1932

Abstract

is the most widespread human malaria parasite, in part because it can form latent liver stages known as hypnozoites after transmission by female anopheline mosquitoes to human hosts. These persistent stages can activate weeks, months, or even years after the primary clinical infection; replicate; and initiate relapses of blood stage infection, which causes disease and recurring transmission. Eliminating hypnozoites is a substantial obstacle for malaria treatment and eradication since the hypnozoite reservoir is undetectable and unaffected by most antimalarial drugs. Importantly, in some parts of the globe where malaria is endemic, as many as 90% of blood stage infections are thought to be relapses rather than primary infections, rendering the hypnozoite a major driver of epidemiology. Here, we review the biology of the hypnozoite and recent discoveries concerning this enigmatic parasite stage. We discuss treatment and prevention challenges, novel animal models to study hypnozoites and relapse, and hypotheses related to hypnozoite formation and activation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-032421-061155
2021-10-08
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-032421-061155.html?itemId=/content/journals/10.1146/annurev-micro-032421-061155&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adekunle AI, Pinkevych M, McGready R, Luxemburger C, White LJ et al. 2015. Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo. PLOS Negl. Trop. Dis. 9:e0003595
    [Google Scholar]
  2. 2. 
    Aizarani N, Saviano A, Sagar, Mailly L, Durand S et al. 2019. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204
    [Google Scholar]
  3. 3. 
    Akinyi S, Hanssen E, Meyer EV, Jiang J, Korir CC et al. 2012. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola-vesicle complexes (Schuffner's dots) of infected erythrocytes is a member of the PHIST family. Mol. Microbiol. 84:816–31
    [Google Scholar]
  4. 4. 
    Arevalo-Herrera M, Vasquez-Jimenez JM, Lopez-Perez M, Vallejo AF, Amado-Garavito AB et al. 2016. Protective efficacy of Plasmodium vivax radiation-attenuated sporozoites in Colombian volunteers: a randomized controlled trial. PLOS Negl. Trop. Dis. 10:e0005070
    [Google Scholar]
  5. 5. 
    Arisue N, Hashimoto T, Kawai S, Honma H, Kume K, Horii T. 2019. Apicoplast phylogeny reveals the position of Plasmodium vivax basal to the Asian primate malaria parasite clade. Sci. Rep. 9:7274
    [Google Scholar]
  6. 6. 
    Arnot DE, Barnwell JW, Tam JP, Nussenzweig V, Nussenzweig RS, Enea V. 1985. Circumsporozoite protein of Plasmodium vivax: gene cloning and characterization of the immunodominant epitope. Science 230:815–18
    [Google Scholar]
  7. 7. 
    Ashley EA, Recht J, White NJ. 2014. Primaquine: the risks and the benefits. Malar. J. 13:418
    [Google Scholar]
  8. 8. 
    Atcheson E, Bauza K, Salman AM, Alves E, Blight J et al. 2018. Tailoring a Plasmodium vivax vaccine to enhance efficacy through a combination of a CSP virus-like particle and TRAP viral vectors. Infect. Immun. 86:e00114-18
    [Google Scholar]
  9. 9. 
    Austin LS, Kaushansky A, Kappe SH. 2014. Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy. Cell Microbiol 16:784–95
    [Google Scholar]
  10. 10. 
    Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE et al. 2014. Geographical variation in Plasmodium vivax relapse. Malar. J. 13:144
    [Google Scholar]
  11. 11. 
    Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC et al. 2013. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N. Engl. J. Med. 369:1381–82
    [Google Scholar]
  12. 12. 
    Bennett JW, Yadava A, Tosh D, Sattabongkot J, Komisar J et al. 2016. Phase 1/2a trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLOS Negl. Trop. Dis. 10:e0004423
    [Google Scholar]
  13. 13. 
    Bertschi NL, Voorberg-van der Wel A, Zeeman AM, Schuierer S, Nigsch F et al. 2018. Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite Plasmodium cynomolgi during progression into dormancy. eLife 7:e41081
    [Google Scholar]
  14. 14. 
