1932

Abstract

Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-040821-012953
2021-10-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-040821-012953.html?itemId=/content/journals/10.1146/annurev-micro-040821-012953&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Al-Khedery B, Allred DR. 2006. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol. Microbiol. 59:2402–14
    [Google Scholar]
  2. 2. 
    Ashe HL, Briscoe J. 2006. The interpretation of morphogen gradients. Development 133:3385–94
    [Google Scholar]
  3. 3. 
    Auty H, Torr SJ, Michoel T, Jayaraman S, Morrison LJ. 2015. Cattle trypanosomosis: the diversity of trypanosomes and implications for disease epidemiology and control. Rev. Sci. Tech. 34:2587–98
    [Google Scholar]
  4. 4. 
    Bahar Halpern K, Caspi I, Lemze D, Levy M, Landen S et al. 2015. Nuclear retention of mRNA in mammalian tissues. Cell Rep 13:122653–62
    [Google Scholar]
  5. 5. 
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:56901622–25
    [Google Scholar]
  6. 6. 
    Balázsi G, van Oudenaarden A, Collins JJ. 2011. Cellular decision making and biological noise: from microbes to mammals. Cell 144:6910–25
    [Google Scholar]
  7. 7. 
    Barák I, Muchová K, Labajová N. 2019. Asymmetric cell division during Bacillus subtilis sporulation. Future Microbiol 14:353–63
    [Google Scholar]
  8. 8. 
    Barry JD, McCulloch R. 2001. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49:1–70
    [Google Scholar]
  9. 9. 
    Barry JM. 1997. Enzymes and symmetrical molecules. Trends Biochem. Sci. 22:6228–30
    [Google Scholar]
  10. 10. 
    Bates PA. 2018. Revising Leishmania’s life cycle. Nat. Microbiol. 3:5529–30
    [Google Scholar]
  11. 11. 
    Berka RM, Hahn J, Albano M, Draskovic I, Persuh M et al. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43:51331–45
    [Google Scholar]
  12. 12. 
    Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H et al. 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309:5733416–22
    [Google Scholar]
  13. 13. 
    Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR et al. 2019. Phenotypic heterogeneity in bacterial quorum sensing systems. J. Mol. Biol. 431:234530–46
    [Google Scholar]
  14. 14. 
    Boillat M, Hammoudi P-M, Dogga SK, Pagès S, Goubran M et al. 2020. Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep 30:2P320–34
    [Google Scholar]
  15. 15. 
    Boothroyd CE, Dreesen O, Leonova T, Ly KI, Figueiredo LM et al. 2009. A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459:7244278–81
    [Google Scholar]
  16. 16. 
    Bose I, Pal M. 2017. Criticality in cell differentiation. J. Biosci. 42:4683–93
    [Google Scholar]
  17. 17. 
    Briggs E, Crouch K, Lemgruber L, Hamilton G, Lapsley C, McCulloch R. 2019. Trypanosoma brucei ribonuclease H2A is an essential R-loop processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. Nucleic Acids Res 47:179180–97
    [Google Scholar]
  18. 18. 
    Briggs EM, McCulloch R, Matthews KR 2020. Single cell transcriptomic analysis of bloodstream form Trypanosoma brucei reconstructs cell cycle progression and differentiation via quorum sensing. bioRxiv 2020.12.11.420976. https://doi.org/10.1101/2020.12.11.420976
    [Crossref]
  19. 19. 
    Bruce D. 1895. Preliminary report on the Tsetse Fly Disease or Nagana, in Zululand Prelim. Rep., Ubombo Zululand:
  20. 20. 
    Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ. 2013. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery. Mol. Cell. Proteom. 12:1172–79
    [Google Scholar]
  21. 21. 
    Capewell P, Monk S, Ivens A, MacGregor P, Fenn K et al. 2013. Regulation of Trypanosoma brucei total and polysomal mRNA during development within its mammalian host. PLOS ONE 8:6e67069
    [Google Scholar]
  22. 22. 
