Google Scholar]
  122. 122. 
    Xu M, He X. 2011. Genetic incompatibility dampens hybrid fertility more than hybrid viability: yeast as a case study. PLOS ONE 6:4e18341
    [Google Scholar]
  123. 123. 
    Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A et al. 2012. Chromosomal duplication is a transient evolutionary solution to stress. PNAS 109:5121010–15
    [Google Scholar]
  124. 124. 
    Zhang Z, Bendixsen DP, Janzen T, Nolte AW, Greig D, Stelkens R 2020. Recombining your way out of trouble: the genetic architecture of hybrid fitness under environmental stress. Mol. Biol. Evol. 37:1167–82
    [Google Scholar]
  125. 125. 
    Zhu YO, Sherlock G, Petrov DA 2016. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 6:82421–34
    [Google Scholar]
  126. 126. 
    Zörgö E, Gjuvsland A, Cubillos FA, Louis EJ, Liti G et al. 2012. Life history shapes trait heredity by accumulation of loss-of-function alleles in yeast. Mol. Biol. Evol. 29:71781–89
    [Google Scholar]
/content/journals/10.1146/annurev-micro-021320-014036
Loading
/content/journals/10.1146/annurev-micro-021320-014036
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error