1932

Abstract

Endospore formation in provides an ideal model system for studying development in bacteria. Sporulation studies have contributed a wealth of information about the mechanisms of cell-specific gene expression, chromosome dynamics, protein localization, and membrane remodeling, while helping to dispel the early view that bacteria lack internal organization and interesting cell biological phenomena. In this review, we focus on the architectural transformations that lead to a profound reorganization of the cellular landscape during sporulation, from two cells that lie side by side to the endospore, the unique cell within a cell structure that is a hallmark of sporulation in and other spore-forming . We discuss new insights into the mechanisms that drive morphogenesis, with special emphasis on polar septation, chromosome translocation, and the phagocytosis-like process of engulfment, and also the key experimental advances that have proven valuable in revealing the inner workings of bacterial cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-022520-074650
2020-09-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-022520-074650.html?itemId=/content/journals/10.1146/annurev-micro-022520-074650&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abanes-De Mello A, Sun YL, Aung S, Pogliano K 2002. A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev 16:3253–64
    [Google Scholar]
  2. 2. 
    Abecasis AB, Serrano M, Alves R, Quintais L, Pereira-Leal JB, Henriques AO 2013. A genomic signature and the identification of new sporulation genes. J. Bacteriol. 195:92101–15
    [Google Scholar]
  3. 3. 
    Aung S, Shum J, Abanes-De Mello A, Broder DH, Fredlund-Gutierrez J et al. 2007. Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation. Mol. Microbiol. 65:61534–46
    [Google Scholar]
  4. 4. 
    Barák I, Muchová K. 2018. The positioning of the asymmetric septum during sporulation in Bacillus subtilis. . PLOS ONE 13:8e0201979
    [Google Scholar]
  5. 5. 
    Barák I, Muchová K, Labajová N 2019. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 14:4353–63
    [Google Scholar]
  6. 6. 
    Barák I, Youngman P. 1996. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178:164984–89
    [Google Scholar]
  7. 7. 
    Bath J, Wu LJ, Errington J, Wang JC 2000. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290:5493995–97
    [Google Scholar]
  8. 8. 
    Beall B, Lutkenhaus J. 1991. FtsZ in Bacillus subtilis is required for vegetative and for asymmetric septation during sporulation. Genes Dev 5:447–55
    [Google Scholar]
  9. 9. 
    Beall B, Lutkenhaus J. 1992. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174:72398–403
    [Google Scholar]
  10. 10. 
    Bechtel DB, Bulla LA. 1976. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J. . Bacteriol 127:31472–81
    [Google Scholar]
  11. 11. 
    Becker EC, Pogliano K. 2007. Cell-specific SpoIIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Mol. Microbiol. 66:51066–79
    [Google Scholar]
  12. 12. 
    Beltrán-Heredia E, Tsai FC, Salinas-Almaguer S, Cao FJ, Bassereau P, Monroy F 2019. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2:1225
    [Google Scholar]
  13. 13. 
    Ben-Yehuda S, Losick R. 2002. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109:2257–66
    [Google Scholar]
  14. 14. 
    Ben-Yehuda S, Rudner DZ, Losick R 2003. Assembly of the SpoIIIE DNA translocase depends on chromosome trapping in Bacillus subtilis. Curr. . Biol 13:242196–200
    [Google Scholar]
  15. 15. 
    Ben-Yehuda S, Rudner DZ, Losick R 2003. RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:5606532–36
    [Google Scholar]
  16. 16. 
    Besprozvannaya M, Pivorunas VL, Feldman Z, Burton BM 2013. SpoIIIE protein achieves directional DNA translocation through allosteric regulation of ATPase activity by an accessory domain. J. Biol. Chem. 288:4028962–74
    [Google Scholar]
  17. 17. 
    Bisson-Filho AW, Discola KF, Castellen P, Blasios V, Martins A et al. 2015. FtsZ filament capping by MciZ, a developmental regulator of bacterial division. PNAS 112:17E2130–38
    [Google Scholar]
  18. 18. 
    Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F et al. 2017. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:6326739–43
    [Google Scholar]
  19. 19. 
    Blaylock B, Jiang X, Rubio A, Moran CP, Pogliano K 2004. Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev 18:232916–28
    [Google Scholar]
  20. 20. 
    Broder DH, Pogliano K. 2006. Forespore engulfment mediated by a ratchet-like mechanism. Cell 126:5917–28
    [Google Scholar]
  21. 21. 