    Carniol K, Kim T-J, Price CW, Losick R. 2004. Insulation of the σF regulatory system in Bacillus subtilis. J. Bacteriol. 186:134390–94
    [Google Scholar]
  23. 23. 
    Castellani A. 1903. On the discovery of a species of trypanosoma in the cerebrospinal fluid of cases of sleeping sickness. Proc. R. Soc. London 71:501–8
    [Google Scholar]
  24. 24. 
    Cayla M, McDonald L, MacGregor P, Matthews K 2020. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. eLife 9:e51620
    [Google Scholar]
  25. 25. 
    Cestari I, Stuart K. 2018. Transcriptional regulation of telomeric expression sites and antigenic variation in trypanosomes. Curr. Genom. 119:2119–32
    [Google Scholar]
  26. 26. 
    Chorlton SD. 2017. Toxoplasma gondii and schizophrenia: a review of published RCTs. Parasitol. Res. 116:71793–99
    [Google Scholar]
  27. 27. 
    Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J et al. 2014. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158:4722–33
    [Google Scholar]
  28. 28. 
    Cogswell FB. 1992. The hypnozoite and relapse in primate malaria. Clin. Microbiol. Rev. 5:126–35
    [Google Scholar]
  29. 29. 
    Cornelio DA, Sedam HNC, Ferrarezi JA, Sampaio NMV, Argueso JL. 2017. Both R-loop removal and ribonucleotide excision repair activities of RNase H2 contribute substantially to chromosome stability. DNA Repair 52:110–14
    [Google Scholar]
  30. 30. 
    Cosentino RO, Brink BG, Siegel TN. 2021. A phased genome assembly for allele-specific analysis in Trypanosoma brucei. bioRxiv 2021.04.13.439624. https://doi.org/10.1101/2021.04.13.439624
    [Crossref] [Google Scholar]
  31. 31. 
    Cross GA. 1975. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71:3393–417
    [Google Scholar]
  32. 32. 
    Cross GA, Kim HS, Wickstead B. 2014. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195:159–73
    [Google Scholar]
  33. 33. 
    da Silva MS, Hovel-Miner GA, Briggs EM, MC Elias, McCulloch R. 2018. Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation in African trypanosomes. PLOS Pathog 14:11e1007321
    [Google Scholar]
  34. 34. 
    Dagogo-Jack I, Shaw AT 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:281–94
    [Google Scholar]
  35. 35. 
    Dalton RP, Lyons DB, Lomvardas S. 2013. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155:2321–32
    [Google Scholar]
  36. 36. 
    Day EK, Sosale NG, Lazzara MJ. 2016. Cell signaling regulation by protein phosphorylation: a multivariate, heterogeneous, and context-dependent process. Curr. Opin. Biotechnol. 40:185–92
    [Google Scholar]
  37. 37. 
    De Lange T, Borst P. 1982. Genomic environment of the expression-linked extra copies of genes for surface antigens of Trypanosoma brucei resembles the end of a chromosome. Nature 299:5882451–53
    [Google Scholar]
  38. 37a. 
    De Niz M, Bras D, Pedro M, Nascimento AM, Franco CA, Figueiredo LM 2021. Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. bioRxiv 2021.02.26.433042 https://doi.org/10.1101/2021.02.26.433042
    [Crossref] [Google Scholar]
  39. 38. 
    Dean S, Marchetti R, Kirk K, Matthews KR. 2009. A surface transporter family conveys the trypanosome differentiation signal. Nature 459:7244213–17
    [Google Scholar]
  40. 39. 
    Diard M, Garcia V, Maier L, Remus-Emsermann MNP, Regoes RR et al. 2013. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494:7437353–56
    [Google Scholar]
  41. 40. 
    Domingo-Sananes MR, Szöőr B, Ferguson MAJ, Urbaniak MD, Matthews KR. 2015. Molecular control of irreversible bistability during trypanosome developmental commitment. J. Cell Biol. 211:2455–68
    [Google Scholar]
  42. 41. 