    Billingsley PF, Snook LS, Johnston VJ. 2005. Malaria parasite growth is stimulated by mosquito probing. Biol. Lett. 1:185–89
    [Google Scholar]
  15. 15. 
    Boyd MF, Stratman-Thomas WK. 1932. Studies on benign tertian malaria: 4. On the refractoriness of Negroes to inoculation with Plasmodium vivax. Am. J. Epidemiol. 18:485–89
    [Google Scholar]
  16. 16. 
    Bray RS, Garnham PC. 1982. The life-cycle of primate malaria parasites. Br. Med. Bull. 38:117–22
    [Google Scholar]
  17. 17. 
    Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S et al. 2019. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun. 10:3226
    [Google Scholar]
  18. 18. 
    Chattopadhyay R, Velmurugan S, Chakiath C, Andrews Donkor L, Milhous W et al. 2010. Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLOS ONE 5:e14275
    [Google Scholar]
  19. 19. 
    Chua ACY, Ananthanarayanan A, Ong JJY, Wong JY, Yip A et al. 2019. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 216:119221
    [Google Scholar]
  20. 20. 
    Chua ACY, Ong JJY, Malleret B, Suwanarusk R, Kosaisavee V et al. 2019. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat. Commun. 10:3635
    [Google Scholar]
  21. 21. 
    Coatney GR. 1971. The simian malarias: zoonoses, anthroponoses, or both?. Am. J. Trop. Med. Hyg. 20:795–803
    [Google Scholar]
  22. 22. 
    Coatney GR, Alving AS, Jones R Jr., Hankey DD, Robinson DH et al. 1953. Korean vivax malaria. V. Cure of the infection by primaquine administered during long-term latency. Am. J. Trop. Med. Hyg. 2:985–88
    [Google Scholar]
  23. 23. 
    Coatney GR, Cooper WC, Young MD. 1950. Studies in human malaria. XXX. A summary of 204 sporozoite-induced infections with the Chesson strain of Plasmodium vivax. J. Natl. Malar. Soc. 9:381–96
    [Google Scholar]
  24. 24. 
    Cubi R, Vembar SS, Biton A, Franetich JF, Bordessoulles M et al. 2017. Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cell Microbiol 19:8e12735
    [Google Scholar]
  25. 25. 
    De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. 2016. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar. J. 15:232
    [Google Scholar]
  26. 26. 
    Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM et al. 2014. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med. 20:307–12
    [Google Scholar]
  27. 27. 
    Dembele L, Gego A, Zeeman AM, Franetich JF, Silvie O et al. 2011. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLOS ONE 6:e18162
    [Google Scholar]
  28. 28. 
    Deye GA, Gettayacamin M, Hansukjariya P, Im-erbsin R, Sattabongkot J et al. 2012. Use of a rhesus Plasmodium cynomolgi model to screen for anti-hypnozoite activity of pharmaceutical substances. Am. J. Trop. Med. Hyg. 86:931–35
    [Google Scholar]
  29. 29. 
    Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M et al. 2011. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of anti-malarial kinetics. Clin. Infect. Dis. 52:612–20
    [Google Scholar]
  30. 30. 
    Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M et al. 2020. Targeting the extrinsic pathway of hepatocyte apoptosis promotes clearance of Plasmodium liver infection. Cell Rep 30:4343–54.e4
    [Google Scholar]
  31. 31. 
    Eickel N, Kaiser G, Prado M, Burda PC, Roelli M et al. 2013. Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 9:568–80
    [Google Scholar]
  32. 32. 
    England CG, Ehlerding EB, Cai W. 2016. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27:1175–87
    [Google Scholar]
  33. 33. 
    Epstein JE, Paolino KM, Richie TL, Sedegah M, Singer A et al. 2017. Protection against Plasmodium falciparum malaria by PfSPZ vaccine. JCI Insight 2:e89154
    [Google Scholar]
  34. 34. 