    Burton BM, Marquis KA, Sullivan NL, Rapoport TA, Rudner DZ 2007. The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. . Cell 131:71301–12
    [Google Scholar]
  22. 22. 
    Bylund JE, Haines MA, Piggot PJ, Higgins ML 1993. Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase. J. Bacteriol. 175:71886–90
    [Google Scholar]
  23. 23. 
    Camp AH, Losick R. 2008. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 69:2402–17
    [Google Scholar]
  24. 24. 
    Camp AH, Losick R. 2009. A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. . Genes Dev 23:81014–24
    [Google Scholar]
  25. 25. 
    Cattoni DI, Chara O, Godefroy C, Margeat E, Trigueros S et al. 2013. SpoIIIE mechanism of directional translocation involves target search coupled to sequence-dependent motor stimulation. EMBO Rep 14:5473–79
    [Google Scholar]
  26. 26. 
    Cattoni DI, Thakur S, Godefroy C, Le Gall A, Lai-Kee-Him J et al. 2014. Structure and DNA-binding properties of the Bacillus subtilis SpoIIIE DNA translocase revealed by single-molecule and electron microscopies. Nucleic Acids Res 42:42624–36
    [Google Scholar]
  27. 27. 
    Chastanet A, Losick R. 2007. Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol. Microbiol. 64:1139–52
    [Google Scholar]
  28. 28. 
    Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:57651283–88
    [Google Scholar]
  29. 29. 
    Clarke S, Lopez-Diaz I, Mandelstam J 1986. Use of lacZ gene fusions to determine the dependence pattern of the sporulation gene spoIID in spo mutants of Bacillus subtilis. J. Gen. Microbiol 132:112987–94
    [Google Scholar]
  30. 30. 
    Cohn F. 1876. Untersuchungen uber Bakterien IV. Beitrage zur Biologie der Bacillen. Beitrage Biol. Pflanz. 2:249–76
    [Google Scholar]
  31. 31. 
    Coote JG. 1972. Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. J. Gen. Microbiol. 71:11–15
    [Google Scholar]
  32. 32. 
    Crawshaw AD, Serrano M, Stanley WA, Henriques AO, Salgado PS 2014. A mother cell-to-forespore channel: current understanding and future challenges. FEMS Microbiol. Lett. 358:2129–36
    [Google Scholar]
  33. 33. 
    Daniel RA, Drake S, Buchanan CE, Scholle R, Errington J 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235:209–20
    [Google Scholar]
  34. 34. 
    Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J 1998. Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29:2593–604
    [Google Scholar]
  35. 35. 
    Decker S, Maier S. 1975. Fine structure of mesosomal involvement during Bacillus macerans sporulation. J. Bacteriol. 121:1363–72
    [Google Scholar]
  36. 36. 
    Demarre G, Galli E, Barre FX 2013. The FtsK family of DNA pumps. Adv. Exp. Med. Biol. 767:245–62
    [Google Scholar]
  37. 37. 
    Dembek M, Kelly A, Barwinska-Sendra A, Tarrant E, Stanley WA et al. 2018. Peptidoglycan degradation machinery in Clostridium difficile forespore engulfment. Mol. Microbiol. 110:3390–410
    [Google Scholar]
  38. 38. 
    Doan T, Coleman J, Marquis KA, Meeske AJ, Burton BM et al. 2013. FisB mediates membrane fission during sporulation in Bacillus subtilis. . Genes Dev 27:3322–34
    [Google Scholar]
  39. 39. 
    Doan T, Marquis KA, Rudner DZ 2005. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol. Microbiol. 55:61767–81
    [Google Scholar]
  40. 40. 
    Doan T, Morlot C, Meisner J, Serrano M, Henriques AO et al. 2009. Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. . PLOS Genet 5:7e1000566
    [Google Scholar]
  41. 41. 
    Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Söldner R, Carballido-López R 2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:6039225–28
    [Google Scholar]
  42. 42. 
    Driks A, Eichenberger P. 2016. The spore coat. Microbiol. Spectr 4:3TBS-0023-2016
    [Google Scholar]
  43. 43. 
    Dworkin J, Losick R. 2005. Developmental commitment in a bacterium. Cell 121:3401–9
    [Google Scholar]
  44. 44. 