    Dubnau D. 1991. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55:3395–424
    [Google Scholar]
  43. 42. 
    Dubnau D, Provvedi R 2000. Internalizing DNA. Res. Microbiol 151:6475–80
    [Google Scholar]
  44. 43. 
    Ejigiri I, Sinnis P. 2009. Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr. Opin. Microbiol. 12:4401–7
    [Google Scholar]
  45. 44. 
    Evers TMJ, Hochane M, Tans SJ, Heeren RMA, Semrau S et al. 2019. Deciphering metabolic heterogeneity by single-cell analysis. Anal. Chem. 91:2113314–23
    [Google Scholar]
  46. 45. 
    Faria J, Glover L, Hutchinson S, Boehm C, Field MC, Horn D. 2019. Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nat. Commun. 10:13023
    [Google Scholar]
  47. 46. 
    Faria J, Luzak V, Müller LSM, Brink BG, Hutchinson S et al. 2021. Spatial integration of transcription and splicing in a dedicated compartment sustains monogenic antigen expression in African trypanosomes. Nat. Microbiol. 6:289–300
    [Google Scholar]
  48. 47. 
    Finn EH, Pegoraro G, Brandão HB, Valton A-L, Oomen ME et al. 2019. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:61502–15.e10
    [Google Scholar]
  49. 48. 
    Franco JR, Cecchi G, Priotto G, Paone M, Diarra A et al. 2020. Monitoring the elimination of human African trypanosomiasis at continental and country level: update to 2018. PLOS Negl. Trop. Dis. 14:5e0008261
    [Google Scholar]
  50. 49. 
    Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P et al. 2005. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. PNAS 102:3211468–73
    [Google Scholar]
  51. 50. 
    Fujita M, González-Pastor JE, Losick R. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187:41357–68
    [Google Scholar]
  52. 51. 
    García-Muse T, Aguilera A. 2016. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17:9553–63
    [Google Scholar]
  53. 52. 
    Gargantini PR, Serradell MDC, Ríos DN, Tenaglia AH, Luján HD. 2016. Antigenic variation in the intestinal parasite Giardia lamblia. Curr. Opin. Microbiol. 32:52–58
    [Google Scholar]
  54. 53. 
    Gibson W, Peacock L. 2019. Fluorescent proteins reveal what trypanosomes get up to inside the tsetse fly. Parasit. Vectors 12:16
    [Google Scholar]
  55. 54. 
    Glover L, Alsford S, Horn D. 2013. DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLOS Pathog 9:3e1003260
    [Google Scholar]
  56. 55. 
    Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. 2015. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25:67–72
    [Google Scholar]
  57. 56. 
    Haber JE. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:133–64
    [Google Scholar]
  58. 57. 
    Haffner MC, De Marzo AM, Meeker AK, Nelson WG, Yegnasubramanian S. 2011. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target?. Clin. Cancer Res. 17:123858–64
    [Google Scholar]
  59. 58. 
    Hanchate NK, Kondoh K, Lu Z, Kuang D, Ye X et al. 2015. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 350:62651251–55
    [Google Scholar]
  60. 59. 
    Hansen MMK, Weinberger LS. 2019. Post-transcriptional noise control. BioEssays 41:7e1900044
    [Google Scholar]
  61. 60. 
    Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A et al. 2008. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLOS ONE 3:10e3527
    [Google Scholar]
  62. 61. 
    Horn D. 2014. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 195:2123–29
    [Google Scholar]
  63. 62. 
    Horswill AR, Stoodley P, Stewart PS, Parsek MR. 2007. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal. Bioanal. Chem. 387:2371–80
    [Google Scholar]
  64. 63. 
    Johnson PJ, Kooter JM, Borst P. 1987. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell 51:2273–81
    [Google Scholar]
  65. 64. 
    Kassem A, Pays E, Vanhamme L 2014. Transcription is initiated on silent variant surface glycoprotein expression sites despite monoallelic expression in Trypanosoma brucei. PNAS 111:248943–48
    [Google Scholar]
  66. 65. 