    Eyles DE, Young MD. 1948. Studies on imported malarias: the parasitological pattern of relapsing Plasmodium vivax in military patients. J. Natl. Malar. Soc. 7:23–37
    [Google Scholar]
  35. 35. 
    Frampton JE. 2018. Tafenoquine: first global approval. Drugs 78:1517–23
    [Google Scholar]
  36. 36. 
    Frenkel JK. 1973. Toxoplasma in and around us. BioScience 23:343–52
    [Google Scholar]
  37. 37. 
    Gardner MJ, Hall N, Fung E, White O, Berriman M et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511
    [Google Scholar]
  38. 38. 
    Garnham PC. 1988. Swellengrebel lecture: hypnozoites and ‘relapses’ in Plasmodium vivax and in vivax-like malaria. Trop. Geogr. Med. 40:187–95
    [Google Scholar]
  39. 39. 
    Goswami D, Minkah NK, Kappe SHI. 2019. Designer parasites: genetically engineered Plasmodium as vaccines to prevent malaria infection. J. Immunol. 202:20–28
    [Google Scholar]
  40. 40. 
    Gupta DK, Dembele L, Voorberg-van der Wel A, Roma G, Yip A et al. 2019. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife 8:e43362
    [Google Scholar]
  41. 41. 
    Gural N, Mancio-Silva L, Miller AB, Galstian A, Butty VL et al. 2018. In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe 23:395–406.e4
    [Google Scholar]
  42. 42. 
    Hagan RW, Didion EM, Rosselot AE, Holmes CJ, Siler SC et al. 2018. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. 8:6804
    [Google Scholar]
  43. 43. 
    Hankey DD, Jones R Jr., Coatney GR, Alving AS, Coker WG et al. 1953. Korean vivax malaria. I. Natural history and response to chloroquine. Am. J. Trop. Med. Hyg. 2:958–69
    [Google Scholar]
  44. 44. 
    Hanschell HM. 1926. Notes on malaria in the treatment of general paralysis of the insane. Br. J. Vener. Dis. 2:235–42
    [Google Scholar]
  45. 45. 
    Hanson KK, March S, Ng S, Bhatia SN, Mota MM. 2015. In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. Eukaryot. Cell 14:96–103
    [Google Scholar]
  46. 46. 
    Herrera S, Fernandez O, Manzano MR, Murrain B, Vergara J et al. 2009. Successful sporozoite challenge model in human volunteers with Plasmodium vivax strain derived from human donors. Am. J. Trop. Med. Hyg. 81:740–46
    [Google Scholar]
  47. 47. 
    Herrera S, Solarte Y, Jordán-Villegas A, Echavarría JF, Rocha L et al. 2011. Consistent safety and infectivity in sporozoite challenge model of Plasmodium vivax in malaria-naive human volunteers. Am. J. Trop. Med. Hyg. 84:4–11
    [Google Scholar]
  48. 48. 
    Hollingdale MR, Collins WE, Campbell CC. 1986. In vitro culture of exoerythrocytic parasites of the North Korean strain of Plasmodium vivax in hepatoma cells. Am. J. Trop. Med. Hyg. 35:275–76
    [Google Scholar]
  49. 49. 
    Hollingdale MR, Collins WE, Campbell CC, Schwartz AL. 1985. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. Am. J. Trop. Med. Hyg. 34:216–22
    [Google Scholar]
  50. 50. 
    Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE et al. 2016. Global epidemiology of Plasmodium vivax. Am. J. Trop. Med. Hyg. 95:15–34
    [Google Scholar]
  51. 51. 
    Hulden L, Hulden L, Heliovaara K. 2005. Endemic malaria: an ‘indoor’ disease in northern Europe; historical data analysed. Malar. J 4:19
    [Google Scholar]
  52. 52. 
    Kaushansky A, Metzger PG, Douglass AN, Mikolajczak SA, Lakshmanan V et al. 2013. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis. Cell Death Dis 4:e762
    [Google Scholar]
  53. 53. 
    Kitchen SK. 1938. The infection of reticulocytes by Plasmodium vivax. Am. J. Trop. Med. 18:347–53
    [Google Scholar]
  54. 54. 