    Ebersold HR, Cordier JL, Lüthy P 1981. Bacterial mesosomes: method dependent artifacts. Arch. Microbiol. 130:119–22
    [Google Scholar]
  45. 45. 
    Eichenberger P. 2012. Genomics and cellular biology of endospore formation. Bacillus: Cellular and Molecular Biology PL Graumann 319–50 Norfolk, UK: Caister Acad. , 2nd ed..
    [Google Scholar]
  46. 46. 
    Eichenberger P, Fawcett P, Losick R 2001. A three-protein inhibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol 42:51147–62
    [Google Scholar]
  47. 47. 
    Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ et al. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. . PLOS Biol 2:10e328
    [Google Scholar]
  48. 48. 
    Ellar DJ, Lundgren DG. 1966. Fine structure of sporulation in Bacillus cereus grown in a chemically defined medium. J. Bacteriol. 92:61748–64
    [Google Scholar]
  49. 49. 
    Emami K, Guyet A, Kawai Y, Devi J, Wu LJ et al. 2017. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2:316253
    [Google Scholar]
  50. 50. 
    Errington J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol 1:2117–26
    [Google Scholar]
  51. 51. 
    Errington J. 2015. Bacterial morphogenesis and the enigmatic MreB helix. Nat. Rev. Microbiol. 13:4241–48
    [Google Scholar]
  52. 52. 
    Errington J, Wu LJ. 2017. Cell cycle machinery in Bacillus subtili. s. In Prokaryotic Cytoskeletons: Filamentous Protein Polymers Active in the Cytoplasm of Bacterial and Archaeal Cells J Löwe, LA Amos 67–101 Cham, Switz: Springer Int.
    [Google Scholar]
  53. 53. 
    Eswaramoorthy P, Winter PW, Wawrzusin P, York AG, Shroff H, Ramamurthi KS 2014. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLOS Genet 10:8e1004526
    [Google Scholar]
  54. 54. 
    Feucht A, Magnin T, Yudkin MD, Errington J 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. . Genes Dev 10:7794–803
    [Google Scholar]
  55. 55. 
    Fiche J-B, Cattoni DI, Diekmann N, Langerak JM, Clerte C et al. 2013. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy. PLOS Biol 11:5e1001557
    [Google Scholar]
  56. 56. 
    Fitz-James PC. 1960. Participation of the cytoplasmic membrane in the growth and spore formation of bacilli. J. Biophys. Biochem. Cytol. 8:2507–28
    [Google Scholar]
  57. 57. 
    Fitz-James PC. 1962. Morphology of spore development in Clostridium pectinovorum. J. . Bacteriol 84:104–14
    [Google Scholar]
  58. 58. 
    Fleming TC, Shin JY, Lee SH, Becker E, Huang KC et al. 2010. Dynamic SpoIIIE assembly mediates septal membrane fission during Bacillus subtilis sporulation. Genes Dev 24:1160–72
    [Google Scholar]
  59. 59. 
    Francesconi SC, Macalister TJ, Setlow B, Setlow P 1988. Immunoelectron microscopy localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. . Bacteriol 170:125963–67
    [Google Scholar]
  60. 60. 
    Frandsen N, Stragier P. 1995. Identification and characterization of the Bacillus subtilis spoIIP locus. J. Bacteriol. 177:3716–22
    [Google Scholar]
  61. 61. 
    Fredlund J, Broder D, Fleming T, Claussin C, Pogliano K 2013. The SpoIIQ landmark protein has different requirements for septal localization and immobilization. Mol. Microbiol. 89:61053–68
    [Google Scholar]
  62. 62. 
    Fujita M, González-Pastor JE, Losick R 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol 187:41357–68
    [Google Scholar]
  63. 63. 
    Galperin MY. 2013. Genome diversity of spore-forming Firmicutes. Microbiol. . Spectr 1:2TBS–0015-2012
    [Google Scholar]
  64. 64. 
    Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ 2012. Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ. Microbiol. 14:112870–90
    [Google Scholar]
  65. 65. 
    Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T 2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. . Science 333:222–25
    [Google Scholar]
  66. 66. 
    Gholamhoseinian A, Shen Z, Wu JJ, Piggot P 1992. Regulation of transcription of the cell division gene ftsA during sporulation of Bacillus subtilis. J. . Bacteriol 174:144647–56
    [Google Scholar]
  67. 67. 