    Kim N, Jinks-Robertson S. 2012. Transcription as a source of genome instability. Nat. Rev. Genet. 13:3204–14
    [Google Scholar]
  67. 66. 
    Kooter JM, Borst P. 1984. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res 12:249457–72
    [Google Scholar]
  68. 67. 
    Krüger T, Schuster S, Engstler M. 2018. Beyond blood: African trypanosomes on the move. Trends Parasitol 34:121056–67
    [Google Scholar]
  69. 68. 
    Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR et al. 2019. Genomic encoding of transcriptional burst kinetics. Nature 565:7738251–54
    [Google Scholar]
  70. 69. 
    Laufer G, Schaaf G, Bollgönn S, Günzl A. 1999. In vitro analysis of alpha-amanitin-resistant transcription from the rRNA, procyclic acidic repetitive protein, and variant surface glycoprotein gene promoters in Trypanosoma brucei. Mol. Cell. Biol. 19:85466–73
    [Google Scholar]
  71. 70. 
    Lejon V, Büscher P. 2005. Review Article: cerebrospinal fluid in human African trypanosomiasis; a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop. Med. Int. Health 10:5395–403
    [Google Scholar]
  72. 71. 
    Losick R, Desplan C. 2008. Stochasticity and cell fate. Science 320:587265–68
    [Google Scholar]
  73. 72. 
    Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. 2013. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154:2325–36
    [Google Scholar]
  74. 73. 
    MacGregor P, Savill NJ, Hall D, Matthews KR. 2011. Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe 9:4310–18
    [Google Scholar]
  75. 74. 
    Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S et al. 2015. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:71592–605
    [Google Scholar]
  76. 75. 
    Maier B. 2020. Competence and transformation in Bacillus subtilis. Curr. Issues Mol. Biol. 37:57–76
    [Google Scholar]
  77. 76. 
    Markenscoff-Papadimitriou E, Allen WE, Colquitt BM, Goh T, Murphy KK et al. 2014. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159:3543–57
    [Google Scholar]
  78. 77. 
    Matthews KR, Gull K. 1994. Cycles within cycles: the interplay between differentiation and cell division in Trypanosoma brucei. Parasitol. Today 10:12473–76
    [Google Scholar]
  79. 78. 
    McCulloch R, Morrison LJ, Hall JPJ. 2015. DNA recombination strategies during antigenic variation in the African trypanosome. Microbiol. Spectr. 3:2MDNA3-0016-2014
    [Google Scholar]
  80. 79. 
    Michaeli S. 2011. trans-Splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol 6:4459–74
    [Google Scholar]
  81. 80. 
    Moir A. 2006. How do spores germinate?. J. Appl. Microbiol. 101:3526–30
    [Google Scholar]
  82. 81. 
    Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE et al. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50:51683–701
    [Google Scholar]
  83. 82. 
    Monahan K, Horta A, Lomvardas S. 2019. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565:7740448–53
    [Google Scholar]
  84. 83. 
    Monod J, Jacob F 1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26:389–401
    [Google Scholar]
  85. 84. 
    Müller LSM, Cosentino RO, Förstner KU, Guizetti J, Wedel C et al. 2018. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563:7729121–25
    [Google Scholar]
  86. 85. 
    Newman JD, Bergman PB, Doery JCG, Balazs NDH. 2006. Factitious increase in thyrotropin in a neonate caused by a maternally transmitted interfering substance. Clin. Chem. 52:3541–42
    [Google Scholar]
  87. 86. 
    Ohshima K, Kang S, Larson JE, Wells RD. 1996. TTA⋅TAA triplet repeats in plasmids form a non-H bonded structure. J. Biol. Chem. 271:2816784–91
    [Google Scholar]
  88. 87. 
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31:169–73
    [Google Scholar]
  89. 88. 