    Kocken CH, van der Wel A, Thomas AW. 1999. Plasmodium cynomolgi: transfection of blood-stage parasites using heterologous DNA constructs. Exp. Parasitol. 93:58–60
    [Google Scholar]
  55. 55. 
    Krotoski WA, Bray RS, Garnham PC, Gwadz RW, Killick-Kendrick R et al. 1982. Observations on early and late post-sporozoite tissue stages in primate malaria. II. The hypnozoite of Plasmodium cynomolgi bastianellii from 3 to 105 days after infection, and detection of 36- to 40-hour pre-erythrocytic forms. Am. J. Trop. Med. Hyg. 31:211–25
    [Google Scholar]
  56. 56. 
    Krotoski WA, Garnham PC, Bray RS, Krotoski DM, Killick-Kendrick R et al. 1982. Observations on early and late post-sporozoite tissue stages in primate malaria. I. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. Am. J. Trop. Med. Hyg. 31:24–35
    [Google Scholar]
  57. 57. 
    Krotoski WA, Krotoski DM, Garnham PC, Bray RS, Killick-Kendrick R et al. 1980. Relapses in primate malaria: discovery of two populations of exoerythrocytic stages: preliminary note. Br. Med. J. 280:153–54
    [Google Scholar]
  58. 58. 
    Kurup SP, Butler NS, Harty JT. 2019. T cell-mediated immunity to malaria. Nat. Rev. Immunol. 19:457–71
    [Google Scholar]
  59. 59. 
    Lasonder E, Rijpma SR, van Schaijk BC, Hoeijmakers WA, Kensche PR et al. 2016. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 44:6087–101
    [Google Scholar]
  60. 60. 
    Laurens MB. 2018. The promise of a malaria vaccine—are we closer?. Annu. Rev. Microbiol. 72:273–92
    [Google Scholar]
  61. 61. 
    Lindner SE, Swearingen KE, Shears MJ, Walker MP, Vrana EN et al. 2019. Transcriptomics and proteomics reveal two waves of translational repression during the maturation of malaria parasite sporozoites. Nat. Commun. 10:4964
    [Google Scholar]
  62. 62. 
    Llanos-Cuentas A, Lacerda MVG, Hien TT, Velez ID, Namaik-Larp C et al. 2019. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. N. Engl. J. Med. 380:229–41
    [Google Scholar]
  63. 63. 
    Looareesuwan S, White NJ, Chittamas S, Bunnag D, Harinasuta T. 1987. High rate of Plasmodium vivax relapse following treatment of falciparum malaria in Thailand. Lancet 2:1052–55
    [Google Scholar]
  64. 64. 
    Lysenko AJ, Beljaev AE, Rybalka VM. 1977. Population studies of Plasmodium vivax. 1. The theory of polymorphism of sporozoites and epidemiological phenomena of tertian malaria. Bull. World Health Organ. 55:541–49
    [Google Scholar]
  65. 65. 
    Manson PT. 1901. Experimental malaria: recurrence after nine months. Br. Med. J. 2:77
    [Google Scholar]
  66. 66. 
    March S, Ng S, Velmurugan S, Galstian A, Shan J et al. 2013. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14:104–15
    [Google Scholar]
  67. 67. 
    Markus MB. 2011. Malaria: origin of the term “hypnozoite. .” J. Hist. Biol. 44:781–86
    [Google Scholar]
  68. 68. 
    Markus MB. 2015. Do hypnozoites cause relapse in malaria?. Trends Parasitol 31:239–45
    [Google Scholar]
  69. 69. 
    Markus MB. 2018. New evidence for hypnozoite-independent Plasmodium vivax malarial recurrences. Trends Parasitol 34:1015–16
    [Google Scholar]
  70. 70. 
    Marques-da-Silva C, Peissig K, Kurup SP 2020. Pre-erythrocytic vaccines against malaria. Vaccines 8:3400
    [Google Scholar]
  71. 71. 
