1932

Abstract

Since the emergence of the first fungi some 700 million years ago, unicellular yeast-like forms have emerged multiple times in independent lineages via convergent evolution. While tens to hundreds of millions of years separate the independent evolution of these unicellular organisms, they share remarkable phenotypic and metabolic similarities, and all have streamlined genomes. Yeasts occur in every aquatic environment yet examined. Many species are aquatic; perhaps most are amphibious. How these species have evolved to thrive in aquatic habitats is fundamental to understanding functions and evolutionary mechanisms in this unique group of fungi. Here we review the state of knowledge of the physiological and ecological diversity of amphibious yeasts and their key evolutionary adaptations enabling survival in aquatic habitats. We emphasize some genera previously thought to be exclusively terrestrial. Finally, we discuss the ability of many yeasts to survive in extreme habitats and how this might lend insight into ecological plasticity, including amphibious lifestyles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-051421-121352
2021-10-08
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/75/1/annurev-micro-051421-121352.html?itemId=/content/journals/10.1146/annurev-micro-051421-121352&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Álvarez-Pérez S, Lievens B, Fukami T. 2019. Yeast–bacterium interactions: the next frontier in nectar research. Trends Plant Sci 24:5393–401
    [Google Scholar]
  2. 2. 
    Amend A. 2014. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLOS Pathog 10:8e1004277
    [Google Scholar]
  3. 3. 
    Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL et al. 2019. Fungi in the marine environment: open questions and unsolved problems. mBio 10:2e01189-18
    [Google Scholar]
  4. 4. 
    Amend AS, Barshis DJ, Oliver TA. 2012. Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:71291–301
    [Google Scholar]
  5. 5. 
    Andrews JH, Harris RF, Spear RN, Lau GW, Nordheim EV. 1994. Morphogenesis and adhesion of Aureobasidium pullulans. Can. J. Microbiol. 40:16–17
    [Google Scholar]
  6. 6. 
    Applen Clancey S,, Ruchti F, LeibundGut-Landmann S, Heitman J, Ianiri G 2020. A novel mycovirus evokes transcriptional rewiring in the fungus Malassezia and stimulates beta interferon production in macrophages. mBio 11:5e01534-20
    [Google Scholar]
  7. 7. 
    Arthur H, Watson K. 1976. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J. Bacteriol. 128:156–68
    [Google Scholar]
  8. 8. 
    Babič MN, Zupančič J, Gunde-Cimerman N, Zalar P 2017. Yeast in anthropogenic and polluted environments. Yeasts in Natural Ecosystems: Diversity P Buzzini, M-A Lachance, A Yurkov 145–69 Cham, Switz: Springer
    [Google Scholar]
  9. 9. 
    Bass D, Howe A, Brown N, Barton H, Demidova M et al. 2007. Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol. Sci. 274: 1629.3069–77
    [Google Scholar]
  10. 10. 
    Bi E, Park H-O. 2012. Cell polarization and cytokinesis in budding yeast. Genetics 191:2347–87
    [Google Scholar]
  11. 11. 
    Blackwell M. 2011. The fungi: 1, 2, 3…5.1 million species?. Am. J. Bot. 98:3426–38
    [Google Scholar]
  12. 12. 
    Boynton PJ. 2019. The ecology of killer yeasts: interference competition in natural habitats. Yeast 36:8473–85
    [Google Scholar]
  13. 13. 
    Brown AJP, Cowen LE, di Pietro A, Quinn J 2017. Stress adaptation. The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EH Stukenbrock, TY James, NAR Gow 463–85 Washington, DC: ASM
    [Google Scholar]
  14. 14. 
    Burgaud G, Arzur D, Durand L, Cambon-Bonavita M-A, Barbier G. 2010. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol. Ecol. 73:1121–33
    [Google Scholar]
  15. 15. 
    Burgaud G, Coton M, Jacques N, Debaets S, Maciel NOP et al. 2016. Yamadazyma barbieri f.a. sp. nov., an ascomycetous anamorphic yeast isolated from a Mid-Atlantic Ridge hydrothermal site (-2300 m) and marine coastal waters. Int. J. Syst. Evol. Microbiol. 66:93600–6
    [Google Scholar]
  16. 16. 