    Pan X, Liao Y, Liu Y, Chang P, Liao L et al. 2010. Transcription of AAT⋅ATT triplet repeats in Escherichia coli is silenced by H-NS and IS1E transposition. PLOS ONE 5:12e14271
    [Google Scholar]
  90. 89. 
    Pickett HA, Reddel RR. 2015. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat. Struct. Mol. Biol. 22:11875–80
    [Google Scholar]
  91. 90. 
    Pieszko M, Weir W, Goodhead I, Kinnaird J, Shiels B. 2015. ApiAP2 factors as candidate regulators of stochastic commitment to merozoite production in Theileria annulata. PLOS Negl. Trop. Dis. 9:8e0003933
    [Google Scholar]
  92. 91. 
    Piggot PJ, Hilbert DW. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:6579–86
    [Google Scholar]
  93. 92. 
    Puchałka J, Kierzek AM. 2004. Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys. J. 86:31357–72
    [Google Scholar]
  94. 93. 
    Ribbe J, Maier B. 2016. Density-dependent differentiation of bacteria in spatially structured open systems. Biophys. J. 110:71648–60
    [Google Scholar]
  95. 94. 
    Rico E, Rojas F, Mony BM, Szoor B, MacGregor P, Matthews KR. 2013. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front. Cell. Infect. Microbiol. 3:78
    [Google Scholar]
  96. 95. 
    Rojas F, Matthews KR. 2019. Quorum sensing in African trypanosomes. Curr. Opin. Microbiol. 52:124–29
    [Google Scholar]
  97. 96. 
    Rojas F, Silvester E, Young J, Milne R, Tettey M et al. 2019. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell 176:1–2306–17.e16
    [Google Scholar]
  98. 97. 
    Rudenko G, Lee MG, Van der Ploeg LH. 1992. The PARP and VSG genes of Trypanosoma brucei do not resemble RNA polymerase II transcription units in sensitivity to Sarkosyl in nuclear run-on assays. Nucleic Acids Res 20:2303–6
    [Google Scholar]
  99. 98. 
    Rudner DZ, Losick R. 2001. Morphological coupling in development: lessons from prokaryotes. Dev. Cell 1:6733–42
    [Google Scholar]
  100. 99. 
    Russell JR, Cabeen MT, Wiggins PA, Paulsson J, Losick R. 2017. Noise in a phosphorelay drives stochastic entry into sporulation in Bacillus subtilis. EMBO J 36:192856–69
    [Google Scholar]
  101. 100. 
    Saldivia M, Ceballos-Pérez G, Bart J-M, Navarro M. 2016. The AMPKα1 pathway positively regulates the developmental transition from proliferation to quiescence in Trypanosoma brucei. Cell Rep 17:3660–70
    [Google Scholar]
  102. 101. 
    Santo LY, Doi RH. 1974. Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores. J. Bacteriol. 120:1475–81
    [Google Scholar]
  103. 102. 
    Scherf A, Lopez-Rubio JJ, Riviere L. 2008. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62:445–70
    [Google Scholar]
  104. 103. 
    Seed JR, Wenck MA. 2003. Role of the long slender to short stumpy transition in the life cycle of the African trypanosomes. Kinetoplastid Biol. Dis. 2:13
    [Google Scholar]
  105. 104. 
    Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG. 2018. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat. Microbiol. 3:5548–55
    [Google Scholar]
  106. 105. 
    Setlow P. 2003. Spore germination. Curr. Opin. Microbiol. 6:6550–56
    [Google Scholar]
  107. 106. 
    Setlow P. 2008. Dormant spores receive an unexpected wake-up call. Cell 135:3410–12
    [Google Scholar]
  108. 107. 
    Shapiro L, Losick R. 2000. Dynamic spatial regulation in the bacterial cell. Cell 100:189–98
    [Google Scholar]
  109. 108. 
    Shapiro SZ, Naessens J, Liesegang B, Moloo SK, Magondu J. 1984. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop 41:4313–23
    [Google Scholar]
  110. 109. 