    Mazier D, Landau I, Druilhe P, Miltgen F, Guguen-Guillouzo C et al. 1984. Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 307:367–69
    [Google Scholar]
  72. 72. 
    McKenzie FE, Jeffery GM, Collins WE. 2002. Plasmodium vivax blood-stage dynamics. J. Parasitol. 88:521–35
    [Google Scholar]
  73. 73. 
    Merrick CJ. 2021. Hypnozoites in Plasmodium: Do parasites parallel plants?. Trends Parasitol 37:4273–82
    [Google Scholar]
  74. 74. 
    Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M et al. 2015. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17:526–35
    [Google Scholar]
  75. 75. 
    Miller LH, Mason SJ, Clyde DF, McGinniss MH. 1976. The resistance factor to Plasmodium vivax in blacks: the Duffy-blood-group genotype, FyFy. N. Engl. J. Med 295:302–4
    [Google Scholar]
  76. 76. 
    Millet P, Fisk TL, Collins WE, Broderson JR, Nguyen-Dinh P. 1988. Cultivation of exoerythrocytic stages of Plasmodium cynomolgi, P. knowlesi, P. coatneyi, and P. inui in Macaca mulatta hepatocytes. Am. J. Trop. Med. Hyg. 39:529–34
    [Google Scholar]
  77. 77. 
    Minkah NK, Schafer C, Kappe SHI. 2018. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front. Immunol. 9:807
    [Google Scholar]
  78. 78. 
    Noe WL Jr., Greene CC Jr., Cheney G. 1946. The natural course of chronic southwest Pacific malaria. Am. J. Med. Sci. 211:215–19
    [Google Scholar]
  79. 79. 
    Olotu A, Fegan G, Wambua J, Nyangweso G, Leach A et al. 2016. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 374:2519–29
    [Google Scholar]
  80. 80. 
    Pasini EM, Bohme U, Rutledge GG, Voorberg-Van der Wel A, Sanders M et al. 2017. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res 2:42
    [Google Scholar]
  81. 81. 
    Phalen H, Vagdargi P, Schrum ML, Chakravarty S, Canezin A et al. 2021. A mosquito pick-and-place system for PfSPZ-based malaria vaccine production. IEEE Trans. Autom. Sci. Eng. 18:299–310
    [Google Scholar]
  82. 82. 
    Pott S, Lieb JD. 2015. Single-cell ATAC-seq: strength in numbers. Genome Biol 16:172
    [Google Scholar]
  83. 83. 
    Pybus BS, Marcsisin SR, Jin X, Deye G, Sousa JC et al. 2013. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar. J. 12:212
    [Google Scholar]
  84. 84. 
    Ribeiro JM, Mans BJ, Arca B. 2010. An insight into the sialome of blood-feeding Nematocera. Insect Biochem. Mol. Biol. 40:767–84
    [Google Scholar]
  85. 85. 
    Rijo-Ferreira F, Acosta-Rodriguez VA, Abel JH, Kornblum I, Bento I et al. 2020. The malaria parasite has an intrinsic clock. Science 368:746–53
    [Google Scholar]
  86. 86. 
    Rittershaus ES, Baek SH, Sassetti CM. 2013. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 13:643–51
    [Google Scholar]
  87. 87. 
    Robinson LJ, Wampfler R, Betuela I, Karl S, White MT et al. 2015. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLOS Med 12:e1001891
    [Google Scholar]
  88. 88. 
    Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P et al. 2018. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–82
    [Google Scholar]
  89. 89. 
    Rosenberg R, Wirtz RA, Lanar DE, Sattabongkot J, Hall T et al. 1989. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science 245:973–76
    [Google Scholar]
  90. 90. 
    Ross R 1897. Peculiar pigmented cells found in two mosquitoes fed on malarial blood. Ind. Med. Gaz 32:35758
    [Google Scholar]
  91. 91. 
    Roth A, Adapa SR, Zhang M, Liao X, Saxena V et al. 2018. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci. Rep. 8:12183
    [Google Scholar]
  92. 92. 
    Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V et al. 2018. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat. Commun. 9:1837
    [Google Scholar]
  93. 93. 
    Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S, Rasameesoraj M, Jenwithisuk R et al. 2006. Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am. J. Trop. Med. Hyg. 74:708–15
    [Google Scholar]
  94. 94. 
    Schäfer C, Dambrauskas N, Reynolds LM, Trakhimets O, Raappana A et al. 2021. Partial protection against P. vivax infection diminishes hypnozoite burden and blood-stage relapses. Cell Host Microbe 29:5P75256.E4
    [Google Scholar]
  95. 95. 
    Schafer C, Dambrauskas N, Steel RW, Carbonetti S, Chuenchob V et al. 2018. A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages. Malar. J. 17:370
    [Google Scholar]
  96. 96. 
    Schafer C, Roobsoong W, Kangwanrangsan N, Bardelli M, Rawlinson TA et al. 2020. A humanized mouse model for Plasmodium vivax to test interventions that block liver stage to blood stage transition and blood stage infection. iScience 23:101381
    [Google Scholar]
  97. 97. 
    Schmidt LH. 1986. Compatibility of relapse patterns of Plasmodium cynomolgi infections in rhesus monkeys with continuous cyclical development and hypnozoite concepts of relapse. Am. J. Trop. Med. Hyg. 35:1077–99
    [Google Scholar]
  98. 98. 
    Schmidt LH, Fradkin R, Genther CS, Hughes HB. 1982. Delineation of the potentials of primaquine as a radical curative and prophylactic drug. Am. J. Trop. Med. Hyg. 31:666–80
    [Google Scholar]
  99. 99. 
    Schmidt LH, Fradkin R, Genther CS, Rossan RN, Squires W. 1982. Responses of sporozoite-induced and trophozoite-induced infections to standard antimalarial drugs. Am. J. Trop. Med. Hyg. 31:646–65
    [Google Scholar]
  100. 100. 
    Shanks GD, White NJ. 2013. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect. Dis. 13:900–6
    [Google Scholar]
  101. 101. 
    Shortt HE, Garnham PC. 1948. Demonstration of a persisting exo-erythrocytic cycle in Plasmodium cynomolgi and its bearing on the production of relapses. Br. Med. J. 1:1225–28
    [Google Scholar]
  102. 102. 
    Shortt HE, Garnham PC, Covell G, Shute PG. 1948. The pre-erythrocytic stage of human malaria, Plasmodium vivax. Br. Med. J. 1:547
    [Google Scholar]
  103. 103. 
    Silva-Filho JL, Lacerda MVG, Recker M, Wassmer SC, Marti M, Costa FTM. 2020. Plasmodium vivax in hematopoietic niches: hidden and dangerous. Trends Parasitol 36:447–58
    [Google Scholar]
  104. 104. 
    Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S. 2007. CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet. Genom. 17:93–101
    [Google Scholar]
  105. 105. 
    Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR et al. 2020. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science 368:754–59
    [Google Scholar]
  106. 106. 
    Sokhna C, Ndiath MO, Rogier C. 2013. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19:902–7
    [Google Scholar]
  107. 107. 
    Swearingen KE, Lindner SE, Flannery EL, Vaughan AM, Morrison RD et al. 2017. Proteogenomic analysis of the total and surface-exposed proteomes of Plasmodium vivax salivary gland sporozoites. PLOS Negl. Trop. Dis. 11:e0005791
    [Google Scholar]
  108. 108. 
    Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR et al. 2012. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat. Genet. 44:1051–55
    [Google Scholar]
  109. 109. 
    Toro-Moreno M, Sylvester K, Srivastava T, Posfai D, Derbyshire ER. 2020. RNA-seq analysis illuminates the early stages of Plasmodium liver infection. mBio 11:e03234-19
    [Google Scholar]
  110. 110. 
    Venkatesan P, Dedicoat M, Innes JA, Ellis CJ. 2003. Seasonality of presentation of imported Plasmodium vivax malaria in Birmingham, UK. Trans. R. Soc. Trop. Med. Hyg. 97:550
    [Google Scholar]
  111. 111. 