    Gonzy-Tréboul G, Karmazyn-Campelli C, Stragier P 1992. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. J. Mol. Biol. 224:4967–79
    [Google Scholar]
  68. 68. 
    Guillot C, Moran CP. 2007. Essential internal promoter in the spoIIIA locus of Bacillus subtilis. J. Bacteriol 189:207181–89
    [Google Scholar]
  69. 69. 
    Gutierrez J, Smith R, Pogliano K 2010. SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation. J. Bacteriol. 192:123174–86
    [Google Scholar]
  70. 70. 
    Handler AA, Lim JE, Losick R 2008. Peptide inhibitor of cytokinesis during sporulation in Bacillus subtilis. Mol. . Microbiol 68:3588–99
    [Google Scholar]
  71. 71. 
    Hansen PL, Podgornik R, Parsegian VA 2001. Osmotic properties of DNA: critical evaluation of counterion condensation theory. Phys. Rev. E 64:021907
    [Google Scholar]
  72. 72. 
    Henriques AO, de Lencastre H, Piggot PJ 1992. A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. . Biochimie 74:7–8735–48
    [Google Scholar]
  73. 73. 
    Higgins D, Dworkin J. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36:1131–48
    [Google Scholar]
  74. 74. 
    Hilbert DW, Piggot PJ. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68:2234–62
    [Google Scholar]
  75. 75. 
    Hoch JA. 2017. A life in Bacillus subtilis signal transduction. Annu. Rev. Microbiol. 71:1–19
    [Google Scholar]
  76. 76. 
    Holt JH, Krieg NR, Sneath PHA, Staley JT, Williams ST 1994. Bergey's Manual of Determinative Bacteriology Philadelphia: Lippincott Williams Wilkins. , 9th ed..
  77. 77. 
    Hutchison EA, Miller DA, Angert ER 2014. Sporulation in bacteria: beyond the standard model. Microbiol. Spectr. 2:5 https://doi.org/10.1128/microbiolspec.TBS-0013-2012
    [Crossref] [Google Scholar]
  78. 78. 
    Illing N, Errington J. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σE and σF in prespore engulfment. J. Bacteriol. 173:103159–69
    [Google Scholar]
  79. 79. 
    Illing N, Errington J. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother‐cell‐specific sporulation genes under the control of the σE form of RNA polymerase. Mol. Microbiol. 5:81927–40
    [Google Scholar]
  80. 80. 
    Jiang X, Rubio A, Chiba S, Pogliano K 2005. Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control σK activity. Mol. Microbiol. 58:1102–15
    [Google Scholar]
  81. 81. 
    Karslake J, Maltas J, Brumm P, Wood KB 2016. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLOS Comput. Biol. 12:10e1005098
    [Google Scholar]
  82. 82. 
    Kawai F, Hara H, Takamatsu H, Watabe K, Matsumoto K 2006. Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet. Syst. 81:269–76
    [Google Scholar]
  83. 83. 
    Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K 2004. Cardiolipin domains in Bacillus subtilis Marburg membranes. J. Bacteriol. 186:51475–83
    [Google Scholar]
  84. 84. 
    Kay D, Warren SC. 1968. Sporulation in Bacillus subtilis: morphological changes. Biochem. J. 109:5819–24
    [Google Scholar]
  85. 85. 
    Kellner EM, Decatur A, Moran CP 1996. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol 21:5913–24
    [Google Scholar]
  86. 85a. 
    Khanna K, Lopez-Garrido J, Sugie J, Pogliano K, Villa E 2020. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. bioRxiv 2020.07.22.216184
    [Google Scholar]
  87. 86. 
    Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y et al. 2019. The molecular architecture of engulfment during Bacillus subtilis sporulation. eLife 8:e45257
    [Google Scholar]
  88. 87. 
    Khvorova A, Zhang L, Higgins ML, Piggot PJ 1998. The spoIIE locus is involved in the Spo0A-dependent switch in the location of FtsZ rings in Bacillus subtilis. J. . Bacteriol 180:51256–60
    [Google Scholar]
  89. 88. 
    Klieneberger-Nobel E. 1945. Changes in the nuclear structure of bacteria, particularly during spore formation. J. Hyg. 44:299–108
    [Google Scholar]
  90. 89. 