    Butinar L, Spencer-Martins I, Gunde-Cimerman N. 2007. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie Van Leeuwenhoek 91:3277–89
    [Google Scholar]
  17. 17. 
    Buzzini P, Lachance M-A, Yurkov A 2017. Yeasts in Natural Ecosystems: Diversity Cham, Switz: Springer499 pp.
  18. 18. 
    Buzzini P, Margesin R 2013. Cold-Adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance Berlin: Springer549 pp.
  19. 19. 
    Buzzini P, Turchetti B, Yurkov A. 2018. Extremophilic yeasts: the toughest yeasts around?. Yeast 35:8487–97
    [Google Scholar]
  20. 20. 
    Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N 2017. Yeasts in polar and subpolar habitats. Yeasts in Natural Ecosystems: Diversity P Buzzini, M-A Lachance, A Yurkov 331–65 Cham, Switz: Springer
    [Google Scholar]
  21. 21. 
    Campbell J, Shearer C, Marvanová L. 2006. Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycol. Res. 110:Part 91025–33
    [Google Scholar]
  22. 22. 
    Choi J, Kim S-H. 2017. A genome Tree of Life for the Fungi kingdom. PNAS 114:359391–96
    [Google Scholar]
  23. 23. 
    Cordero RJ, Casadevall A. 2017. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 31:299–112
    [Google Scholar]
  24. 24. 
    Coudert Y, Harris S, Charrier B. 2019. Design principles of branching morphogenesis in filamentous organisms. Curr. Biol. 29:21R1149–62
    [Google Scholar]
  25. 25. 
    Dashko S, Zhou N, Compagno C, Piškur J. 2014. Why, when, and how did yeast evolve alcoholic fermentation?. FEMS Yeast Res 14:6826–32
    [Google Scholar]
  26. 26. 
    Deak T. 2007. Handbook of Food Spoilage Yeasts Boca Raton, FL: CRC352 pp.
  27. 27. 
    Diepeveen ET, Gehrmann T, Pourquié V, Abeel T, Laan L. 2018. Patterns of conservation and diversification in the fungal polarization network. Genome Biol. Evol. 10:71765–82
    [Google Scholar]
  28. 28. 
    Dusenbery DB. 2009. Living at Micro Scale: The Unexpected Physics of Being Small Cambridge, MA: Harvard Univ. Press416 pp.
  29. 29. 
    Einstein A. 1956. Investigations on the Theory of the Brownian Movement Mineola, NY: Courier Corporation119 pp.
  30. 30. 
    Ettinger CL, Eisen JA. 2020. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLOS ONE 15:7e0236135
    [Google Scholar]
  31. 31. 
    Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:60891715–19
    [Google Scholar]
  32. 32. 
    Fritz-Laylin LK, Lord SJ, Mullins RD. 2017. WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. J. Cell Biol. 216:61673–88
    [Google Scholar]
  33. 33. 
    Gadanho M, Sampaio JP. 2005. Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores Archipelago. Microb. Ecol. 50:3408–17
    [Google Scholar]
  34. 34. 
    Gladfelter A, Berman J. 2009. Dancing genomes: fungal nuclear positioning. Nat. Rev. Microbiol. 7:12875–86
    [Google Scholar]
  35. 35. 
    Gladfelter AS, James TY, Amend AS. 2019. Marine fungi. Curr. Biol. 29:6R191–95
    [Google Scholar]
  36. 36. 
    Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS et al. 2013. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:71434–51
    [Google Scholar]
  37. 37. 
    Golubev WI. 1991. Capsules. The Yeasts 4:175–98
    [Google Scholar]
  38. 38. 
    Goshima G. 2021. Growth and division mode plasticity by cell density in marine-derived black yeasts. bioRxiv 2021.05.16.444389. https://doi.org/10.1101/2021.05.16.444389
    [Crossref]
  39. 39. 
    Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N. 2010. Extremotolerance in fungi: evolution on the edge. FEMS Microbiol. Ecol. 71:12–11
    [Google Scholar]
  40. 40. 
    Gostinčar C, Grube M, Gunde-Cimerman N. 2011. Evolution of fungal pathogens in domestic environments?. Fungal Biol 115:101008–18
    [Google Scholar]
  41. 41. 