    Vivax Sporozoite Consort 2019. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int. J. Parasitol. 49:501–13
    [Google Scholar]
  112. 112. 
    Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL et al. 2018. Mosquito saliva alone has profound effects on the human immune system. PLOS Negl. Trop. Dis. 12:e0006439
    [Google Scholar]
  113. 113. 
    Voorberg-van der Wel A, Roma G, Gupta DK, Schuierer S, Nigsch F et al. 2017. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. eLife 6:e29605
    [Google Scholar]
  114. 114. 
    Voorberg-van der Wel AM, Zeeman AM, Nieuwenhuis IG, van der Werff NM, Klooster EJ et al. 2020. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun. Biol. 3:7
    [Google Scholar]
  115. 115. 
    Voorberg-van der Wel AM, Zeeman AM, Nieuwenhuis IG, van der Werff NM, Klooster EJ et al. 2020. Dual-luciferase-based fast and sensitive detection of malaria hypnozoites for the discovery of antirelapse compounds. Anal. Chem. 92:6667–75
    [Google Scholar]
  116. 116. 
    Wagner-Jauregg J. 1922. The treatment of general paresis by inoculation of malaria. J. Nerv. Ment. Dis. 55:369–75
    [Google Scholar]
  117. 117. 
    Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R. 2006. Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Trop 98:66–73
    [Google Scholar]
  118. 118. 
    Walker E. 1983. The seasonal pattern of Plasmodium vivax malaria in Glasgow. J. Infect. 7:227–30
    [Google Scholar]
  119. 119. 
    Warwick R, Swimer GJ, Britt RP. 1980. Prolonged incubation period of imported P. vivax malaria in London. J. R. Soc. Med. 73:333–36
    [Google Scholar]
  120. 120. 
    Wells TN, Burrows JN, Baird JK. 2010. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. Trends Parasitol 26:145–51
    [Google Scholar]
  121. 121. 
    White M, Amino R, Mueller I. 2017. Theoretical implications of a pre-erythrocytic Plasmodium vivax vaccine for preventing relapses. Trends Parasitol 33:260–63
    [Google Scholar]
  122. 122. 
    White NJ. 2011. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 10:297
    [Google Scholar]
  123. 123. 
    Whitrow M. 1990. Wagner-Jauregg and fever therapy. Med. Hist. 34:3294–310 https://doi.org/10.1017/s0025727300052431
    [Crossref] [Google Scholar]
  124. 124. 
    Whorton CM, Yount E Jr. et al. 1947. The Chesson strain of Plasmodium vivax malaria: clinical aspects. J. Infect. Dis. 80:237–49
    [Google Scholar]
  125. 125. 
    Wilson T, Reid JA. 1949. Malaria among prisoners of war in Siam (F Force). Trans. R. Soc. Trop. Med. Hyg. 43:257–72
    [Google Scholar]
  126. 126. 
    Winckel CW. 1955. Long latency in Plasmodium vivax infections in a temperate zone. Doc. Med. Geogr. Trop. 7:292–98
    [Google Scholar]
  127. 127. 
    Yeoh LM, Goodman CD, Mollard V, McHugh E, Lee VV et al. 2019. Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol 20:151
    [Google Scholar]
  128. 128. 
    Yorke W, Macfie JWS. 1924. Observations on malaria made during treatment of general paralysis. Trans. R. Soc. Trop. Med. Hyg. 18:13–33
    [Google Scholar]
  129. 129. 
    Zeeman AM, van Amsterdam SM, McNamara CW, Voorberg-van der Wel A, Klooster EJ et al. 2014. KAI407, a potent non-8-aminoquinoline compound that kills Plasmodium cynomolgi early dormant liver stage parasites in vitro. Antimicrob. Agents Chemother. 58:1586–9
    [Google Scholar]
/content/journals/10.1146/annurev-micro-032421-061155
Loading
/content/journals/10.1146/annurev-micro-032421-061155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error