    Koch R. 1876. Untersuchungen über Bacterien. V. Die Aetiologie der Milzbrand-Krankheit, begründent auf die Entwicklungsgeschichte des Bacillus anthracis. Beitrage Biol. . Pflanz 2:277–310
    [Google Scholar]
  91. 90. 
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S et al. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. Engl. 51:5012519–23
    [Google Scholar]
  92. 91. 
    Lee TK, Huang KC. 2013. The role of hydrolases in bacterial cell-wall growth. Curr. Opin. Microbiol. 16:6760–66
    [Google Scholar]
  93. 92. 
    Levin PA, Losick R. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176:51451–59
    [Google Scholar]
  94. 93. 
    Levin P, Losick R. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. . Genes Dev 10:4478–88
    [Google Scholar]
  95. 94. 
    Lewis PJ, Partridge SR, Errington J 1994. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis. . PNAS 91:93849–53
    [Google Scholar]
  96. 95. 
    Liu N, Chistol G, Bustamante C 2015. Two-subunit DNA escort mechanism and inactive subunit bypass in an ultra-fast ring ATPase. eLife 4:e09224
    [Google Scholar]
  97. 96. 
    Liu N-JL, Dutton RJ, Pogliano K 2006. Evidence that the SpoIIIE DNA translocase participates in membrane fusion during cytokinesis and engulfment. Mol. Microbiol. 59:41097–113
    [Google Scholar]
  98. 97. 
    Londoño-Vallejo JA, Fréhel C, Stragier P 1997. SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. . Microbiol 24:129–39
    [Google Scholar]
  99. 98. 
    Lopez-Diaz I, Clarke S, Mandelstam J 1986. spoIID operon of Bacillus subtilis: cloning and sequence. J. Gen. Microbiol. 132:2341–54
    [Google Scholar]
  100. 99. 
    Lopez-Garrido J, Ojkic N, Khanna K, Wagner F, Villa E et al. 2018. Chromosome translocation inflates Bacillus forespores and impacts cellular morphology. Cell 172:758–70
    [Google Scholar]
  101. 100. 
    Margolis PS, Driks A, Losick R 1993. Sporulation gene spoIIB from Bacillus subtilis. J. . Bacteriol 175:2528–40
    [Google Scholar]
  102. 101. 
    Massey TH, Mercogliano CP, Yates J, Sherratt DJ, Löwe J 2006. Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. Mol. Cell 23:4457–69
    [Google Scholar]
  103. 102. 
    McKenney PT, Driks A, Eichenberger P 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11:133–44
    [Google Scholar]
  104. 103. 
    McPherson DC, Driks A, Popham DL 2001. Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J. Bacteriol. 183:206046–53
    [Google Scholar]
  105. 104. 
    Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ et al. 2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:7622634–38
    [Google Scholar]
  106. 105. 
    Meisner J, Maehigashi T, Andre I, Dunham CM, Moran CP 2012. Structure of the basal components of a bacterial transporter. PNAS 109:145446–51
    [Google Scholar]
  107. 106. 
    Meisner J, Wang X, Serrano M, Henriques AO, Moran CP 2008. A channel connecting the mother cell and forespore during bacterial endospore formation. PNAS 105:3915100–5
    [Google Scholar]
  108. 107. 
    Meyer P, Gutierrez J, Pogliano K, Dworkin J 2010. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol. . Microbiol 76:4956–70
    [Google Scholar]
  109. 108. 
    Mileykovskaya E, Dowhan W. 2009. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim. Biophys. Acta Biomembr. 1788:102084–91
    [Google Scholar]
  110. 109. 
    Mirouze N, Dubnau D. 2013. Chance and necessity in Bacillus subtilis development. Microbiol. Spectr. 1:1 https://doi.org/10.1128/microbiolspectrum.TBS-0004-2012
    [Crossref] [Google Scholar]
  111. 110. 
    Moir A. 2006. How do spores germinate. J. Appl. Microbiol. 101:3526–30
    [Google Scholar]
  112. 111. 
    Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE et al. 2003. The Spo0A regulon of Bacillus subtilis. Mol. . Microbiol 50:51683–701
    [Google Scholar]
  113. 112. 
    Morlot C, Rodrigues CDA. 2018. The new kid on the block: a specialized secretion system during bacterial sporulation. Trends Microbiol 26:8663–76
    [Google Scholar]
  114. 113. 
    Morlot C, Uehara T, Marquis KA, Bernhardt TG, Rudner DZ 2010. A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. . Genes Dev 24:4411–22
    [Google Scholar]
  115. 114. 