    Sharma R, Peacock L, Gluenz E, Gull K, Gibson W, Carrington M. 2008. Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 159:1137–51
    [Google Scholar]
  111. 110. 
    Shiels BR. 1999. Should I stay or should I go now? A stochastic model of stage differentiation in Theileria annulata. Parasitol. Today 15:6241–45
    [Google Scholar]
  112. 111. 
    Silva Pereira S, Trindade S, De Niz M, Figueiredo LM 2019. Tissue tropism in parasitic diseases. Open Biol 9:5 190036. Correction. 2019. Open Biol 9:6190124
    [Google Scholar]
  113. 112. 
    Silvester E, McWilliam KR, Matthews KR. 2017. The cytological events and molecular control of life cycle development of Trypanosoma brucei in the mammalian bloodstream. Pathogens 6:329
    [Google Scholar]
  114. 113. 
    Sinai L, Rosenberg A, Smith Y, Segev E, Ben-Yehuda S. 2015. The molecular timeline of a reviving bacterial spore. Mol. Cell 57:4695–707
    [Google Scholar]
  115. 114. 
    Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507:253–57
    [Google Scholar]
  116. 115. 
    Strauch MA, Hoch JA. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7:3337–42
    [Google Scholar]
  117. 116. 
    Surovtsev IV, Jacobs-Wagner C. 2018. Subcellular organization: a critical feature of bacterial cell replication. Cell 172:61271–93
    [Google Scholar]
  118. 117. 
    Symmons O, Raj A 2016. What's luck got to do with it: single cells, multiple fates, and biological nondeterminism. Mol. Cell 62:5788–802
    [Google Scholar]
  119. 118. 
    Tan L, Li Q, Xie XS. 2015. Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol. Syst. Biol. 11:12844
    [Google Scholar]
  120. 119. 
    Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F et al. 2016. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19:6837–48
    [Google Scholar]
  121. 120. 
    Turner CM. 1997. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol. Lett. 153:1227–31
    [Google Scholar]
  122. 121. 
    Vanhamme L, Poelvoorde P, Pays A, Tebabi P, Van Xong H, Pays E. 2000. Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei. Mol. Microbiol. 36:2328–40
    [Google Scholar]
  123. 122. 
    Veening J-W, Smits WK, Kuipers OP. 2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193–210
    [Google Scholar]
  124. 123. 
    Vickerman K. 1969. On the surface coat and flagellar adhesion in trypanosomes. J. Cell Sci. 5:1163–93
    [Google Scholar]
  125. 124. 
    Vickerman K. 1985. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 41:2105–14
    [Google Scholar]
  126. 125. 
    Vigneron A, O'Neill MB, Weiss BL, Savage AF, Campbell OC et al. 2020. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens. PNAS 117:52613–21
    [Google Scholar]
  127. 126. 
    Vyas A. 2015. Mechanisms of host behavioral change in Toxoplasma gondii rodent association. PLOS Pathog 11:7e1004935
    [Google Scholar]
  128. 127. 
    West SA, Griffin AS, Gardner A, Diggle SP. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:8597–607
    [Google Scholar]
  129. 128. 
    Wolk CP. 1996. Heterocyst formation. Annu. Rev. Genet. 30:59–78
    [Google Scholar]
  130. 129. 
    Yunusova AM, Fishman VS, Vasiliev GV, Battulin NR. 2017. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique. Open Biol 7:4160311
    [Google Scholar]
  131. 130. 
    Zechner C, Nerli E, Norden C. 2020. Stochasticity and determinism in cell fate decisions. Development 147:14dev181495
    [Google Scholar]
  132. 131. 
    Zhang JQ, Griffiths KK, Cowan A, Setlow P, Yu J 2013. Expression level of Bacillus subtilis germinant receptors determines the average rate but not the heterogeneity of spore germination. J. Bacteriol. 195:1735–40
    [Google Scholar]
/content/journals/10.1146/annurev-micro-040821-012953
Loading
/content/journals/10.1146/annurev-micro-040821-012953
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error