    Gostinčar C, Gunde-Cimerman N. 2018. Overview of oxidative stress response genes in selected halophilic fungi. Genes 9:3143
    [Google Scholar]
  42. 42. 
    Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A. 2011. Fungal adaptation to extremely high salt concentrations. Adv. Appl. Microbiol. 77:71–96
    [Google Scholar]
  43. 43. 
    Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M et al. 2014. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genom 15:549
    [Google Scholar]
  44. 44. 
    Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N. 2009. The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9:2247–56
    [Google Scholar]
  45. 45. 
    Gostinčar C, Turk M, Zajc J, Gunde-Cimerman N. 2019. Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist. Environ. Microbiol. 21:103638–52
    [Google Scholar]
  46. 46. 
    Grossart H-P, Van den Wyngaert S, Kagami M, Wurzbacher C, Cunliffe M, Rojas-Jimenez K. 2019. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17:6339–54
    [Google Scholar]
  47. 47. 
    Guadayol O, Mendonca T, Segura-Noguera M, Wright AJ, Tassieri M, Humphries S. 2021. Microrheology reveals microscale viscosity gradients in planktonic systems. PNAS 118:1e2011389118
    [Google Scholar]
  48. 48. 
    Gunde-Cimerman N. 2000. Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32:3235–40
    [Google Scholar]
  49. 49. 
    Gunde-Cimerman N, Zalar P. 2014. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol. Biotechnol. 52:2170–79
    [Google Scholar]
  50. 50. 
    Gusa A, Williams JD, Cho J-E, Averette AF, Sun S et al. 2020. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. PNAS 117:189973–9980
    [Google Scholar]
  51. 51. 
    Hagler AN, Mendonça-Hagler LC, Pagnocca FC 2017. Yeasts in aquatic ecotone habitats. Yeasts in Natural Ecosystems: Diversity P Buzzini, M-A Lachance, A Yurkov 63–85 Cham, Switz: Springer
    [Google Scholar]
  52. 52. 
    Hassett BT, Vonnahme TR, Peng X, Jones EBG, Heuzé C. 2019. Global diversity and geography of planktonic marine fungi. Botanica Marina 63:2121–39
    [Google Scholar]
  53. 53. 
    Hatoum R, Labrie S, Fliss I. 2012. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front. Microbiol. 3:421
    [Google Scholar]
  54. 54. 
    Hawksworth DL, Lücking R 2017. Fungal diversity revisited: 2.2 to 3.8 million species. The Fungal Kingdom J Heitman, BJ Howlett, PW Crous, EH Stukenbrock, TY James, NAR Gow 79–95 Washington, DC: ASM
    [Google Scholar]
  55. 55. 
    Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:55321129–33
    [Google Scholar]
  56. 56. 
    Hedges SB, Blair JE, Venturi ML, Shoe JL. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4:2
    [Google Scholar]
  57. 57. 
    Heeger F, Bourne EC, Baschien C, Yurkov A, Bunk B et al. 2018. Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments. Mol. Ecol. Resour. 18:61500–14
    [Google Scholar]
  58. 58. 
    Hohmann S. 2009. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:244025–29
    [Google Scholar]
  59. 59. 
    Howell AS, Savage NS, Johnson SA, Bose I, Wagner AW et al. 2009. Singularity in polarization: rewiring yeast cells to make two buds. Cell 139:4731–43
    [Google Scholar]
  60. 60. 
    Huang C-H, Lee F-L, Tien C-J, Hsieh P-W. 2011. Rhodotorula taiwanensis sp. nov., a novel yeast species from a plant in Taiwan. Antonie Van Leeuwenhoek 99:2297–302
    [Google Scholar]
  61. 61. 
    Ianiri G, Coelho MA, Ruchti F, Sparber F, McMahon TJ et al. 2020. HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. PNAS 117:2715884–94
    [Google Scholar]
  62. 62. 
    Inoue K, Nishimura M, Nayak BB, Kogure K. 2007. Separation of marine bacteria according to buoyant density by use of the density-dependent cell sorting method. Appl. Environ. Microbiol. 73:41049–53
    [Google Scholar]
  63. 63. 
    James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:7113818–22
    [Google Scholar]
  64. 64. 
    James TY, Stajich JE, Hittinger CT, Rokas A. 2020. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 74:291–313
    [Google Scholar]
  65. 65. 