    Nocadello S, Minasov G, Shuvalova LS, Dubrovska I, Sabini E, Anderson WF 2016. Crystal structures of the SpoIID lytic transglycosylases essential for bacterial sporulation. J. Biol. Chem. 291:2914915–26
    [Google Scholar]
  116. 115. 
    Ojkic N, López-Garrido J, Pogliano K, Endres RG 2014. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLOS Comput. Biol. 10:10e1003912
    [Google Scholar]
  117. 116. 
    Ojkic N, López-Garrido J, Pogliano K, Endres RG 2016. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 5:e18657
    [Google Scholar]
  118. 117. 
    Parker GF, Daniel RA, Errington J 1996. Timing and genetic regulation of commitment to sporulation in Bacillus subtilis. . Microbiology 142:123445–52
    [Google Scholar]
  119. 118. 
    Perez AR, Abanes-De Mello A, Pogliano K 2000. SpoIIB localizes to active sites of septal biogenesis and spatially regulates septal thinning during engulfment in Bacillus subtilis. J. . Bacteriol 182:41096–108
    [Google Scholar]
  120. 119. 
    Piggot PJ, Coote JG, Hill M, Estate G, Mapping G 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:4908–62
    [Google Scholar]
  121. 120. 
    Pogliano J, Osborne N, Sharp MD, Abanes-De Mello A, Perez A et al. 1999. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31:41149–59
    [Google Scholar]
  122. 121. 
    Pogliano K, Harry E, Losick R 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18:3459–70
    [Google Scholar]
  123. 122. 
    Pogliano K, Hofmeister AEM, Losick R 1997. Disappearance of the σE transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J. . Bacteriol 179:103331–41
    [Google Scholar]
  124. 123. 
    Popham DL, Bernhards CB. 2015. Spore peptidoglycan. Microbiol. Spectr. 3:6 TBS-0005-2012
    [Google Scholar]
  125. 124. 
    Ptacin JL, Nollmann M, Becker EC, Cozzarelli NR, Pogliano K, Bustamante C 2008. Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nat. Struct. Mol. Biol 15:5485–93
    [Google Scholar]
  126. 125. 
    Ramos-Silva P, Serrano M, Henriques AO 2019. From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile.. Mol. Biol. Evol 36:122714–36
    [Google Scholar]
  127. 126. 
    Raspaud E, da Conceiçao M, Livolant F 2000. Do free DNA counterions control the osmotic pressure. Phys. Rev. Lett. 84:112533–36
    [Google Scholar]
  128. 127. 
    Ribis JW, Fimlaid KA, Shen A 2018. Differential requirements for conserved peptidoglycan remodeling enzymes during Clostridioides difficile spore formation. Mol. Microbiol. 110:3370–89
    [Google Scholar]
  129. 128. 
    Riley EP, Trinquier A, Reilly ML, Durchon M, Perera VR et al. 2018. Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of σH and σA. Mol. Microbiol. 108:145–62
    [Google Scholar]
  130. 129. 
    Rodrigues CDA, Henry X, Neumann E, Kurauskas V, Bellard L et al. 2016. A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis. . PNAS 113:41201609604
    [Google Scholar]
  131. 130. 
    Rodrigues CDA, Marquis KA, Meisner J, Rudner DZ 2013. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis. Mol. Microbiol 89:61039–52
    [Google Scholar]
  132. 131. 
    Rodrigues CDA, Ramírez-Guadiana FH, Meeske AJ, Wang X, Rudner DZ 2016. GerM is required to assemble the basal platform of the SpoIIIA-SpoIIQ transenvelope complex during sporulation in Bacillus subtilis. Mol. Microbiol 102:2260–73
    [Google Scholar]
  133. 132. 
    Rong S, Rosenkrantz MS, Sonenshein AL 1986. Transcriptional control of the Bacillus subtilis spoIID gene. J. Bacteriol. 165:3771–79
    [Google Scholar]
  134. 133. 
    Rubio A, Pogliano K. 2004. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. . EMBO J 23:71636–46
    [Google Scholar]
  135. 134. 
    Ryter A. 1965. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur 108:40–60
    [Google Scholar]
  136. 135. 
    Ryter A. 1969. Structure and functions of mesosomes of Gram positive bacteria. Curr. Top. Microbiol. Immunol. 49:151–77
    [Google Scholar]
  137. 136. 