    Jobard M, Rasconi S, Solinhac L, Cauchie H-M, Sime-Ngando T. 2012. Molecular and morphological diversity of fungi and the associated functions in three European nearby lakes. Environ. Microbiol. 14:92480–94
    [Google Scholar]
  66. 66. 
    Jones EBG. 2006. Form and function of fungal spore appendages. Mycoscience 47:4167–83
    [Google Scholar]
  67. 67. 
    Kawarai T, Furukawa S, Ogihara H, Yamasaki M. 2007. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 73:144673–76
    [Google Scholar]
  68. 68. 
    Khroustalyova G, Giovannitti G, Severini D, Scherbaka R, Turchetti B et al. 2019. Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration. Yeast 36:5375–79
    [Google Scholar]
  69. 69. 
    Kimura Y, Nakano Y, Fujita K, Miyabe S, Imasaka S et al. 1998. Isolation and characteristics of yeasts able to grow at low concentrations of nutrients. Yeast 14:3233–38
    [Google Scholar]
  70. 70. 
    Kogej T, Gorbushina AA, Gunde-Cimerman N. 2006. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol. Res. 110:Part 6713–24
    [Google Scholar]
  71. 71. 
    Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N. 2005. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl. Environ. Microbiol. 71:116600–5
    [Google Scholar]
  72. 72. 
    Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N. 2007. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:Part 124261–73
    [Google Scholar]
  73. 73. 
    Kohlmeyer J, Kohlmeyer E. 1979. Marine Mycology: The Higher Fungi New York: Academic690 pp.
  74. 74. 
    Krishnamurthy D, Li H, du Rey FB, Cambournac P, Larson A, Prakash M. 2019. Scale-free vertical tracking microscopy: towards bridging scales in biological oceanography. bioRxiv 610246. https://doi.org/10.1101/610246
    [Crossref]
  75. 75. 
    Kurtzman CP, Fell JW, Boekhout T 2011. The Yeasts: A Taxonomic Study London: Elsevier
  76. 76. 
    Lachance M-A. 2016. Metschnikowia: half tetrads, a regicide and the fountain of youth. Yeast 33:11563–74
    [Google Scholar]
  77. 77. 
    Lages F, Silva-Graça M, Lucas C 1999. Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145:Part 92577–85
    [Google Scholar]
  78. 78. 
    Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75:206415–21
    [Google Scholar]
  79. 79. 
    Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:41145–75
    [Google Scholar]
  80. 80. 
    Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ et al. 2018. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Investig. Dermatol. 138:51137–45
    [Google Scholar]
  81. 81. 
    Loron CC, François C, Rainbird RH, Turner EC, Borensztajn S, Javaux EJ. 2019. Early fungi from the Proterozoic era in Arctic Canada. Nature 570:7760232–35
    [Google Scholar]
  82. 82. 
    McIntyre M, Breum J, Arnau J, Nielsen J. 2002. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl. Microbiol. Biotechnol. 58:4495–502
    [Google Scholar]
  83. 83. 
    Medina EM, Robinson KA, Bellingham-Johnstun K, Ianiri G, Laplante C et al. 2020. Genetic transformation of Spizellomyces punctatus, a resource for studying chytrid biology and evolutionary cell biology. eLife 9:e52741
    [Google Scholar]
  84. 84. 
    Miller CC, Walker J. 1924. The Stokes-Einstein law for diffusion in solution. Proc. R. Soc. London A 106:740724–49
    [Google Scholar]
  85. 85. 
    Mitchison-Field LMY, Vargas-Muñiz JM, Stormo BM, Vogt EJD, Van Dierdonck S et al. 2019. Unconventional cell division cycles from marine-derived yeasts. Curr. Biol. 29:203439–56.e5
    [Google Scholar]
  86. 86. 
    Nagahama T 2006. Yeast biodiversity in freshwater, marine and deep-sea environments. Biodiversity and Ecophysiology of Yeasts G Péter, C Rosa 241–62 Berlin: Springer
    [Google Scholar]
  87. 87. 
    Nagano Y, Miura T, Nishi S, Lima AO, Nakayama C et al. 2017. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res. Part II 146:59–67
    [Google Scholar]
  88. 88. 