    Ryter A, Schaeffer P, Ionesco H 1966. Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Ann. Inst. Pasteur 110:3305–15
    [Google Scholar]
  138. 137. 
    Sassine J, Xu M, Sidiq KR, Emmins R, Errington J, Daniel RA 2017. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis.. Mol. Microbiol 106:2304–18
    [Google Scholar]
  139. 138. 
    Scalettar BA, Swedlow JR, Sedat JW, Agard DA 1996. Dispersion, aberration and deconvolution in multi-wavelength fluorescence images. J. Microsc. 182:150–60
    [Google Scholar]
  140. 139. 
    Schaeffer P, Millet J, Aubert JP 1965. Catabolic repression of bacterial sporulation. PNAS 54:3704–11
    [Google Scholar]
  141. 140. 
    Scheffers D-J. 2005. Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. . Microbiology 151:Part 3999–1012
    [Google Scholar]
  142. 141. 
    Scheffers D-J, Errington J. 2004. PBP1 is a component of the Bacillus subtilis cell division machinery. J. Bacteriol. 186:155153–56
    [Google Scholar]
  143. 142. 
    Scheffers D-J, Jones LJF, Errington J 2004. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol. Microbiol 51:3749–64
    [Google Scholar]
  144. 143. 
    Setlow B, Magill N, Febbroriello P, Nakhimovsky L, Koppel DE, Setlow P 1991. Condensation of the forespore nucleoid early in sporulation of Bacillus species. J. Bacteriol. 173:196270–78
    [Google Scholar]
  145. 144. 
    Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol 15:4172–80
    [Google Scholar]
  146. 145. 
    Setlow P. 2013. Summer meeting 2013—when the sleepers wake: the germination of spores of Bacillus species. J. Appl. Microbiol. 115:61251–68
    [Google Scholar]
  147. 146. 
    Setlow P. 2014. Germination of spores of Bacillus species: what we know and do not know. J. Bacteriol. 196:71297–305
    [Google Scholar]
  148. 147. 
    Setlow P. 2014. Spore resistance properties. Microb. Spectr. 2:5TBS–00032012
    [Google Scholar]
  149. 148. 
    Setlow P, Wang S, Li Y-Q 2017. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol 71:459–77
    [Google Scholar]
  150. 149. 
    Sharp MD, Pogliano K. 1999. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. PNAS 96:2514553–58
    [Google Scholar]
  151. 150. 
    Sharp MD, Pogliano K. 2002. Role of cell-specific SpoIIIE assembly in polarity of DNA transfer. Science 295:5552137–39
    [Google Scholar]
  152. 151. 
    Sharp MD, Pogliano K. 2003. The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J. Bacteriol. 185:62005–8
    [Google Scholar]
  153. 152. 
    Smith K, Bayer ME, Youngman P 1993. Physical and functional characterization of the Bacillus subtilis spoIIM gene. J. Bacteriol. 175:113607–17
    [Google Scholar]
  154. 153. 
    Smith K, Youngman P. 1993. Evidence that the spoIIM gene of Bacillus subtilis is transcribed by RNA polymerase associated with σE. J. Bacteriol. 175:113618–27
    [Google Scholar]
  155. 154. 
    Sterlini JM, Mandelstam J. 1969. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem. J. 113:129–37
    [Google Scholar]
  156. 155. 
    Stragier P, Losick R. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. . Genet 30:297–341
    [Google Scholar]
  157. 156. 
    Sun Y, Sharp MD, Pogliano K 2000. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J. . Bacteriol 182:102919–27
    [Google Scholar]
  158. 157. 
    Sussman MD, Setlow P. 1991. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. J. Bacteriol. 173:1291–300
    [Google Scholar]
  159. 158. 
    Tan IS, Ramamurthi KS. 2014. Spore formation in Bacillus subtilis. Environ. Microbiol. . Rep 6:3212–25
    [Google Scholar]
  160. 159. 
    Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S 2006. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. PNAS 103:2911033–38
    [Google Scholar]
  161. 160. 
    Tocheva EI, López-Garrido J, Hughes HV, Fredlund J, Kuru E et al. 2013. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88:4673–86
    [Google Scholar]
  162. 161. 
    Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR 2009. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother. 63:4745–57
    [Google Scholar]
  163. 162. 
    van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108:3815822–27
    [Google Scholar]
  164. 163. 