    Nagano Y, Miura T, Tsubouchi T, Lima AO, Kawato M et al. 2020. Cryptic fungal diversity revealed in deep-sea sediments associated with whale-fall chemosynthetic ecosystems. Mycology 11:3263–78
    [Google Scholar]
  89. 89. 
    Nagy LG, Kovács GM, Krizsán K. 2018. Complex multicellularity in fungi: evolutionary convergence, single origin, or both?. Biol. Rev. Camb. Philos. Soc. 93:41778–94
    [Google Scholar]
  90. 90. 
    Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R et al. 2014. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 5:4471
    [Google Scholar]
  91. 91. 
    Naranjo-Ortiz MA, Gabaldón T. 2019. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. 94:41443–76
    [Google Scholar]
  92. 92. 
    Nguyen MTHD, Thomas T. 2018. Diversity, host-specificity and stability of sponge-associated fungal communities of co-occurring sponges. PeerJ 6:e4965
    [Google Scholar]
  93. 93. 
    Novak Babič M, Gostinčar C, Gunde-Cimerman N. 2020. Microorganisms populating the water-related indoor biome. Appl. Microbiol. Biotechnol. 104:156443–62
    [Google Scholar]
  94. 94. 
    Novak Babič M,, Zalar P, Ženko B, Džeroski S, Gunde-Cimerman N 2016. Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol 20:30–39
    [Google Scholar]
  95. 95. 
    O'Malley MA, Wideman JG, Ruiz-Trillo I. 2016. Losing complexity: the role of simplification in macroevolution. Trends Ecol. Evol. 31:8608–21
    [Google Scholar]
  96. 96. 
    Osborn HF. 1902. Homoplasy as a law of latent or potential homology. Am. Nat. 36:424259–71
    [Google Scholar]
  97. 97. 
    Padovan ACB, Sanson GFO, Brunstein A, Briones MRS. 2005. Fungi evolution revisited: Application of the penalized likelihood method to a Bayesian fungal phylogeny provides a new perspective on phylogenetic relationships and divergence dates of Ascomycota groups. J. Mol. Evol. 60:6726–35
    [Google Scholar]
  98. 98. 
    Pagnocca FG, Mendonça-Hagler LC, Hagler AN 1989. Yeasts associated with the white shrimp Penaeus schmitti, sediment, and water of Sepetiba Bay, Rio de Janeiro, Brasil. Yeast 5:S479–83
    [Google Scholar]
  99. 99. 
    Park M, Cho Y-J, Kim D, Yang C-S, Lee SM et al. 2020. A novel virus alters gene expression and vacuolar morphology in Malassezia cells and induces a TLR3-mediated inflammatory immune response. mBio 11:5e01521-20
    [Google Scholar]
  100. 100. 
    Perini L, Gostinčar C, Gunde-Cimerman N. 2019. Fungal and bacterial diversity of Svalbard subglacial ice. Sci. Rep. 9:120230
    [Google Scholar]
  101. 101. 
    Petrovič U, Gunde-Cimerman N, Plemenitaš A. 2002. Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol. Microbiol. 45:3665–72
    [Google Scholar]
  102. 102. 
    Picard KT. 2017. Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol 25:1–13
    [Google Scholar]
  103. 103. 
    Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J et al. 2014. Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front. Microbiol. 5:199
    [Google Scholar]
  104. 104. 
    Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J. 2005. Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:8693–701
    [Google Scholar]
  105. 105. 
    Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:13–11
    [Google Scholar]
  106. 106. 
    Ratcliff WC, Denison RF, Borrello M, Travisano M. 2012. Experimental evolution of multicellularity. PNAS 109:51595–600
    [Google Scholar]
  107. 107. 
    Richards TA, Leonard G, Mahé F, Del Campo J, Romac S et al. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. Biol. Sci. 282: 1819.20152243
    [Google Scholar]
  108. 108. 
    Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409:68231092–101
    [Google Scholar]
  109. 109. 
    Ruiz A, Ariño J. 2007. Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system. Eukaryot. Cell 6:122175–83
    [Google Scholar]
  110. 110. 
    Schmitt MJ, Breinig F. 2002. The viral killer system in yeast: from molecular biology to application. FEMS Microbiol. Rev. 26:3257–76
    [Google Scholar]
  111. 111. 