    Vasudevan P, Weaver A, Reichert ED, Linnstaedt SD, Popham DL 2007. Spore cortex formation in Bacillus subtilis is regulated by accumulation of peptidoglycan precursors under the control of sigma K. Mol. Microbiol. 65:61582–94
    [Google Scholar]
  165. 164. 
    Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, Hamoen LW 2008. Bet-hedging and epigenetic inheritance in bacterial cell development. PNAS 105:114393–98
    [Google Scholar]
  166. 165. 
    Wagner-Herman JK, Bernard R, Dunne R, Bisson-Filho AW, Kumar K et al. 2012. RefZ facilitates the switch from medial to polar division during spore formation in Bacillus subtilis. J. . Bacteriol 194:174608–18
    [Google Scholar]
  167. 166. 
    Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D et al. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. . Biol 358:116–37
    [Google Scholar]
  168. 167. 
    Wang X, Montero Llopis P, Rudner DZ 2014. Bacillus subtilis chromosome organization oscillates between two distinct patterns. PNAS 111:3512877–82
    [Google Scholar]
  169. 168. 
    Webb CD, Decatur A, Teleman A, Losick R 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization in Bacillus subtilis. J. . Bacteriol 177:205906–11
    [Google Scholar]
  170. 169. 
    Webb CD, Teleman A, Gordon S, Straight A, Belmont A et al. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. . Cell 88:5667–74
    [Google Scholar]
  171. 170. 
    Wei Y, Havasy T, McPherson DC, Popham DL 2003. Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J. . Bacteriol 185:164717–26
    [Google Scholar]
  172. 171. 
    Wu LJ, Errington J. 1994. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:5158572–75
    [Google Scholar]
  173. 172. 
    Wu LJ, Errington J. 1997. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. . EMBO J 16:82161–69
    [Google Scholar]
  174. 173. 
    Wu LJ, Errington J. 1998. Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis. Mol. . Microbiol 27:4777–86
    [Google Scholar]
  175. 174. 
    Wu LJ, Errington J. 2003. RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol. . Microbiol 49:61463–75
    [Google Scholar]
  176. 175. 
    Wu LJ, Lewis PJ, Allmansberger R, Hauser PM, Errington J 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. . Genes Dev 9:111316–26
    [Google Scholar]
  177. 176. 
    Yen Shin J, Lopez-Garrido J, Lee S-HH, Diaz-Celis C, Fleming T et al. 2015. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. eLife 4:e06474
    [Google Scholar]
  178. 177. 
    York K, Kenney TJ, Satola S, Moran CP, Poth H, Youngman P 1992. Spo0A controls the σA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. . Bacteriol 174:82648–58
    [Google Scholar]
  179. 178. 
    Young E, Fitz-James P. 1959. Chemical and morphological studies of bacterial spore formation: I. The formation of spores in Bacillus cereus. J. Biophys. Biochem. . Cytol 6:3467–82
    [Google Scholar]
  180. 179. 
    Young E, Fitz-James P. 1959. Chemical and morphological studies of bacterial spore formation: II. Spore and parasporal protein formation in Bacillus cereus var. Alesti. J. Biophys. Biochem. Cytol. 6:3483–98
    [Google Scholar]
  181. 180. 
    Zeytuni N, Flanagan KA, Worrall LJ, Massoni SC, Camp AH, Strynadka NCJ 2018. Structural and biochemical characterization of SpoIIIAF, a component of a sporulation-essential channel in Bacillus subtilis. J. Struct. Biol 204:11–8
    [Google Scholar]
  182. 181. 
    Zeytuni N, Flanagan KA, Worrall LJ, Massoni SC, Camp AH, Strynadka NCJ 2018. Structural characterization of SpoIIIAB sporulation-essential protein in Bacillus subtilis. . J. Struct. Biol 202:2105–12
    [Google Scholar]
  183. 182. 
    Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA et al. 2017. Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. . PNAS 114:34E7073–81
    [Google Scholar]
  184. 183. 
    Zeytuni N, Strynadka NCJ. 2019. A hybrid secretion system facilitates bacterial sporulation: a structural perspective. Microbiol. Spectr. 7:1 https://doi.org/10.1128/microbiolspec.PSIB-0013-2018
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-022520-074650
Loading
/content/journals/10.1146/annurev-micro-022520-074650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error