    Schuech R, Hoehfurtner T, Smith DJ, Humphries S. 2019. Motile curved bacteria are Pareto-optimal. PNAS 116:2914440–47
    [Google Scholar]
  112. 112. 
    Seymour JR, Amin SA, Raina J-B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2:17065
    [Google Scholar]
  113. 113. 
    Shubin N, Tabin C, Carroll S 2009. Deep homology and the origins of evolutionary novelty. Nature 457:7231818–23
    [Google Scholar]
  114. 114. 
    Si H, Rittenour WR, Harris SD. 2016. Roles of Aspergillus nidulans Cdc42/Rho GTPase regulators in hyphal morphogenesis and development. Mycologia 108:3543–55
    [Google Scholar]
  115. 115. 
    Singh P, Raghukumar C, Verma P, Shouche Y. 2010. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:189–102
    [Google Scholar]
  116. 116. 
    Singh RS, Bhari R, Kaur HP. 2011. Characteristics of yeast lectins and their role in cell-cell interactions. Biotechnol. Adv. 29:6726–31
    [Google Scholar]
  117. 117. 
    Spatz M, Richard ML. 2020. Overview of the potential role of Malassezia in gut health and disease. Front. Cell. Infect. Microbiol. 10:201
    [Google Scholar]
  118. 118. 
    Starmer WT, Lachance MA 2011. Yeast ecology. The Yeasts CP Kurtzman, JW Fell, T Boekhout 65–83 London: Elsevier
    [Google Scholar]
  119. 119. 
    Stern DL. 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:11751–64
    [Google Scholar]
  120. 120. 
    Stocker R. 2012. Marine microbes see a sea of gradients. Science 338:6107628–33
    [Google Scholar]
  121. 121. 
    Stocker R. 2015. The 100 μm length scale in the microbial ocean. Aquat. Microb. Ecol. 76:3189–94
    [Google Scholar]
  122. 122. 
    Tkavc R, Matrosova VY, Grichenko OE, Gostinčar C, Volpe RP et al. 2017. Prospects for fungal bioremediation of acidic radioactive waste sites: characterization and genome sequence of Rhodotorula taiwanensis MD1149. Front. Microbiol. 8:2528
    [Google Scholar]
  123. 123. 
    Turk M, Méjanelle L, Sentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitas A. 2004. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:153–61
    [Google Scholar]
  124. 124. 
    Turk M, Plemenitaš A. 2002. The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol. Lett. 216:2193–99
    [Google Scholar]
  125. 125. 
    Vargas-Gastélum L, Chong-Robles J, Lago-Lestón A, Darcy JL, Amend AS, Riquelme M. 2019. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 21:114046–61
    [Google Scholar]
  126. 126. 
    Vaupotič T, Gunde-Cimerman N, Plemenitaš A. 2007. Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet. Biol. 44:111109–22
    [Google Scholar]
  127. 127. 
    Vij R, Cordero RJB, Casadevall A. 2018. The buoyancy of Cryptococcus neoformans is affected by capsule size. mSphere 3:6e00534-18
    [Google Scholar]
  128. 128. 
    Whiteway M, Bachewich C. 2007. Morphogenesis in Candida albicans. Annu. Rev. Microbiol. 61:529–53
    [Google Scholar]
  129. 129. 
    Young KD. 2006. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70:3660–703
    [Google Scholar]
  130. 130. 
    Zalar P, Gostincar C, de Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N. 2008. Redefinition of Aureobasidium pullulans and its varieties. Stud. Mycol. 61:21–38
    [Google Scholar]
  131. 131. 
    Zalar P, Gunde-Cimerman N 2014. Cold-adapted yeasts in arctic habitats. Cold-Adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance P Buzzini, R Margesin 49–74 Berlin: Springer
    [Google Scholar]
  132. 132. 
    Zalar P, Zupančič J, Gostinčar C, Zajc J, de Hoog GS et al. 2019. The extremely halotolerant black yeast Hortaea werneckii—a model for intraspecific hybridization in clonal fungi. IMA Fungus 10:10
    [Google Scholar]
/content/journals/10.1146/annurev-micro-051421-121352
Loading
/content/journals/10.1146/annurev-micro-051421-121352
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error